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Summary: 
Yanocomp is a tool for predicting the positions and stoichiometries of RNA modifications in Nanopore direct 
RNA sequencing data. It uses general mixture models to identify differentially modified sites between two 
conditions, with good support for replicates. Yanocomp models across adjacent kmers and uses a uniform 
component to account for outliers, improving the accuracy of single molecule predictions. Consequently, 
Yanocomp can be used to measure modification stoichiometry, and correlate modifications with other RNA 
processing events. 
 
Availability: 
Yanocomp is available under an MIT license at www.github.com/bartongroup/yanocomp. 
 
Introduction: 
Choices in RNA processing and modification determine mRNA coding potential and fate. Nanopore direct RNA 
sequencing (DRS) provides a unique insight into these processing outcomes using full-length reads representing 
single mRNA molecules (Garalde et al., 2018; Parker et al., 2020). Nanopore technology measures the changes 
in current caused by passing RNA molecules through a pore in a membrane. The measured signal depends on 
approximately 5 bases which block the narrow part of the pore at any one time (Garalde et al., 2018). Signals 
are translated into sequences using a neural network. This information can be used to examine features of mRNA 
processing including splicing and polyadenylation (Parker et al., 2020). 

Nanopore DRS can also be used to map sites of RNA modifications such as N(6) methyladenosine (m6A), 
since modified bases cause characteristic changes in nanopore signal (Garalde et al., 2018). Several existing tools 
detect modifications using signal level data that has been aligned to a reference sequence using dynamic 
programming or hidden Markov models (HMMs) (Loman et al., 2015; Stoiber et al., 2016; Müller et al., 2019). 
These tools mostly rely on comparisons between wild type and samples with low levels of modification, e.g. 
from mutants lacking m6A (Parker et al., 2020; Leger et al., 2019; Pratanwanich et al., 2020). Differences 
between aligned signals can be identified using statistical methods such as a Kolmogorov-Smirnov test (Stoiber 
et al., 2016; Leger et al., 2019), or using a general mixture model (GMM), with two Gaussian components 
modelling modified and unmodified bases (Müller et al., 2019; Leger et al., 2019; Pratanwanich et al., 2020). The 
latter method has the advantage of also estimating the stoichiometry of modifications. Furthermore, fitted 
GMMs can be used to make single molecule predictions of modifications in individual reads. However, Gaussian 
components can be sensitive to outliers, which can skew parameters resulting in false positive results and lower 
quality single molecule predictions. This is an issue in nanopore DRS data since outliers can result from poor 
signal or alignment. 

Here we present Yanocomp, a tool designed to identify RNA modifications from nanopore DRS signal 
data aligned using the HMM tool Nanopolish (Loman et al., 2015). Yanocomp models modified and unmodified 
bases using GMMs, and includes a uniform component which captures outliers, improving the robustness of the 
models. Yanocomp also predicts modifications in individual nanopore DRS reads, allowing correlation of 
modified bases with other RNA processing outcomes. 
 
Implementation: 
Yanocomp is implemented using scientific Python (Harris et al., 2020; Schreiber, 2017; Virtanen et al., 2020). It 
summarises the output of Nanopolish (Loman et al., 2015) into a table of mean current values per read, per 
position in each gene. Summarised tables are stored in an HDF5 file allowing random access of individual genes. 
Since 5 bases occupy the pore at any time, modified bases can cause deviations in current for at least 5 adjacent 
positions. We therefore use a 5-position sliding window to fit multivariate GMMs, comprising two Gaussian 
components with full covariance matrices. Modelling multiple positions improves the separation of modified 
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and unmodified distributions. A third, uniformly distributed component improves the robustness of models to 
outliers, helping to prevent overfitting. 
 The fitting of GMMs is dependent upon parameter initialisation, which we perform using K-means with 
two clusters. Outliers are initially identified by calculating the median absolute deviation (MAD) of the Euclidean 
distances of each datapoint to the nearest cluster centroid, and selecting those above a distance of 0.5×MAD. 
GMMs are then fitted by expectation maximisation using pomegranate (Schreiber, 2017), with one model per 
biological replicate. Models from different replicates share the same underlying distributions but have 
independent weights for the contributions of each component. Gaussian distributions are labelled as modified 
or unmodified by comparison to existing models of unmodified kmers. Weights are used to estimate the number 
of modified and unmodified reads in each replicate. G-tests are then used to ensure homogeneity between 
replicates of the same condition and identify differences in modification rate between control and treatment 
conditions. Models can also be used to make single molecule predictions for each read. 
 
Example: 
We performed differential modification analysis of Arabidopsis mRNA using a mutant with low m6A levels (vir-1) 
and a complemented line (VIRc) (Parker et al., 2020). Yanocomp identified 20,033 modification sites, of which 
16,389 (81.8%) had lower modification rates in vir-1 (Figure 1A). An unbiased motif search at modification sites 
recovered the m6A consensus motif (Figure 1B). Modification sites were almost exclusively found in 3’UTRs, as 
expected in Arabidopsis (Figure 1C). Furthermore, comparison to miCLIP data (an m6A antibody cross-linking 
method) indicates that 84.1% of detected modification sites are within 5 nt of an orthogonally identified m6A 
site (Figure 1D). 
 RNA methylation is linked to poly(A) site choice in Arabidopsis (Parker et al., 2020). To demonstrate the 
utility of Yanocomp single molecule predictions, we separated methylated and unmethylated reads in VIRc for 
the example gene AT5G16010 and compared 3’ end distributions. Unmethylated mRNAs had increased proximal 
polyadenylation compared to methylated mRNAs (p=7.9×10-8; Figure 1E). Therefore, Yanocomp predictions 
allow the phasing of RNA modifications with other processing outcomes. 
 
Conclusion: 
We have developed a tool that identifies differential RNA modifications using nanopore DRS signal. Yanocomp 
makes use of efficient data structures, fast modelling frameworks and multiprocessing to boost performance. 
We demonstrate that Yanocomp recovers genuine m6A sites in Arabidopsis, and that single molecule m6A 
predictions uncover interactions between RNA processing events. In future, we will use models of modified 
bases trained using Yanocomp to perform identification of m6A without requiring a low modification sample, for 
example by incorporation into HMMs. 
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Figure 1: Yanocomp identifies m6A sites in Arabidopsis thaliana. (A) Histogram showing log ratio of 
modified/unmodified reads in vir-1 compared to VIRc, for positions with significantly altered modification rates 
(FDR < 0.05). (B) Logo detected by MEME (Bailey et al., 2009) at positions with significantly altered modification 
rates. (C) Bar plot showing the number of modification sites per kilobase (kb) for different genic feature types 
of 48,149 protein coding transcript loci in the nuclear genome of the Araport11 reference. Upstream and 
downstream were defined as 200 nt regions before annotated transcription start sites and after annotated 
transcription termination sites, respectively. (D) Histogram showing the distribution of distances to the nearest 
miCLIP peak for each position with significantly altered modification rate. (E) Gene track showing 3’ positions 
for VIRc reads at the gene AT5G16010, which have been separated by modification status. 
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