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Abstract 12 

Accurate cell classification is the groundwork for downstream analysis of single-13 

cell sequencing data, yet how to identify marker genes to distinguish different cell types 14 

still remains as a big challenge. We developed COSG as a cosine similarity-based 15 

method for more accurate and scalable marker gene identification. COSG is applicable 16 

to single-cell RNA sequencing data, single-cell ATAC sequencing data and spatially 17 

resolved transcriptome data. COSG is fast and scalable for ultra-large datasets of 18 

million-scale cells. Application on both simulated and real experimental datasets 19 

demonstrates the superior performance of COSG in terms of both accuracy and 20 

efficiency as compared with other available methods. Marker genes or genomic regions 21 

identified by COSG are more indicative and with greater cell-type specificity. 22 
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Introduction 23 

With the broad application of various single-cell sequencing technologies, such as 24 

single-cell RNA sequencing (scRNA-seq)1–3 and single-cell assay for transposase-25 

accessible chromatin using sequencing (scATAC-seq)4–6, as well as the rapid 26 

development of spatially resolved transcriptomics (spatial transcriptomics) 27 

technology7–9, how to accurately distinguish cells of interest from others or to 28 

characterize novel cell populations is becoming increasingly important2,10,11. The 29 

commonly used methods for cell marker gene identification usually rely on statistical 30 

tests to search for genes that are differentially expressed between cells of interest and 31 

all other cells in a dataset12,13. However, as statistical tests tend to identify candidates 32 

with systematic differences between two groups, when comparing one type of cells 33 

(target cells) with multiple other types of cells (non-target cells), the top-ranked 34 

differentially expressed genes selected by statistical methods may not be real cell 35 

markers. For example, a gene could be highly expressed in target cells and a small 36 

group of non-target cells, but almost non-detectable in other cells. Such gene could be 37 

selected as a marker gene for the target cells by expression-based statistical methods, 38 

but it could bring false results when being used for cell type characterization. 39 

Problematically, expression-based statistical methods are the default approaches for 40 

marker gene identification in most single-cell data analysis toolkits, including the two 41 

most commonly-used software, namely Scanpy14 and Seurat15. 42 

Cosine similarity measures the relationship of two !-dimensional vectors using 43 

the cosine value of the angle between the vectors in the vector space. Unlike Euclidean 44 
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distance which measures the positional difference between two vectors, cosine 45 

similarity compares the orientations of two vectors, which means if two genes have 46 

identical expression patterns but different expression abundance among a group of cells, 47 

the two genes will be considered as equivalent. Therefore, cosine similarity is scale-48 

independent16 and is more sensitive to identify genes specifically expressed in target 49 

cells, yet it has not been applied on cell marker gene identification so far. 50 

As the single-cell RNA-seq technology becomes more mature and popular, the 51 

number of cells captured by each experiment is rapidly increasing1, yet the currently 52 

available cell marker gene identification methods often suffer from their slow speed 53 

when handling data with a large number of cells. In addition, with the development of 54 

scATAC-seq4–6 and spatial transcriptomics technologies7–9, the need for a universal 55 

method with the capability to identify cell marker genes from multiple types of single-56 

cell data modalities is rapidly emerging. 57 

To address the challenges mentioned above, we developed COSG (COSine 58 

similarity-based marker Gene identification), a method to identify cell marker genes 59 

with better accuracy and faster speed. COSG outperforms existing tools in terms of the 60 

expression specificity of identified marker genes and the analysis time needed for large-61 

scale datasets. In addition to scRNA-seq data, COSG can also be applied to scATAC-62 

seq and spatial transcriptome data with good performance. Therefore, COSG can serve 63 

as a general method for cell marker gene identification across different data modalities 64 

to facilitate downstream analysis and discoveries. 65 

 66 
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Results 67 

COSG uses cosine similarity to evaluate the expression specificity of genes 68 

The basic concept of COSG is to compare the expression patterns of two genes within 69 

a given cell population by evaluating the angles between the vectors representing the 70 

expression of each gene in an !-dimensional cell space. Within the cell space, each 71 

dimension represents a cell. The representing vector for each gene consists of !-basis 72 

(!  equals to the number of total detected cells), and the coordinate of each basis 73 

represents the gene’s expression level in each cell. Therefore, the cosine similarity of 74 

two genes equals the cosine value of the angle between each gene’s representative 75 

vector in the cell space. The more similar the expression patterns, the smaller the angle 76 

is. If two genes have identical expression patterns, the angle between their 77 

representative vectors will be zero, regardless of their abundance difference. 78 

The marker gene identification process of COSG starts with multiple groups of 79 

cells pre-classified by other single-cell analysis tools. To identify marker genes for each 80 

cell group, COSG first creates an artificial gene ("!) which only expresses in cells of a 81 

given group, e.g., Group # ($" , 	# ∈ {1, 	 … , 	+}) and does not express in any other 82 

groups of cells, thus "! would be the ideal marker gene for cells belonging to $" (Fig. 83 

1). The representative vector for each expressed gene (-#, 	. ∈ {1, 	 … , 	/}) will be 84 

compared with the representative vector of "! , genes whose representative vectors 85 

with the smallest angles to the representative vector of "! and the largest angles to the 86 

representative vectors of other cell groups ("$, 	0 ∈ 	{1, 	 … , 	+}	and	0 ≠ # ) will be 87 

selected as the marker genes for $" . Here, we define COSG score as 88 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448484


 5 

567$89:;<(-#, $") =
%&'()!,+")#

%&'()!,+")$-.×∑ %&'()!,+%)$&∈{),…,,},&./
, where !"#() calculates the 89 

cosine similarity between the representative vectors of two genes, and @ (@ ≥0) is a 90 

user-defined hyperparameter as the penalty score (by default, @ = 1). The output of 91 

COSG is a list of candidate marker genes starting with the ones with the highest COSG 92 

scores for each cell group. COSG is available both in Python and R, and can be 93 

seamlessly used with Scanpy14 and Seurat15. 94 

 95 

COSG identifies more indicative marker genes in scRNA-seq data 96 

To test the function of COSG, we first generated 30 simulated scRNA-seq datasets with 97 

ground truth for known marker genes (Methods, Supplementary Table 1), and compared 98 

the performance of COSG with other 10 popular methods in the commonly used 99 

toolkits Scanpy14 and Seurat15 (Supplementary Table 2) on these datasets. We calculated 100 

the average overlapping ratios between the top 20 marker genes identified by each 101 

method and the true 20 marker genes of the 30 simulated datasets. The results showed 102 

that COSG outperformed all other tested methods (Fig. 2a and Supplementary Fig. 1). 103 

We then compared COSG with three well-used methods in Scanpy14, namely 104 

Logistic regression17, Wilcoxon Rank Sum test (Wilcoxon-test, also known as Mann-105 

Whitney U test)18,19, and Wilcoxon-test with tie correction (denoted as Wilcoxon-test 106 

(TIE)) using two reported scRNA-seq datasets (Supplementary Table 3). Wilcoxon-test 107 

is the default method used in Seurat. It is also included in Scanpy and is the most widely 108 

used method for marker gene identification from scRNA-seq data. As scRNA-seq data 109 

usually contain many zero values (tied values), tie-correction is also implemented for 110 
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Wilcoxon-test in Seurat. However, the default Wilcoxon-test in Scanpy does not 111 

perform tie correction and has been widely used by many published studies20 and cell 112 

atlas projects21,22. 113 

The two reported scRNA-seq datasets used in this study were published by 114 

Hochgerner et al.23 and Stewart et al.24, respectively (Supplementary Table 3). The 115 

Hochgerner dataset contains 23,025 cells (belonging to 24 cell types) from the dentate 116 

gyrus tissue of perinatal, juvenile, and adult mice23. UMAP projection results confirmed 117 

the gene expression similarities among cells within each group (Fig. 2b). We examined 118 

the top 3 marker genes of each cell type identified by COSG and other methods, and 119 

found that most marker genes identified by Logistic regression or Wilcoxon-test are not 120 

cell type-specific (Fig. 2c). Wilcoxon-test (TIE) works slightly better, but still identified 121 

more non-specific marker genes as compared with COSG (Fig. 2c). About 54% marker 122 

genes (top 3 for each group) identified by COSG were also reported by Wilcoxon-test 123 

(TIE), but only 16% or 8% of them were identified by Logistic regression or Wilcoxon-124 

test, respectively (Supplementary Fig. 2a). Expression pattern examination also 125 

revealed that, the top 3 marker genes for adult granule cells (GC-adult) identified by 126 

other methods almost all had relatively high expression abundance in at least one type 127 

of non-target cells, such as hippocampus CA3 pyramidal layer cells (CA3-Pyr) and 128 

juvenile GC cells (GC-juv), which are highly similar to GC-adult cells, yet 2 out of 3 129 

marker genes identified by COSG had GC-adult cell-specific expression 130 

(Supplementary Fig. 2b). The Stewart scRNA-seq dataset contains 40,268 cells 131 

(belonging to 27 cell types) from human adult kidney tissue24, of which some cell types, 132 
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especially those of the immune cells, were less distinguishable from each other by 133 

UMAP projection (Supplementary Fig. 3a). Again, the marker genes for almost all cell 134 

types identified by COSG showed high specificity, yet the other methods failed to reach 135 

the same standard (Supplementary Fig. 3b and 3c). 136 

 137 

COSG outperforms existing methods on large-scale datasets 138 

To evaluate the computational performance and scalability of COSG, we measured the 139 

running time of COSG and the other 10 methods mentioned above (Supplementary 140 

Table 2) on 14 scRNA-seq datasets with cell numbers ranging from 1,000 to 150,000 141 

(Supplementary Table 4). When handling scRNA-seq data of less than 10,000 cells, 142 

COSG and five other methods (namely t-test, t-test_overestim_var, Wilcoxon-test, 143 

Logistic regression, Wilcoxon-test (TIE)) finished the analysis almost instantly (Fig. 144 

3a). Further comparison of these six methods on larger datasets with 10,000 to 150,000 145 

cells demonstrated that COSG ran much faster than other methods, especially when the 146 

number of cells reached 150,000 (Fig. 3b and Supplementary Table 5). In addition, 147 

COSG identifies marker genes for over 1 million cells (1,331,984 cells) belonging to 148 

37 cell types in less than 2 minutes (Supplementary Fig. 4). 149 

To examine whether the high efficiency of COSG is achieved without sacrificing 150 

its accuracy, we further analyzed the expression of the top 3 maker genes of each cell 151 

type identified by Logistic regression, Wilcoxon-test, Wilcoxon-test (TIE) and COSG 152 

from the above-mentioned 150,000 cells. Among the 31 cell types in this dataset, some 153 

cell types were difficult to be distinguished from each other by UMAP projections (Fig. 154 
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3c) or by marker genes identified by Logistic regression or Wilcoxon-test (Fig. 3d). 155 

Both COSG and Wilcoxon-test (TIE) reported specific marker genes for most cell types, 156 

but the processing time used by COSG was only 1/280 of that used by Wilcoxon-test 157 

(TIE), and the marker genes identified by COSG also had higher expression specificity 158 

(Fig. 3b and 3d, Supplementary Table 5). For example, the top 3 marker genes for 159 

fibroblast of cardiac tissue identified by COSG were all dominantly expressed in the 160 

target cells, whereas the top 3 marker genes identified by other methods all had high 161 

expression in one or more types of non-target cells (Fig. 3e). Taken together, these 162 

results demonstrated the advantages of COSG in handling large-scale datasets. 163 

 164 

COSG correctly identifies cell-type-specific marker regions in scATAC-seq data 165 

We next assessed the performance of COSG on scATAC-seq data, which are much 166 

sparser and contain 10-20 times more features than scRNA-seq data25. Again, we 167 

compared the results generated by Logistic regression, Wilcoxon-test, Wilcoxon-test 168 

(TIE) and COSG using two reported scATAC-seq datasets (Supplementary Table 3). 169 

The first dataset (the Pijuan-Sala dataset) contains 301,316 detected genomic regions 170 

of 19,453 single nuclei from mouse embryos at 8.25 days post-fertilization4. The second 171 

dataset contains 451,999 detected genomic regions of 33,819 bone marrow and 172 

peripheral blood mononuclear cells (BMMCs and PBMCs, respectively) from healthy 173 

human donors6. We first examined the computational efficiency of COSG on scATAC-174 

seq data. A broad cell type annotation (17 cell types) and a fine cell type annotation (23 175 

cell types) were applied to the ATAC-Granja dataset. In all cases, COSG consumed less 176 
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than 2 minutes, whereas Logistic regression and Wilcoxon-test were about 30 times 177 

slower than COSG, and Wilcoxon-test (TIE) was more than 300 times slower than 178 

COSG (Fig. 4a, Supplementary Table 6). 179 

The UMAP projection result of the Pijuan-Sala dataset4 shows overlaps of some 180 

cell types, especially the ones from undifferentiated mesoderm (Fig. 4b), which made 181 

marker gene identification more difficult. Similar to the results of scRNA-seq data, the 182 

top 3 marker regions identified by COSG were more specific than the ones identified 183 

by other methods (Fig. 4c). Majority of marker regions reported by COSG were not 184 

identified by Logistic regression or Wilcoxon-test (Fig. 4d). Taking forebrain cells as 185 

an example, the genomic region ‘chr14-48738109-48738610’ had specific accessibility 186 

in forebrain cells and was identified as one of the top 3 marker regions only by COSG, 187 

yet the marker regions identified by other methods showed high accessibility in non-188 

forebrain cells, namely spinal cord, mid/hindbrain cells, or neural crest cells (Fig. 4e). 189 

Notably, region ‘chr2-142589336-142590022’, one of the top 3 marker regions for 190 

forebrain cells identified by Wilcoxon-test (TIE), showed much higher accessibility in 191 

neural crest cells than in forebrain cells (Fig. 4e). 192 

Immune cells, especially subtypes of the same immune cell type (e.g., naive CD4+ 193 

T cell and memory CD4+ T cell), are usually highly similar to each other in terms of 194 

molecular features. Analysis results of both the broad cell-type annotation (including 195 

17 cell types) and fine cell-type annotation (including 23 cell types) of the Granja 196 

scATAC-seq dataset showed that, marker regions identified by COSG had higher cell 197 

type specificity than the ones identified by other methods, especially for different T cell 198 
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subtypes (Supplementary Fig. 5 and Supplementary Fig. 6). 199 

 200 

COSG holds advantage in analyzing spatial transcriptome data 201 

Spatial transcriptome data has emerged as a new data type in recent years, and the 202 

analysis of spatial transcriptome data also relies on marker gene identification to 203 

characterize cell types. To test the applicability of COSG on spatial transcriptome data, 204 

we first applied it on a dataset (the Spatial-brain_sagitta dataset, Supplementary Table 205 

3) generated by 10x Genomics Visium platform using adult mouse brain. A total of 206 

3,355 signal spots were detected in this dataset and clustered into 11 groups according 207 

to their gene expression profiles (Fig. 5a and 5b). To examine the accuracy of COSG, 208 

we compared the top 3 marker genes of each group identified by different methods (Fig. 209 

5c). It is apparent that most marker genes identified by Logistic regression or Wilcoxon-210 

test do not have cell type specificity. Wilcoxon-test (TIE) works better, but still picked 211 

up more non-specific cell markers as compared with COSG (Fig. 5c). We further 212 

examined the spatial expression pattern of Cluster 0’s top 3 marker genes identified by 213 

each method (Fig. 5d). The results showed that marker genes identified by COSG had 214 

higher and more specific expression among Cluster 0 cells as compared to markers 215 

identified by other methods. Similarly, application of the above-mentioned four 216 

methods on another 10x Genomics Visium dataset (the Spatial_brain_coronal dataset, 217 

Supplementary Table 3) generated using the coronal region of a mouse brain also 218 

demonstrates the capability of COSG in identifying more indicative marker genes from 219 

noisy data (Supplementary Fig. 7). 220 
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We next analyzed the performance consistency of COSG across spatial 221 

transcriptomics platforms with a dataset generated by the Slide-seqV2 technology using 222 

mouse hippocampus8 (the Spatial-Slide-seqV2 dataset, Supplementary Table 3). The 223 

dataset contains 9,319 high-quality beads classified into 13 clusters (Supplementary Fig. 224 

8a and 8b). Expression dot plots of the top 3 markers for each cell cluster demonstrated 225 

the superior performance of COSG as compared with other methods (Supplementary 226 

Fig. 8c). Expression pattern comparison of the top 3 marker genes for Cluster 5 showed 227 

that marker genes identified by COSG tended to have restricted expression in target 228 

cells, yet marker genes picked by other methods were broadly expressed 229 

(Supplementary Fig. 8d). 230 

 231 

Discussion 232 

Marker gene identification safeguards the accuracy of cell type discrimination, 233 

therefore is a key step in single-cell sequencing data or spatial transcriptome data 234 

analysis. Here, we present COSG as a more accurate and faster method for marker gene 235 

identification from scRNA-seq, scATAC-seq and spatial transcriptome data. COSG 236 

should be applied to pre-clustered data to facilitate follow-up cell-type annotations, and 237 

the outputs of COSG can also be used to refine cell clustering results. COSG is 238 

implemented in both Python and R, and can be seamlessly used with popular toolkits, 239 

such as Scanpy14 and Seurat15. 240 

The outstanding accuracy of COSG is achieved by assuming an ideal marker gene 241 

for each cell group and using cosine similarity to compare the expression patterns 242 
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between the detected genes and the assumed ideal marker gene. Therefore, unlike other 243 

reported statistics-based marker gene identification methods, COSG is more robust to 244 

sequencing depth and capture efficiency of cells13, thus often generates more accurate 245 

results. Our experiments also showed that, due to the high frequency of missing values 246 

(zeros, or tied values), doing tie correction is necessary for Wilcoxon-test when it is 247 

applied to single-cell sequencing data. 248 

COSG runs remarkably faster than other available methods, and it is capable of 249 

identifying marker genes from scRNA-seq data of over 1 million cells in less than 2 250 

minutes. COSG is a universal method. It has achieved good performances in scATAC-251 

seq and spatial transcriptome data, and also has the potential to be effectively applied 252 

to other types of single-cell omics data. The fast speed of COSG would be more 253 

beneficial when applying it to whole-genome scale single-cell sequencing data, as 254 

analysis of these types of data is usually time-consuming. 255 

In short, COSG can serve as a general method for cell marker gene identification 256 

across different data modalities to facilitate single-cell data analysis and biomedical 257 

discoveries. Because the 10x Visium and Slide-seqV2 technologies are not at single-258 

cell resolution yet, one spot or bead could contain several cells of multiple cell types, 259 

therefore the marker genes identified by COSG from spatial transcriptome data are not 260 

as discriminative as those from scRNA-seq data or scATAC-seq data. Enrichment 261 

analysis or aggregation of marker gene expressions may improve cluster annotations in 262 

spatial transcriptome data, which awaits future exploration. 263 

 264 
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Methods 265 

Overview of COSG algorithm 266 

COSG is designed to identify proper marker genes for predefined cell groups. The input 267 

data for COSG should first be normalized by other methods. After normalization, 268 

COSG generates the gene expression matrix B ∈ ℝ1×2, where D is the number of 269 

cells and / is the total number of detected genes. The .34 gene, -# ’s expression 270 

among all cells is the .34 column of B: 271 

-# = E
F56
⋮
F76
H 272 

where F86  is -# ’s expression value in the I34  cell, J9 , I ∈ {1, … , D} . Let + 273 

represents the number of cell groups predefined by manual annotation or unsupervised 274 

cell clustering. In order to identify marker genes for group $", # ∈ {1,… , +}, we first 275 

set an ideal marker gene "! for $": 276 

"! = E
K5"
⋮
K7"

H 277 

where K8" = 1 if J9 ∈ $" and K8" = 0 if J9 ∉ $". 278 

We then calculate the cosine similarity between -# and "! as 9:8(-#, "!): 279 

9:8(-#, "!) =
-# ∙ "!

‖-#‖ × ‖"!‖
=

∑ F86K8"
1
8:5

R∑ F86;1
8:5 × R∑ K8"

;1
8:5

 280 

To evaluate whether -# is a good marker gene for group $", we calculate COSG 281 

score as: 282 

567$89:;<(-#, $") =
9:8(-#, "!)<

9:8(-#, "!); + @ × ∑ 9:8(-#, "$);=∈{5,…,A},=C"
 283 

where @ ≥ 0 is the penalty factor for expression in non-target cell groups $= , 0 ∈284 
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{1, … , +}	and	0 ≠ #. The value of @ can be adjusted by users, and a larger @ means 285 

a bigger penalization for genes expressed in non-target cells. By default, @ = 1. The 286 

top marker genes for group $"  were selected by ranking COSG scores from the 287 

highest to the lowest. 288 

Methods compared with COSG 289 

Besides COSG, 10 commonly used cell marker gene identification methods were 290 

evaluated in this study (Supplementary Table 2). Among them, Logistic regression was 291 

implemented by tl.rank_gene_groups (Scanpy v1.6.1) with ‘method’ set to ‘logreg’. 292 

Wilcoxon-test was implemented by tl.rank_gene_groups (Scanpy v1.6.1) with ‘method’ 293 

set to ‘wilcoxon’ and ‘tie_correct’ set to False. Wilcoxon-test (TIE) was implemented 294 

by tl.rank_gene_groups (Scanpy v1.6.1) with ‘method’ set to ‘wilcoxon’ and 295 

‘tie_correct’ set to True. For t-test and t-test_overestim_var, we used 296 

tl.rank_gene_groups (Scanpy v1.6.1) with ‘method’ set to ‘t-test’ or ‘t-297 

test_overestim_var’, respectively. For bimod, MAST, negbinom, poisson and roc, we 298 

used Seurat v3.2.3’s FindAllMarkers function with the parameter ‘test.use’ set to 299 

‘bimod’, ‘MAST’, ‘negbinom’, ‘poisson’ or ‘roc’, respectively. All methods took 300 

normalized and log-transformed gene expression data as the input except for the 301 

negbinom and poisson methods, which took the raw count data as the input. 302 

Public data resources 303 

scRNA-seq data: For the scRNA-seq dataset of mouse dentate gyrus cells23, the raw 304 

counts of unique molecular identifiers (UMIs) were downloaded from NCBI Gene 305 

Expression Omnibus (GEO) database (GSE104323). Data quality control was 306 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448484


 15 

performed by filtering out genes detected in less than 3 cells and cells with any of the 307 

following features: 1) with fewer than 200 detected genes; 2) with more than 4,000 308 

detected genes or more than 15,000 total UMIs; 3) with more than 20% UMIs derived 309 

from mitochondrial genomes. For the human kidney scRNA-seq data24, the 310 

preprocessed and normalized UMI counts were downloaded from the COVID-19 Cell 311 

Atlas (https://www.covid19cellatlas.org)26. scATAC-seq data: The raw scATAC-seq 312 

data and the processed genome track files of the mouse embryonic scATAC-seq dataset4 313 

were downloaded from the NCBI GEO repository (GSE133244). The raw scATAC-seq 314 

data of the human bone marrow and peripheral blood mononuclear cells (BMMCs and 315 

PBMCs, respectively)6 was downloaded from 316 

https://github.com/GreenleafLab/MPAL-Single-Cell-2019 (File name: scATAC-317 

Healthy-Hematopoiesis-191120.rds). Spatial transcriptome data: The adult mouse 318 

brain spatial transcriptome datasets (the sagittal posterior and coronal data) were 319 

downloaded from the 10x Genomics Visium spatial transcriptomics platform 320 

(https://support.10xgenomics.com/spatial-gene-321 

expression/datasets/1.1.0/V1_Mouse_Brain_Sagittal_Posterior and 322 

https://support.10xgenomics.com/spatial-gene-323 

expression/datasets/1.1.0/V1_Adult_Mouse_Brain). Genes detected in less than 3 spots 324 

were filtered out. The raw Slides-seqV2 mouse hippocampus spatial transcriptome 325 

data8 was downloaded from 326 

https://singlecell.broadinstitute.org/single_cell/study/SCP815/sensitive-spatial-327 

genome-wide-expression-profiling-at-cellular-resolution (Puck_200115_08). Data 328 
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quality control was performed by filtering out genes detected in less than 3 beads and 329 

beads met any of the following requirements: 1) with fewer than 200 detected genes or 330 

fewer than 1,000 total UMIs; 2) with more than 3,000 detected genes or more than 331 

5,000 total UMIs; 3) with more than 20% UMIs derived from mitochondrial genomes. 332 

Generation of simulated datasets 333 

The simulated datasets used in this study were generated by in-house built R scripts. 334 

Genes were simulated to follow negative binomial distribution using the rnbinom() 335 

function in R: T = rnbinom(n = !,mu = @, size = 1), where n is the number of 336 

cells, mu is the mean expression value of each gene, and size is defined as the target 337 

number of successful trials. The following five types of gene expression patterns were 338 

simulated. 339 

Type I expression represents the expression patterns of good marker genes, under 340 

which the simulated genes are specifically expressed in and restricted to target cells. 341 

For Type I genes, @ was set as 0.2 in target cells and 0.001 in non-target cells. Type II 342 

expression means the simulated genes are widely expressed, but with higher expression 343 

levels in target cells than in non-target cells. Genes with Type II expression pattern were 344 

simulated with @ set as 4 for 85% of the target cells and @ set as 2 for 85% of the 345 

non-target cells, and @ set as 2 or 4 for the remaining 15% of the target cells or the 346 

non-target cells, respectively. Type III expression means the simulated genes are not 347 

only expressed in the target group (@ = 0.4), but also expressed in limited numbers of 348 

non-target groups (3 non-target groups were created in each simulation, @ = 0.2 for 349 

each group). Type IV expression means the simulated genes have detectable but low 350 
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expression in all cells, these genes were simulated with @ = 0.1. Type V expression 351 

means the simulated genes are highly expressed in all cells, these genes were simulated 352 

with @ = 2. 353 

Using the above procedure, we generated 30 simulated datasets (each contains 20 354 

cell groups). The number of cells contained in the simulated datasets ranged from 1,000 355 

to 10,000, with the number of cells per dataset increased 1,000 per step. At each total 356 

cell number, three datasets were generated with different population distributions 357 

among cell groups. For all datasets, the minimum number of cells for a cell group was 358 

set as 5. A total of 20 genes with Type I expression pattern were generated as the real 359 

marker genes for each cell group. In addition, 20 genes with Type II expression and 20 360 

genes with Type III expression were generated for each cell group to serve as the 361 

confounding factors for the real marker genes. For all cell groups in each dataset, the 362 

numbers of genes with Type IV expression and genes with Type V expression were both 363 

set as 500. 364 

Generation of large-scale experimental benchmark datasets 365 

To generate large-scale benchmark datasets, we subsampled the Drop-seq scRNA-seq 366 

dataset of Tabula Muris Senis27 (TMS, 245,389 cells of 123 annotated cell types) to 367 

generate 14 experimental benchmark datasets (each contained 31 cell types) with sizes 368 

ranging from 1,000 to 150,000 cells (Supplementary Table 4). The raw UMI count data 369 

was downloaded from 370 

https://figshare.com/articles/dataset/tms_gene_data_rv1/12827615?file=24351014. 371 

Cell types with too few cells (less than 2,000 cells) or too many cells (more than 30,000 372 
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cells) were filtered out to avoid sampling bias. The remaining 156,630 cells from 31 373 

cell types were subsampled using the pp.subsample function (Scanpy v1.6.1). Cell 374 

replacement was not allowed during the subsampling process. 375 

To generate benchmark datasets from the Mouse Organogenesis Cell Atlas28, the 376 

filtered high-quality scRNA-seq UMI count data (File name: gene_count_cleaned.RDS) 377 

was downloaded from the Mouse Organogenesis Cell Atlas website 378 

(https://oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.mouse.rna/downloads). 379 

The downloaded data has 1,331,984 cells with annotations. Genes detected in less than 380 

3 cells were filtered out. Benchmark datasets with 50,000, 100,000, 500,000, 1,000,000 381 

and 1,331,984 cells, respectively, were generated using the same method mentioned 382 

above. Each dataset contains exactly 37 cell types. 383 

Data normalization 384 

Except for the human kidney scRNA-seq dataset which used the normalized UMI 385 

counts provided by the dataset owners, all other datasets were normalized using the 386 

below methods. For the scRNA-seq and spatial transcriptome data, normalization was 387 

performed by firstly dividing the raw counts of each gene within each cell/spot/bead by 388 

the total number of raw counts within that cell/spot/bead, and then multiplying by 389 

10,000, using the pp.normalize_total function in Scanpy v1.6.1. The normalized counts 390 

were then log-transformed via the pp.log1p function in Scanpy v1.6.1. For the scATAC-391 

seq data, the raw scATAC-seq data was normalized by the term frequency-inverse 392 

document frequency (TF-IDF) algorithm implemented by the RunTFIDF function of 393 

Signac v1.1.029. 394 
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Dimensionality reduction  395 

We used Principal Component Analysis (PCA) to embed the detected cells/spots/beads 396 

of scRNA-seq or spatial transcriptome data into a low-dimensional space. Before PCA, 397 

we selected 3000 highly-variable genes by the pp.highly_variable_genes function 398 

(Scanpy v1.6.1) and used them as the input data for PCA. We first used the 399 

StandardScaler function of scikit-learn v0.24.030 to scale the highly-variable genes to 400 

unit variance to diminish the effects of gene abundance difference, then applied the 401 

TruncatedSVD function of scikit-learn v0.24.0 to obtain PCA embedding. The default 402 

component number of PCA was set as 50. The PCA embedding results were used for 403 

downstream UMAP visualization and Leiden clustering. 404 

Data visualization  405 

The 2-dimensional distributions of cells/spots/beads within each dataset were 406 

visualized by Uniform Manifold Approximation and Projection (UMAP)31 plots using 407 

the top 50 principal components (PCs) of the scRNA-seq datasets and the top 30 PCs 408 

of the spatial transcriptome datasets. UMAP was implemented via the pp.neighbors 409 

function (parameters: n_neighbors=15, knn=True, use_rep =‘X_pca’ and 410 

method=‘umap’) followed by the tl.umap function (with default parameters) of Scanpy 411 

(v1.6.1). For the human kidney scRNA-seq dataset24 and the scATAC-seq datasets4,6, 412 

the 2-dimensional coordinates of cells were adopted from the original publications and 413 

used for UMAP plot construction. 414 

Cell type annotation  415 

For the scRNA-seq and scATAC-seq datasets, the identities of cells were characterized 416 
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according to the original publications4,6,23,24,27,28. For the spatial transcriptome datasets, 417 

unsupervised graph-based Leiden clustering algorithm32 implemented by the 418 

pp.neighbors (parameters: n_neighbors=15, knn=True, use_rep=‘X_pca’ and 419 

method=‘umap’) and tl.leiden functions (Scanpy v1.6.1) were used to cluster 420 

spots/beads into different groups according to their gene expression similarities. The 421 

resolution parameter for tl.leiden (Scanpy v1.6.1) was set as 0.3 for the Spatial-422 

brain_sagitta dataset, set as 0.25 for the Spatial_brain_coronal dataset and set as 0.5 for 423 

the Slide-seqV2 spatial transcriptome dataset. 424 

Running time evaluation  425 

The running time for each tested marker gene identification method was measured by 426 

the time module in Python. All methods were run on a 2.00GHz Intel Xeon E7-4830v4 427 

central processing unit (CPU) with 512GB of RAM. Except for the MAST method, 428 

which by default uses multiple CPU cores, other methods were restricted to use one 429 

CPU core. 430 

 431 

Code availability 432 

COSG is available at https://github.com/genecell/COSG (Python) and 433 

https://github.com/genecell/COSGR (R). 434 
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 527 

Fig. 1 | Workflow of COSG. The basic idea of COSG is to identify marker genes within 528 

a given group of cells by comparing the cosine values of the angles between the 529 
representative vectors of each detected gene and the assumed ideal marker gene. The 530 

input data of COSG should be normalized and clustered scRNA-seq data/scATAC-seq 531 

data/spatial transcriptome data. For a dataset of D cells (clustered into + groups) 532 

with / expressed genes, to identify marker genes for group # ($" , 			# ∈ {1, 	 … , 	+}), 533 
COSG first creates an ideal marker gene "! for $", which was only detected in cells 534 

of $" with uniformed expression value but not in any other group of cells. To examine 535 

whether a detected gene, -#, 			. ∈ {1, 	 … , 	/}, is a good marker gene for $", COSG 536 

evaluates the expression similarity between gene -#	and gene "! among all cells by 537 
calculating the cosine values of the angles formed by the representative vectors of -# 538 

and "! in the D-dimensional space spanned by all cells, then generates COSG score 539 

to reflect the expression specificity of -# in $" by comparing the expression values 540 

of -# and "!	as well as "$	(0 ∈ 	{1, 	 … , 	+} a!b 0 ≠ #). As "$ represents the ideal 541 
marker genes for cell groups other than $", the COSG score reflects the suitability of 542 

-# to serve as a marker gene for $". By repeating the above procedures, COSG could 543 

identify marker genes for each group of cells.   544 
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 545 
Fig. 2 | Performance comparison of COSG with other methods on scRNA-seq 546 

data. a, Average overlapping ratios of the top 20 marker genes identified by COSG or 547 
other 10 popular methods vs. the top 20 known marker genes of the 30 simulated 548 

datasets. Error bars represent the standard deviation of 3 datasets. b, UMAP 549 

projection of the scRNA-seq data of dentate gyrus cells from perinatal, juvenile, and 550 

adult mice. c, Expression dot plots of the top 3 marker genes identified by Logistic 551 
regression, Wilcoxon-test, Wilcoxon-test (TIE) and COSG for each cell type. 552 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448484


 26 

 553 
Fig. 3 | COSG efficiently and accurately identifies more indicative marker genes 554 

in large-scale scRNA-seq datasets. a, Running time of COSG and other 10 popular 555 
methods on subsampled Drop-seq datasets with cell numbers ranging from 1,000 to 556 

10,000. b, Running time of the six fastest methods, namely COSG, t-test, t-557 

test_overestim_var, Wilcoxon-test, Logistic regression and Wilcoxon-test (TIE) on 558 
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subsampled Drop-seq datasets with cell numbers ranging from 10,000 to 150,000. c, 559 

UMAP projection of the scRNA-seq data with 150,000 subsampled cells. d, Expression 560 
dot plots of the top 3 marker genes identified by Logistic regression, Wilcoxon-test, 561 

Wilcoxon-test (TIE) and COSG for each group. e, Expression patterns of the top 3 562 

marker genes for fibroblast of cardiac tissue identified by Logistic regression, 563 

Wilcoxon-test, Wilcoxon-test (TIE) and COSG. Cells classified as fibroblasts of cardiac 564 
tissue are indicated by dashed circles.   565 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448484


 28 

 566 

Fig. 4 | COSG outperforms existing methods on scATAC-seq data. a, Running 567 

time of Logistic regression, Wilcoxon-test, Wilcoxon-test (TIE) and COSG on three 568 
scATAC-seq datasets of different sizes and groups. b, UMAP projection of the 569 

scATAC-seq data from 19,453 mouse embryonic cells at 8.25 days post-fertilization 570 
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(the ATAC-Pijuan-Sala dataset). c, Expression dot plots of the top 3 marker regions 571 

identified by Logistic regression, Wilcoxon-test, Wilcoxon-test (TIE) and COSG for 572 
each cell type. d, Venn diagram of the joint set of the top 3 marker regions for each 573 

cell type identified by different methods. e, Normalized genome browser tracks of 574 

representative marker regions for forebrain cells identified by different methods. Each 575 

track represents the aggregated signals for all cells of the corresponding cell type.   576 
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 577 
Fig. 5 | COSG performed well on spatial transcriptome data. a, Clustering results 578 

of the 3,355 signal spots detected in adult mouse brain sagittal posterior tissue. b, 579 
UMAP projection of the signal spots shown in (a). c, Expression dot plots of the top 3 580 

marker genes identified by Logistic regression, Wilcoxon-test, Wilcoxon-test (TIE) 581 

and COSG for each cell cluster. d, Expression patterns of the top 3 marker genes 582 

identified by different methods for cells in Cluster 0.  583 
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 584 

Supplementary Fig. 1 | Gene expression patterns in the simulated scRNA-seq 585 

dataset. a, Gene expression heatmap shows the five simulated patterns of gene 586 
expression among 2,000 cells. b, UMAP projection of the simulated scRNA-seq data 587 

with 2,000 cells. Colors represent different cell groups. c, Gene expression heatmap 588 

shows the expression patterns of the top 20 marker genes for each cell group 589 

identified by Logistic regression, Wilcoxon-test, Wilcoxon-test (TIE) and COSG.  590 
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 591 

Supplementary Fig. 2 | Marker genes identified by COSG for the RNA-592 

Hochgerner dataset are more indicative than those identified by other methods. 593 
a, Venn diagram of the joint set of the top 3 marker genes identified by Logistic 594 

regression, Wilcoxon-test, Wilcoxon-test (TIE) and COSG for each cell type in the 595 

RNA-Hochgerner dataset. b, Violin plots representing the normalized expression 596 

values of the top 3 marker genes identified by each method for GC-adult cells. GC, 597 
granule cell; CA3, hippocampus CA3 pyramidal layer; Pyr, pyramidal cell; juv, 598 

juvenile. 599 
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 600 
Supplementary Fig. 3 | COSG outperforms other methods on the RNA-Stewart 601 

dataset. a, UMAP projection of the scRNA-seq data of 40,268 human adult kidney 602 
cells (the RNA-Stewart dataset). b, Expression dot plots of the top 3 marker genes 603 

identified by Logistic regression, Wilcoxon-test, Wilcoxon-test (TIE) and COSG for 604 

each cell type. c, Violin plots representing the normalized expression values of the top 605 

3 marker genes identified by each method for NKT cells. NK cell and plasmacytoid 606 
dendritic cell are included for comparison.   607 
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 608 
Supplementary Fig. 4 | Running time of COSG on the million-scale Mouse 609 

Organogenesis Cell Atlas dataset. The Mouse Organogenesis Cell Atlas dataset has 610 
1,331,984 annotated cells. Benchmark datasets with 50,000, 100,000, 500,000, 611 

1,000,000 and 1,331,984 cells were generated and used to test the efficiency of 612 

COSG.   613 
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 614 
Supplementary Fig. 5 | Marker regions identified by COSG from the ATAC-615 

Granja_broad dataset have better cell type specificity. a, UMAP projection of the 616 
scATAC-seq data of 33,819 human bone marrow cells and PBMCs (17 cell types). b, 617 

Expression dot plots of the top 3 marker regions identified by Logistic regression, 618 

Wilcoxon-test, Wilcoxon-test (TIE) and COSG for each cell type. c, Venn diagram of 619 

the joint set of the top 3 marker regions for each cell type identified by different 620 
methods. 621 
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 622 

Supplementary Fig. 6 | Marker regions identified by COSG from the ATAC-623 

Granja_fine dataset are more indicative than those identified by other methods. a, 624 
UMAP projection of the scATAC-seq data of 33,819 human bone marrow cells and 625 

PBMCs (23 cell types). b, Expression dot plots of the top 3 marker regions identified 626 

by Logistic regression, Wilcoxon-test, Wilcoxon-test (TIE) and COSG for each cell 627 

type. c, Venn diagram of the joint set of the top 3 marker regions for each cell type 628 
identified by different methods. In (a) and (b), names of extra cell types not included 629 

in Supplementary Fig. 5 are shown in red.  630 
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 631 
Supplementary Fig. 7 | COSG performed well on the Spatial-brain_coronal 632 

dataset. a, Clustering results of the 2,702 signal spots detected in adult mouse brain 633 
coronal tissue. b, UMAP projection of signal spots shown in (a). c, Expression dot plots 634 

of the top 3 marker genes for each cluster identified by different methods. 635 
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 636 
Supplementary Fig. 8 | COSG outperformed other methods on the Spatial-Slide-637 

seqV2 dataset. a, Clustering results of the 9,319 beads obtained from a section of 638 
mouse hippocampus. b, UMAP projection of the detected beads in (a). c, Expression 639 

dot plots of the top 3 marker genes for each cluster identified by different methods. d, 640 

Gene expression patterns of the top marker genes for cells in Cluster 5 identified by 641 

different methods.  642 
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Supplementary Table 1. List of 30 simulated datasets generated by the simulation 643 

procedure and used for the accuracy benchmark testing in this study. Each dataset 644 
contains 20 cell groups. 645 
 646 

No. of cells No. of replicates 

1,000 3* 

2,000 3 

3,000 3 

4,000 3 

5,000 3 

6,000 3 

7,000 3 

8,000 3 

9,000 3 

10,000 3 

*Note: the 3 replicates each has different ratios of cell groups.   647 
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Supplementary Table 2. List of 11 marker gene identification methods tested in this 648 

study. 649 

 650 

 
Name of method Algorithm Implementation (version) 

1 COSG Cosine similarity-based method Python package COSG (1.0.0) 

2 Logistic regression Logistic regression Python package Scanpy (1.6.1) 

3 Wilcoxon-test Wilcoxon Rank Sum test (without tie 
correction) Python package Scanpy (1.6.1) 

4 Wilcoxon-test (TIE) Wilcoxon Rank Sum test (with tie 
correction) Python package Scanpy (1.6.1) 

5 t-test Student’s t-test Python package Scanpy (1.6.1) 

6 t-test_overestim_var Student’s t-test that overestimates 
variance of each group Python package Scanpy (1.6.1) 

7 MAST Hurdle model R packages MAST (1.12.0) and 
Seurat (3.2.3) 

8 bimod Likelihood-ratio test R package Seurat (3.2.3) 

9 negbinom Negative binomial generalized linear 
model R package Seurat (3.2.3) 

10 poisson Poisson generalized linear model R package Seurat (3.2.3) 

11 roc ROC classifier R package Seurat (3.2.3) 

651 
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Supplementary Table 3. List of single-cell sequencing datasets used in this study. 652 

 653 

Dataset Description Methods Dataset size No. of features No. of groups Reference 

RNA-Hochgerner 
Dentate gyrus cells in perinatal, juvenile, and 

adult mice 

Droplet scRNA-seq 

(10x Genomics) 
23,025 cells 19,444 genes 24 

Hochgerner et al., 

Nat. Neurosci., 2018 

RNA-Stewart 
The spatiotemporal immune topology of human 

adult kidney 

Droplet scRNA-seq 

(10x Genomics) 
40,268 cells 33,694 genes 27 

Stewart et al., 

Science, 2019 

RNA-TMS_drop Multiple mouse tissues and organs Microfluidic droplet 150,000 cells 20,138 genes 31 

Tabula Muris 

Consortium, Nature, 

2019 

ATAC-Pijuan-Sala 
Single nuclei from mouse embryos at 8.25 days 

post-fertilization 

Single-nucleus 

ATAC-seq 
19,453 cells 

301,316 genomic 

regions 
18 

Pijuan-Sala et al., 

Nat. Cell Biol., 2020 

ATAC-Granja_broad Human healthy bone marrow and PBMCs 
Droplet scATAC-seq 

(10x Genomics) 
33,819 cells 

451,999 genomic 

regions 
17 

Granja et al., Nat. 

Biotechnol., 2019 

ATAC-Granja_fine* Human healthy bone marrow and PBMCs 
Droplet scATAC-seq 

(10x Genomics) 
33,819 cells 

451,999 genomic 

regions 
23 

Granja et al., Nat. 

Biotechnol., 2019 

Spatial-brain_sagitta Mouse brain (sagittal posterior) 10x Visium 3,355 spots 19,147 genes 11 10x Genomics 

Spatial-brain_coronal Mouse brain (coronal) 10x Visium 2,702 spots 19,652 genes 9 10x Genomics 

Spatial-Slide-seqV2 Mouse hippocampus Slide-seqV2 9,319 beads 20,424 genes 13 
Stickels et al., Nat. 

Biotechnol., 2020 

Note: *The ATAC-Granja_broad dataset and the ATAC-Granja_fine dataset have the same gene expression profiles, but different cell group numbers due to different annotation depths. 654 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448484doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448484


 42 

Supplementary Table 4. List of datasets subsampled from the Tabula Muris Senis 655 

(Drop-seq) dataset and used for the running time benchmark testing in this study. 656 
 657 
Dataset No. of cells No. of cell types Tested methods 

D1 1,000 31  A + B 

D2 2,000 31  A + B 

D3 3,000 31  A + B 

D4 4,000 31  A + B 

D5 5,000 31  A + B 

D6 6,000 31  A + B 

D7 7,000 31  A + B 

D8 8,000 31  A + B 

D9 9,000 31  A + B 

D10 10,000 31  A + B 

D11 20,000 31  B* 

D12 50,000 31  B* 

D13 100,000 31  B* 

D14 150,000 31  B* 

*Basing on the results of D1 to D10, only the fastest six methods were run on larger datasets containing 658 

more than 10,000 cells. A and B denote different groups of methods. A: bimod, MAST, negbinom, poisson 659 

and roc. B: t-test, t-test_overestim_var, Wilcoxon-test, Logistic regression, Wilcoxon-test (TIE) and COSG. 660 

 661 

Supplementary Table 5. Running time (seconds) of 11 methods on datasets with cell 662 

numbers ranging from 1,000 to 150,000. These experimental benchmark datasets were 663 

subsampled from the Drop-seq scRNA-seq dataset of Tabula Muris Senis.664 
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 665 
 

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 20,000 50,000 100,000 150,000 

bimod 118.0 401.8 686.2 1,231.0 1,531.3 2,617.2 3,350.1 4,216.5 3,362.6 3,708.8 NA* NA NA NA 

COSG 0.8 1.1 1.3 1.6 1.9 2.7 2.6 2.8 3.0 3.4 6.5 18.1 26.0 43.4 

Logistic regression 76.2 93.1 204.6 432.3 553.9 177.2 243.2 275.5 303.3 315.2 339.3 919.5 1,475.6 2,592.1 

MAST 781.1 1,642.3 2,254.7 5,428.5 8,511.5 17,112.2 21,761.7 29,002.5 31,196.1 49,646.3 NA NA NA NA 

negbinom 1,239.7 1,982.2 5,981.6 7,899.6 13,405.7 20,755.1 40,890.6 44,707.0 65,593.6 68,930.4 NA NA NA NA 

poisson 428.0 598.7 2,165.9 3,656.5 7,324.7 15,417.8 18,246.8 20,908.7 26,593.6 28,743.0 NA NA NA NA 

roc 260.4 404.0 1,803.0 2,298.2 2,912.7 5,246.4 5,667.8 7,845.2 8,054.5 5,977.1 NA NA NA NA 

t-test_overestim_var 2.4 8.3 10.7 30.0 41.0 17.9 17.9 20.1 23.6 22.9 34.0 73.7 143.6 247.9 

t-test 2.6 6.0 13.5 21.0 10.9 18.8 20.4 18.9 23.1 21.7 33.0 77.8 160.5 250.0 

Wilcoxon-test (TIE) 86.1 233.0 700.0 1,245.0 1,595.8 617.8 762.1 879.0 986.7 1,050.8 1,694.1 4,167.3 8,249.6 12,150.1 

Wilcoxon-test 6.4 15.1 42.0 73.5 55.7 39.7 63.5 58.6 57.2 59.9 88.2 245.6 449.7 908.3 

Note: *Only the six fastest methods, namely COSG, t-test, t-test_overestim_var, Wilcoxon-test, Logistic regression and Wilcoxon-test (TIE) were tested for the large datasets containing more than 666 
10,000 cells.667 

Method Running time (s) 

Dataset size 
(No. of cells)  
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Supplementary Table 6. Running time (seconds) of Logistic regression, Wilcoxon-test, 668 

Wilcoxon-test (TIE) and COSG on the three scATAC-seq datasets. 669 

 670 
 

ATAC-Pijuan-Sala ATAC-Granja_broad ATAC-Granja_fine 

Logistic regression 1,609.4 4,324.2 5,699.9 

Wilcoxon-test 903.2 2,712.6 2,771.4 

Wilcoxon-test (TIE) 12,098.9 30,176.1 38,980.9 

COSG 30.1 93.1 100.0 

 671 

Method 

Running time (s) 

Dataset  
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