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Abstract 21 

Recent technological advancements have enabled spatially resolved transcriptomic profiling but 22 

at multi-cellular pixel resolution, thereby hindering the identification of cell-type spatial co-23 

localization patterns. We developed STdeconvolve as an unsupervised approach to deconvolve 24 

underlying cell-types comprising such multi-cellular pixel resolution spatially resolved 25 

transcriptomics datasets. We show that STdeconvolve effectively recovers the putative 26 

transcriptomic profiles of cell-types and their proportional representation within spatially 27 

resolved pixels without reliance on external single-cell transcriptomics references.  28 

 29 

Main 30 

Delineating the spatial organization of transcriptionally distinct cell-types within tissues 31 

is critical for understanding the cellular basis of tissue function1. Recent technologies have 32 

enabled spatially resolved transcriptome (ST) profiling within tissues at multi-cellular pixel-33 

resolution2. As such, these ST measurements represent cell mixtures that may comprise multiple 34 

cell-types. This lack of single-cell resolution hinders the characterization of cell-type specific 35 

spatial organization. To address this challenge, supervised deconvolution approaches such as 36 

SPOTlight3 and RCTD4 have recently been developed to predict the proportion of cell-types 37 

within ST pixels. However, these supervised deconvolution approaches rely on the availability of 38 

a suitable single-cell reference, which may present limitations if such a reference does not exist 39 

due to budgetary, technical5, or biological limitations6. Here, we developed STdeconvolve 40 

(available at https://github.com/JEFworks-Lab/STdeconvolve and as Supplementary Software) 41 

as an unsupervised, reference-free approach for deconvolving multi-cellular pixel resolution ST 42 

data (Figure 1). Given a counts matrix of ST data, STdeconvolve infers the putative 43 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448381
http://creativecommons.org/licenses/by/4.0/


 3 

transcriptomic profiles of distinct cell-types and their proportional representation within each 44 

multi-cellular spatially resolved ST pixel (Methods). Briefly, STdeconvolve first feature selects 45 

for genes likely to be informative of transcriptionally distinct cell-types. STdeconvolve then 46 

builds on Latent Dirichlet Allocation (LDA)7 to estimate the number of transcriptionally distinct 47 

cell-types, K, and deconvolves these K cell-types across ST pixels. STdeconvolve leverages 48 

several unique features of ST data that make this application of LDA particularly amenable 49 

(Supplementary Note 1, 2).  50 

As a proof of concept, we first evaluated the performance of STdeconvolve in recovering 51 

the proportional representations of cell-types and their transcriptomic profiles using simulated 52 

ST data. This was done by aggregating single-cell resolution multiplex error-robust fluorescence 53 

in situ hybridization (MERFISH) data of the mouse medial pre-optic area (MPOA)8 into 100 54 

µm2 pixels (Figure 2A, Supplementary Figure S1A-B, S2, Methods). Applying STdeconvolve, 55 

we identified K=9 transcriptionally distinct cell-types and deconvolved their transcriptomic 56 

profiles and proportional representation in each simulated pixel (Figure 2B, Supplementary 57 

Figure S1C, S3A). To infer the identities of the deconvolved cell-types for benchmarking 58 

purposes, we matched their deconvolved transcriptional profiles with the transcriptional profiles 59 

of ground truth cell-types (Methods) (Supplementary Figure S3B-C). We observed strong 60 

correlations between the transcriptomic profiles of each deconvolved cell-type and matched 61 

ground truth cell-type across genes (Figure 2C) and, likewise, between the proportions of each 62 

deconvolved cell-type and matched ground truth cell-type across simulated pixels (Figure 2D). 63 

Some deconvolved cell-types such as cell-types X2 and X8 both matched to excitatory neurons 64 

while cell-types X4 and X7 both matched to inhibitory neurons. Further partitioning the ground-65 

truth excitatory and inhibitory cell-types into additional sub-types (76 total) based on previous 66 
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annotations8 found that these deconvolved cell-types correlated with specific combinations of 67 

neuronal sub-types (Supplementary Figure S3D). When we further expanded the number of 68 

deconvolved cell-types to K=76, we were able to identify deconvolved cell-types that are highly 69 

correlated in terms of both transcriptional profiles and pixel proportions to finer neuronal 70 

subtypes as well as rare cell-types such as pericytes and microglia (Supplementary Figure 3E-F, 71 

Supplementary Note 2, 3). In addition, as current ST technologies allow for spatial 72 

transcriptomic profiling at varying resolutions2, we further simulated another ST dataset at 20 73 

µm2 resolution and observed similarly strong correlations between the deconvolved cell-type 74 

transcriptomic profiles and proportions with the ground truth by STdeconvolve (Supplementary 75 

Figure S4).  76 

Using our simulated 100 µm2 resolution ST data of the MPOA, we also compared 77 

STdeconvolve to existing supervised deconvolution approaches SPOTlight and RCTD. For an 78 

ideal single cell transcriptomics reference, we used the original single-cell MERFISH data. We 79 

evaluated the performance of each approach using the root-mean-square-error (RMSE) of the 80 

deconvolved cell-type proportions compared to ground truth across simulated pixels (Methods). 81 

In general, we find the performance of STdeconvolve to be comparable to SPOTlight and RCTD 82 

(Supplementary Fig. S5A). One potential limitation of such existing supervised deconvolution 83 

approaches is their reliance on a suitable single-cell reference. We thus sought to evaluate their 84 

performance when a suitable single-cell reference is not available by removing neuronal cell-85 

types from the MERFISH single-cell reference. Reevaluating performance resulted in an increase 86 

in RMSE for both SPOTlight and RCTD (Supplementary Fig. S5B).  87 

We next evaluated the performance of STdeconvolve by analyzing 100 µm2 resolution 88 

ST data of the mouse main olfactory bulb (MOB)9. The MOB consists of multiple bilaterally 89 
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symmetric and transcriptionally distinct cell layers due to topographically organized sensory 90 

inputs10. While previous clustering analysis of MOB ST data revealed coarse spatial organization 91 

of coarse cell layers, finer structures such as the rostral migratory stream (RMS) could not be 92 

readily observed (Supplementary Figure S6A-B). We applied STdeconvolve to identify K=12 93 

transcriptionally distinct cell-types (Figure 2E, Supplementary Figure S6C) that either 94 

overlapped with or further split coarse cell layers previously identified from clustering analysis 95 

(Supplementary Fig S6D). In particular, while deconvolved cell-type X7 overlapped with the 96 

granule cell layer previously identified from clustering analysis, it was spatially placed where the 97 

RMS is expected11 (Figure 2F). Upregulated genes in its deconvolved transcriptional profile, 98 

including Nrep, Sox11, and Dcx, are known to be associated with neuronal differentiation or 99 

upregulated in neuronal precursor cells within the RMS12 and mark the expected spatial 100 

organization based on ISH staining13 (Figure 2G, Supplementary Figure S6E). This suggests that 101 

deconvolved cell-type X7 corresponds to the neuronal precursor cell-type within the RMS 102 

unidentified from clustering analysis. Again, we compared STdeconvolve to SPOTlight and 103 

RCTD using an appropriate MOB scRNA-seq reference14 and found a high degree of 104 

correspondence among all evaluated methods (Supplementary Figure S7).  105 

We again compared the performance of such supervised deconvolution approaches when 106 

a suitable single-cell reference is lacking by removing olfactory ensheathing cells (OECs) from 107 

the MOB scRNA-seq reference. OECs were initially predicted to be enriched in the olfactory 108 

nerve layer by all evaluated methods (Supplementary Fig S8A-C). However, given this new 109 

reference without OECs, SPOTlight and RCTD erroneously predicted N2 cells to be enriched in 110 

the olfactory nerve layer and highly abundant (Supplementary Figure S8A, S8D) even though N2 111 

cells were initially predicted to be rare by all methods. In addition, we trained SPOTlight and 112 
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RCTD on a scRNA-seq reference from the mouse cortex13 resulting in the vascular 113 

leptomeningeal (VLMC) cell cluster of the cortex reference to be erroneously predicted as highly 114 

enriched in the olfactory nerve layer (Supplementary Figure S9). As such, supervised 115 

deconvolution approaches may be sensitive to the single-cell transcriptomics reference used.  116 

Finally, to demonstrate the potential of an unsupervised, reference-free approach, we 117 

applied STdeconvolve to 100 µm2 resolution ST data of 4 breast cancer sections15. Here, a 118 

matched scRNA-seq reference was not available and using a scRNA-seq reference from another 119 

breast cancer sample may be inappropriate due to potential inter-tumoral heterogeneity16. 120 

Transcriptional clustering of the ST pixels previously identified 3 transcriptionally distinct 121 

clusters that corresponded to 3 histological regions of the tissue: ductal carcinoma in situ, 122 

invasive carcinoma, and non-malignant15 (Supplementary Figure S10A-B). However, the tumor 123 

microenvironment is a complex milieu of many additional cell-types17. We applied 124 

STdeconvolve to identify additional cell-types and interrogate their spatial organization, 125 

resulting in K=15 identified cell-types (Figure 3A, Supplementary Figure S10C). Of these, 126 

deconvolved cell-types X3, X13, and X15 corresponded spatially and had deconvolved 127 

transcriptional profiles consistent with the non-malignant, ductal in situ carcinoma, and invasive 128 

carcinoma annotations, respectively (Supplementary Figure S10D, S11). However, deconvolved 129 

cell-type X15 was spatially enriched at the interface of the cancerous and non-malignant regions 130 

of the tissue (Figure 3B). Highly expressed genes for deconvolved cell-type X15 included 131 

immune genes such as CD74 and CXCL10 and gene set enrichment analysis suggested 132 

significant enrichment in immune processes (Figure 3C-E, Supplementary Figure S12, 133 

Supplementary Table S1), suggesting that deconvolved cell-type 15 may correspond to immune 134 

cells. Such spatial organization of immune cells along a tumor boundary has been previously 135 
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implicated to play a role in breast cancer prognosis18. Therefore, STdeconvolve may be able to 136 

assist in deconvolving transcriptionally distinct cell-types in heterogeneous tissues to discover 137 

potentially clinically relevant spatial organization.  138 

In conclusion, we have developed STdeconvolve as a tool for analyzing ST data to 139 

recover cell-type proportion and transcriptional profiles without reliance on single-cell 140 

transcriptomics references. We show that STdeconvolve can recapitulate expected biology and 141 

provide competitive performance to existing supervised methods when suitable single-cell 142 

references are available, as well as potentially superior performance when suitable single-cell 143 

references are not available. In general, we anticipate that STdeconvolve will help interrogate the 144 

spatial relationships between transcriptionally distinct cell-types in complex heterogeneous 145 

tissues.   146 

 147 

Methods  148 

 149 

STdeconvolve Overview 150 

STdeconvolve uses latent Dirichlet allocation (LDA)7, a generative probabilistic model, to 151 

deconvolve the latent cell-types contained within multi-cellular pixels of spatially resolved 152 

transcriptome (ST) measurements. In this context, each pixel is defined as a mixture of 𝐾 cell-153 

types represented as a multinomial distribution of cell-type probabilities (𝜃), and each cell-type 154 

is defined as a probability distribution over the genes (𝛽) present in the ST dataset.  155 

 156 

LDA Modeling 157 
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The ST dataset is represented as a 𝐷	 × 	𝑉 matrix of discrete gene counts for each pixel 𝑑 and 158 

gene 𝑣. The number of total gene counts in a given pixel 𝑑 is 𝑁!.  159 

 160 

As a generative probabilistic model, the LDA model generates a set of new pixels as follows: 161 

 162 

For each pixel 𝑑: 163 

a. draw a cell-type distribution 𝜃! 	~	𝐷𝑖𝑟(𝛼), where 𝜃! is a multinomial distribution of 164 

length 𝐾 drawn from a uniform Dirichlet distribution with scaling parameter 𝛼. 165 

b. for each gene count 𝑛 in 𝑁!:  166 

i. draw cell-type 𝑘!,#	~	𝑚𝑢𝑙𝑡(𝜃!) 167 

ii. draw gene 𝑣!,#	~	𝑚𝑢𝑙𝑡(𝛽$!,#) 168 

 169 

The central goal is to identify the posterior distribution of the latent parameters given the input 170 

data, where for each pixel d: 171 

𝑝(𝜃! , 𝒌	|	𝒗, 𝛼, 𝛽) = 	
𝑝(𝜃! , 𝒌, 𝒗	|𝛼, 𝛽)
𝑝(𝒗	|𝛼, 𝛽)  172 

where 𝒌 is a vector of Nd cell-types associated with each gene in pixel d, and 𝒗 is the vector of 173 

Nd genes for pixel d.  A variational expectation-maximization approach is used to estimate the 174 

values of the latent parameters7,19. By default, 𝛽 is initialized with 0 for all cell-types and genes, 175 

and 𝛼 as 50/K. 176 

 177 

The resulting estimated 𝜃 and 𝛽 matrices represent the deconvolved proportions of cell-types in 178 

each pixel and the gene expression profiles for each cell-type, scaled to a library size of 1. 𝛽 179 
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represents a 𝐾	 × 	𝑉 gene-probability matrix for each cell-type 𝑘 and each gene 𝑣 with each row 180 

summing to 1. The 𝛽 matrix can be multiplied by a scaling factor of one million to be more like 181 

conventional counts-per-million expression values for interpretability. 𝜃 represents a 𝐷	 × 	𝐾 182 

pixel-cell-type proportion matrix for each pixel d and each cell-type k. LDA modeling in 183 

STdeconvolve is implemented through the `topicmodels` R package19. 184 

 185 

Of note, LDA inherently assumes for each pixel, there are a few cell-types present with high 186 

probability. We find this assumption reasonable for ST data due to the limited number of cells 187 

being captured within an ST pixel (Supplementary Fig. 1). Likewise, LDA assumes for each cell-188 

type, there is a set of genes associated with high probability. Therefore, STdeconvolve uses 189 

feature selection for genes more likely to be associated with cell-types, which can improve cell-190 

type deconvolution.  191 

 192 

Selection of genes for LDA model 193 

To filter for genes that are more likely to be specifically expressed in particular cell-types to 194 

improve cell-type deconvolution by LDA, STdeconvolve first removes genes that are not 195 

detected in a sufficient number of pixels. By default, genes detected in less than 5% of pixels are 196 

removed. Because LDA attempts to identify tightly occurring, and ideally non-overlapping 197 

clusters of genes in the pixels, the most expressed genes in the dataset, as well as genes that are 198 

expressed in many pixels may also be removed. By default, genes detected in 100% of pixels are 199 

removed. STdeconvolve then selects for significantly overdispersed genes, or genes with higher-200 

than-expected expression variance across pixels, as a means to detect transcriptionally distinct 201 

cell-types20. We assume that the proportion of cell-types will vary across pixels and thus 202 
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differences in their cell-type-specific transcriptional profiles manifest as overdispersed genes 203 

across pixels in the dataset. Additional gene filtering or cell-type specific marker genes to 204 

include in the input ST dataset may also be augmented by the user. 205 

 206 

Selection of LDA model with optimal number of cell-types 207 

The number of cell-types 𝐾 in the LDA model must be chosen a-priori. To determine the 208 

optimal number of cell-types 𝐾to set for an LDA model for a given dataset, we fit a set of LDA 209 

models using a different value for K over a user defined range of positive integers greater than 1. 210 

Additionally, users may select a held-out subset of pixels to then apply the fitted model to. We 211 

then compute the perplexity of each fitted model: 212 

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦(𝐷) = exp	 D−
logI𝑝(𝐷)J

∑ ∑ 𝑛(!&)(
&)*

+
!)*

L 213 

Where p(D) is the likelihood of the dataset and 𝑛(!&) is the gene count of gene v in pixel d. We 214 

can interpret p(D) as the posterior likelihood of the dataset conditional on the cell-type 215 

assignments using the final estimated 𝜃 and 𝛽. The lower the perplexity, the better the model 216 

represents the real dataset. Thus, the trend between choice of K and the respective model 217 

perplexity can then serve as a guide. By default, the perplexity is computed by comparing p(D) 218 

to the entire input dataset used to estimate 𝜃 and 𝛽.  219 

In addition, STdeconvolve also reports the trend between K and the number of 220 

deconvolved cell-types with mean pixel proportions < 5% (as default). We chose this default 221 

threshold based on the difficulty of STdeconvolve, SPOTlight, and RCTD to deconvolve cell-222 

types at low proportions, (i.e., “rare” cell-types) (Supplementary Note 2). We note that as K is 223 

increased for fitted STdeconvolve models, the number of such “rare” cell-types generally 224 

increases. Such rare deconvolved cell-types are often distinguished by fewer distinct 225 
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transcriptional patterns in the data and may represent non-relevant or spurious subdivisions of 226 

primary cell-types. We can use this metric to help set an upper bound on K.  227 

Generally, perplexity decreases and the number of “rare” deconvolved cell-types 228 

increases as K increases. Given these model perplexities and number of “rare” deconvolved cell-229 

types for each tested K, the optimal K can then be determined by choosing the maximum K with 230 

the lowest perplexity while minimizing number of “rare” deconvolved cell-types. To further 231 

guide the choice of K, an inflection point (“knee”) is derived from the maximum second 232 

derivative of the plotted K versus perplexity plot and K versus number of “rare” deconvolved 233 

cell-types. We find that the optimal K is stable for models fitted to similar datasets, and that the 234 

deconvolved cell-types are highly similar in terms of their deconvolved transcriptional profiles 235 

(Supplementary Note 4). Ultimately, the choice of K is left up to the user and can be chosen 236 

taking into consideration prior knowledge of the biological system. 237 

  238 

Simulating ST data from single-cell resolution spatially resolved MERFISH data 239 

MERFISH data of the mouse medial preoptic area (MPOA) was obtained from the original 240 

publication8. Normalized gene expression values were converted back to counts by dividing by 241 

1000 and multiplying by each cell’s absolute volume. Datasets for an untreated female animal 242 

(FN7, datasets 171021_FN7_2_M22_M26 and 171023_FN7_1_M22_M26) containing counts 243 

for 135 genes assayed by MERFISH were used. Genes with non-count expression intensities 244 

assayed by sequential FISH were omitted. Counts of blank control measurements were also 245 

removed. Cells were previously annotated as being one of 9 major cell-types (astrocyte, 246 

endothelial, microglia, immature or mature oligodendrocyte, ependymal, pericyte, inhibitory 247 

neuron, excitatory neuron). Cells originally annotated as “ambiguous” were removed from the 248 
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dataset to ensure the ground truth was composed of cells with known cell-types. Because certain 249 

cell-types are only present in specific regions of the MPOA, we combined 12 tissue sections 250 

across the anterior and posterior regions to ensure that all expected cell-types would be present in 251 

the final simulated ST dataset. After filtering, the final dataset contained 59651 cells representing 252 

9 total cell-types and counts for the 135 genes.  253 

 To simulate a multi-cellular pixel resolution ST dataset from such single-cell resolution 254 

spatially resolved MERFISH data, we generated a grid of squares, each square with an area of 255 

100	µm2. Each square was considered a simulated pixel and the gene counts of cells whose x-y 256 

centroid was located within the coordinates of a square pixel were summed together. A grid of 257 

square pixels was generated for each of the 12 tissue sections separately and the simulated pixels 258 

for all 12 tissue sections were subsequently combined into a single ST dataset. For a given tissue 259 

section, the bottom edge of the grid was the lowest y-coordinate of the cell centroids and the left 260 

edge of the grid was the lowest x-coordinate. Square boundaries were then drawn from each of 261 

these edges in 100	µm2 increments until the position of the farthest increment from the origin 262 

was greater than the highest respective cell centroid coordinate. After generating the grid, square 263 

pixels whose edges formed one of the outside edges of the grid were discarded in order to 264 

remove simulated pixels, which by virtue of their placement, encompassed space outside of the 265 

actual tissue sample. The retained pixels covered 49142 out of the original 59651 cells in the 12 266 

tissue sections. This resulted in a simulated ST dataset with 3072 pixels by 135 genes. We used 267 

the original cell-type labels of each cell to compute the ground truth proportions in each 268 

simulated pixel. Likewise, to generate the ground truth transcriptional profiles of each cell-type, 269 

we averaged the gene counts for cells of the same cell-type from the original 59651 cells and 270 

normalized the resulting gene count matrix to sum to 1 for each cell-type. To simulate pixels of 271 
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20 µm2, an identical approach was taken using the same cells except that square boundaries were 272 

drawn from each edge in 20	µm2 increments. 273 

 274 

Deconvolution of simulated MERFISH ST data 275 

STdeconvolve was applied to the simulated MERFISH MPOA ST dataset. We selected the 276 

model with the K with the lowest perplexity and where the number of “rare” cell-types = 0 277 

resulting in K = 9 detected cell-types. To compare deconvolved cell-types to the ground truth 278 

cell-types in the simulated ST dataset, we computed the Pearson’s correlation between every 279 

combination of deconvolved cell-type and ground truth cell-type transcriptional profile. 280 

Likewise, the Pearson’s correlation between the pixel proportions of each deconvolved cell-type 281 

and ground truth cell-type was computed. After assignment of deconvolved to ground truth cell-282 

types, the ranking of each gene based on its expression level in the transcriptional profile of the 283 

deconvolved or ground truth cell-type for each assigned match was compared. 284 

 285 

Annotation and matching of deconvolved and ground truth cell-types 286 

Each deconvolved cell-type was first matched with the ground truth cell-type that had the highest 287 

Pearson’s correlation between their transcriptional profiles. This was done by computing the 288 

Pearson’s correlation between every combination of deconvolved and ground truth cell-type 289 

transcriptional profile. 290 

The assignment of deconvolved cell-types to ground truth cell-types was confirmed by 291 

testing for enrichment of differentially upregulated genes of the ground truth cell-types in the 292 

deconvolved cell-type transcriptional profiles. To determine the differentially upregulated genes 293 

of the ground truth cell-types, ground truth transcriptional profiles were converted to counts per 294 
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thousand and low expressed genes, defined as those with average expression values less than 5, 295 

were removed. For each ground truth cell-type, the log2 fold-change of each remaining gene with 296 

respect to the average expression across the other ground-truth cell-types was computed. 297 

Differentially upregulated genes were those with log2 fold-change > 1. We performed rank-based 298 

gene set enrichment analysis of the ground truth upregulated gene sets in each deconvolved cell-299 

type transcriptional profile using the `liger` R package21. A match to a ground truth cell-type was 300 

confirmed and assigned if the ground truth gene set had the lowest gene set enrichment adjusted 301 

p-value that was at least < 0.05, followed by the highest positive enrichment score to break ties. 302 

 303 

Comparison to SPOTlight and RCTD 304 

For both SPOTlight and RCTD, a single cell transcriptomic profile reference was 305 

required. To construct this reference, the matrix of gene counts for the 49142 individual cells 306 

included in the simulated ST dataset and their predefined cell-type labels were input into the 307 

`seurat` R package22 (v4.0.1) as recommended in both the SPOTlight and RCTD pipelines. In 308 

SPOTlight, a minimum cell-type proportion threshold is set to remove cell-types contributing 309 

low amounts to pixels. To be consistent across methods, after deconvolution, cell-types in each 310 

pixel whose proportions were less than the lowest ground truth pixel proportion for a cell-type 311 

(2.5%) were removed, and the remaining cell-type proportions in a pixel were adjusted to sum to 312 

1.  313 

To compare the performance between STdeconvolve, SPOTlight, and RCTD, the root 314 

mean squared error (RMSE) was computed for each pixel between the deconvolved and matched 315 

ground truth cell-type proportions for each pixel in the ST dataset:  316 
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𝑅𝑀𝑆𝐸 = 	Q
∑ (𝑦R, − 𝑦,)-#
,)*

𝑛  317 

where n is the number of cell-types, 𝑦R, is the predicted cell-type proportion for the cell-type i, 318 

and 𝑦, is the ground truth cell-type proportion for the cell-type i. 319 

 320 

To compare the accuracy of each method deconvolving individual cell-types, the RMSE 321 

between the predicted pixel proportions for a given cell-type and the matched ground truth cell-322 

type proportions across MERFISH ST dataset pixels was computed. Here, n is the number of 323 

dataset pixels, 𝑦R, is the predicted cell-type proportion for the given cell-type in pixel i, and 𝑦, is 324 

the ground truth cell-type proportion for the given cell-type in pixel i. Because the RMSE scales 325 

with abundance, the RMSE for each cell-type were divided by the standard deviation of the pixel 326 

proportions for the corresponding ground truth-type to compare RMSEs across cell-types. 327 

 328 

Deconvolution of simulated MERFISH ST data using a reference with missing cell-types 329 

To simulate a single-cell reference with missing cell-types, cells annotated as “excitatory” and 330 

“inhibitory” were removed from the previously constructed MERFISH single cell transcriptomic 331 

profile reference and used to train SPOTlight and RCTD as described under `Comparison to 332 

SPOTlight and RCTD`. The new trained models were then reapplied to the simulated ST 333 

MERFISH dataset of 3072 pixels for deconvolution. After deconvolution, cell-types in each 334 

pixel whose proportions were less than the lowest ground truth pixel proportion for a cell-type 335 

(2.5%) were removed and the remaining cell-type proportions were adjusted to sum to 1, as 336 

described previously. Pixel RMSEs were computed as described above based on the 337 
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deconvolved cell-type proportions and the ground truth dataset, which retained excitatory and 338 

inhibitory neuronal cell-types.  339 

 340 

Deconvolution of ST data of the mouse olfactory bulb (MOB) 341 

Mouse olfactory bulb datasets were obtained from the original publication9. We focused on 342 

MOB replicate #8, as the primary MOB ST dataset in this work. We first removed genes with 343 

less than 100 reads detected across pixels and pixels with fewer than 100 total gene counts, 344 

resulting in a cleaned dataset of 260 pixels and 7365 genes. Overdispersed genes were 345 

determined were defined as genes with higher-than-expected observed expression variance 346 

across the pixels20. Expression variance was modeled based on the expression magnitude using a 347 

general additive model with a basis of 5. The p-value of a gene being overdispersed was 348 

determined using the cumulative distribution function of the 𝒳- distribution with degrees of 349 

freedom equal to the number of pixels – 1. A gene was overdispersed if the multiple testing 350 

adjusted p-value was < 0.05. For MOB replicate #8, we obtained 255 overdispersed genes. We 351 

used STdeconvolve to fit LDA models with a range of integer Ks from 2 to 20 and chose the 352 

model with K=12, which was within the range of K’s that produced the lowest perplexity and the 353 

number of “rare” cell-types with mean pixel proportion < 5% was 0 (Supplementary Figure 354 

S6C). After deconvolution, cell-types in each pixel whose proportions were less than 5% were 355 

removed and the remaining cell-type proportions in each pixel were adjusted to sum to 1. 356 

Without a ground truth reference, this filtering threshold was based on the variable performance 357 

of the different deconvolution methods to accurately deconvolve cell-types represented below 358 

this pixel proportion (Supplementary Note 2). 359 
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For SPOTlight and RCTD, we used a previously generated scRNA-seq reference of the 360 

MOB14. We retained only cells collected from untreated wildtype animals and the resulting 361 

matrix encompassed 17709 cells representing 38 previously annotated cell-type clusters and raw 362 

counts for 18560 genes. The trained models were then applied to deconvolve cell-types in the 363 

cleaned MOB replicate #8 ST dataset of 260 pixels and 7365 genes. After deconvolution, cell-364 

types in each pixel whose proportions were less than 5% were removed and the remaining cell-365 

type proportions were adjusted to sum to 1. 366 

 367 

Deconvolution of ST data of the mouse olfactory bulb (MOB) using a reference with 368 

missing cell-types 369 

To simulate a single-cell reference with missing cell-types, cells of the MOB scRNA-seq 370 

reference that were part of “OEC” clusters 1-5 were removed.  SPOTlight and RCTD were 371 

trained using this new reference and the newly trained models were then reapplied to the cleaned 372 

MOB replicate #8 ST dataset of 260 pixels and 7365 genes for deconvolution. After 373 

deconvolution, cell-types in each pixel whose proportions were less than 5% were removed and 374 

the remaining cell-type proportions were adjusted to sum to 1. 375 

 376 

Deconvolution of ST data of the mouse olfactory bulb (MOB) using cortex reference 377 

For the scRNA-seq reference of the mouse cortex, we used the scRNA-seq cortex dataset 378 

provided by SPOTlight containing 1404 cells representing 23 transcriptionally distinct clusters 379 

and 34617 genes. SPOTlight and RCTD were trained using this reference and the newly trained 380 

models were then reapplied to the cleaned MOB replicate #8 ST dataset of 260 pixels and 7365 381 
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genes for deconvolution. After deconvolution, cell-types in each pixel whose proportions were 382 

less than 5% were removed and the remaining cell-type proportions were adjusted to sum to 1. 383 

 384 

Comparison between STdeconvolve, SPOTlight, and RCTD  385 

As neither RCTD nor SPOTlight returns transcriptional profiles, we compared methods by 386 

evaluating the Pearson’s correlation between the pixel proportions of each deconvolved cell-type 387 

from any two methods. Cell-type clusters based on the MOB reference that were deconvolved by 388 

RCTD or SPOTlight were matched to STdeconvolve cell-types that had the highest Pearson’s 389 

correlation.  390 

 391 

Deconvolution of ST data of breast cancer sections 392 

ST datasets of 4 breast cancer sections were obtained from the original publication15. Genes with 393 

less than 10 reads across pixels or pixels with less than 10 total reads were removed from each 394 

dataset and genes present in more than 95% of pixels for given dataset were removed. 395 

Overdispersed genes were determined for each dataset as described in `Deconvolution of ST data 396 

of the mouse olfactory bulb (MOB)` using the same parameters. After, we combined the 4 breast 397 

cancer datasets into a single dataset of 1029 pixels with counts for 372 genes found to be 398 

overdispersed in at least one dataset. We trained LDA models on this combined dataset with 399 

STdeconvolve using a range of K from 2 to 20 and selected K=15, which was within the range of 400 

K’s that produced the lowest perplexity and the number of “rare” cell-types with mean pixel 401 

proportion < 5% was 0 (Supplementary Figure S10C). 402 

 403 

Gene set enrichment analysis of deconvolved breast cancer cell-types 404 
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To interpret the transcriptional profiles of the deconvolved cell-types in ST data of breast cancer 405 

sections, we used gene set enrichment analysis as implemented in the `liger` R package21. We 406 

filtered the list of 16771 Homo sapiens Gene Ontology gene set terms23 to include those which 407 

contained at least 1 gene present in the input ST dataset corpus used with STdeconvolve, 408 

resulting in 4238 terms. We then performed iterative gene set enrichment analysis on the ranked 409 

expression profile of the genes as previously described in `Annotation and matching of 410 

deconvolved and ground truth cell-types`  411 

 412 

Clustering analysis of ST pixels  413 

For clustering analysis of the MOB, using the cleaned MOB replicate #8 ST dataset of 260 pixels 414 

and 7365 genes, the raw counts were normalized to counts per million and adjusted to a log10 415 

scale with pseudo count 1. Subsequently, dimensionality reduction using PCA was performed, 416 

and pixels were visualized using 2-D embedding with t-SNE on the top 5 principal components 417 

and perplexity = 30. Graph-based cluster detection using Louvain clustering24 was performed 418 

using the top 5 principal components with the maximum number of nearest neighbors equal to 419 

30, resulting in the assignment of pixels to 5 clusters, which were manually annotated based on 420 

the physical locations of the pixel clusters on the MOB tissue section9. 421 

For clustering analysis of the breast cancer sections, we took the combined dataset of 422 

1029 pixels and 372 overdispersed genes, and log10 transformed with pseudo count of 1, and 423 

dimensionality reduction using PCA was performed.  In a manner similar to the original 424 

publication, pixels were clustered into 3 groups using the “Ward.D” method and the Euclidean 425 

distance calculated using the first 2 principle components This resulted in the assignment of 426 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448381
http://creativecommons.org/licenses/by/4.0/


 20 

pixels to 3 clusters which corresponded to the annotations of the 3 histological sections 427 

previously annotated by pathologists15. 428 

 429 

Availability of Code 430 

STdeconvolve is available as an open-source R software package25 with the source code 431 

available in the Supplemental Material and on GitHub at https://github.com/JEFworks-432 

Lab/STdeconvolve. Additional documentation and tutorials are available at 433 

https://jef.works/STdeconvolve/ 434 

  435 
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Main Figures 502 

 503 

Figure 1. Overview of STdeconvolve. 504 

A. STdeconvolve takes as input a spatial transcriptomics (ST) dataset of D pixels (rows) and 505 

counts of V genes (columns). A matrix of spatial coordinates for each of the D pixel can 506 

also be used for visualization. 507 

B. STdeconvolve first feature selects genes to retain in the input matrix for deconvolution, 508 

such as genes with counts in more than 5% and less than 95% of the pixels, and 509 

overdispersed across the pixels. To determine the optimal number of cell-types to be 510 

deconvolved, K, STdeconvolve fits multiple LDA models to the input dataset each with a 511 

different K. STdeconvolve computes the perplexity and number of rare deconvolved cell-512 

types to guide the selection of the model with the optimal K. A graph representation of 513 

LDA modeling is shown, where 𝛽*:/ is a 𝐾	 × 	𝑉 gene-probability matrix for each cell-514 

type 𝑘 and each input matrix gene 𝑣; D is the number of pixels in the dataset; Nd is the 515 

total gene counts in pixel d; 𝛼 is the Dirichlet distribution scaling parameter; 𝜃! is the 516 

multinomial distribution of cell-type proportions in pixel d drawn from 𝐷𝑖𝑟(𝛼); 𝑘!,# is a 517 
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drawn cell-type from 𝑚𝑢𝑙𝑡(𝜃!) for the nth gene count in pixel d; 𝑣!,# is a count of gene 𝑣 518 

drawn from gene-probability 𝑚𝑢𝑙𝑡(𝛽$!,#), given the cell-type 𝑘!,#. (See Methods for 519 

details). Shaded circle indicates observed variables and clear circles indicate latent 520 

variables.  521 

C. STdeconvolve outputs two matrices: (1) 𝛽, the deconvolved transcriptional profile matrix 522 

of K cell-types over genes V, and (2) 𝜃, the proportions of K cell-types across the D 523 

pixels. The proportion of deconvolved cell-types can then be visualized across the pixels. 524 

  525 
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 526 

Figure 2. STdeconvolve characterizes the spatial organization of cell-types in simulated and real 527 

ST data. 528 

A. Ground truth single-cell resolution MERFISH data of one section of the MPOA 529 

partitioned into 100 µm2 pixels (black dashed squares). Each dot is a single cell colored 530 

by its ground truth cell-type label. 531 

B. Proportions of deconvolved cell-types from STdeconvolve, represented as pie charts for 532 

each simulated pixel. 533 

C. The ranking of each gene based on its expression level in the transcriptional profiles of 534 

the deconvolved cell-types, compared to its gene rank in the transcriptional profile of the 535 

matched ground truth cell-type. 536 
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D. Heatmap of Pearson’s correlations between the proportions of the deconvolved cell-types 537 

and ground truth cell-types across simulated pixels. Ground truth cell-types are ordered 538 

by their frequencies in the ground truth dataset. Matched deconvolved and ground truth 539 

cell-types are boxed.  540 

E. Deconvolved cell-type proportions for ST data of the MOB from STdeconvolve, 541 

represented as pie charts for each ST pixel. Pixels are outlined with colors based on the 542 

pixel transcriptional cluster assignment corresponding to MOB coarse cell layers.  543 

F. Highlight of deconvolved cell-type X7. Pixel proportion of deconvolved cell-type X7 are 544 

indicated as black slices in pie charts. Pixels are outlined with colors as in E). 545 

G. Gene counts in each pixel of the MOB ST dataset for deconvolved cell-type X7’s select 546 

top marker genes Sox11 and Nrep. 547 

H. Corresponding ISH images for deconvolved cell-type X7’s top marker genes Sox11 and 548 

Nrep from the Allen Brain Atlas13. 549 

  550 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2021. ; https://doi.org/10.1101/2021.06.15.448381doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.15.448381
http://creativecommons.org/licenses/by/4.0/


 28 

 551 

Figure 3. STdeconvolve characterizes the spatial organization of immune cells in breast cancer 552 

ST data. 553 

A. Deconvolved cell-type pixel proportions for ST data of a breast cancer tissue section, 554 

represented as pie charts. Pixels are outlined with colors based on the pixel transcriptional 555 

cluster assignment corresponding to 3 pathological annotations.  556 
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B. Highlight of deconvolved cell-type X15. Pixel proportion of deconvolved cell-type X15 557 

are indicated as black slices in pie charts. Pixels are outlined with colors as in A). An 558 

H&E-stained image of the breast cancer tissue is shown in the background. 559 

C. Barplot of the deconvolved transcriptional profile of deconvolved cell-type X15 ordered 560 

by magnitude of deconvolved gene expression. Inset represents the log2 fold-change of 561 

the deconvolved transcriptional profile genes with respect to the mean expression of the 562 

other 14 deconvolved cell-type transcriptional profiles. Select highly expressed and high 563 

fold-change genes are labeled. 564 

D. Gene counts in each pixel of the breast cancer ST dataset for deconvolved cell-type 565 

X15’s select top marker genes. 566 

E. Gene set enrichment plot for significantly enriched GO term “T cell activation” for 567 

deconvolved cell-type X15’s transcriptional profile. 568 

 569 
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