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Abstract 24 

 The global COVID-19 pandemic has sparked intense interest in the rapid development of 25 

vaccines as well as animal models to evaluate vaccine candidates and to define immune correlates 26 

of protection. We recently reported a mouse-adapted SARS-CoV-2 virus strain (MA10) with the 27 

potential to infect wild-type laboratory mice, driving high levels of viral replication in respiratory 28 

tract tissues as well as severe clinical and respiratory symptoms, aspects of COVID-19 disease in 29 

humans that are important to capture in model systems. We evaluated the immunogenicity and 30 

protective efficacy of novel rhesus adenovirus serotype 52 (RhAd52) vaccines against MA10 31 

challenge in mice. Baseline seroprevalence is lower for rhesus adenovirus vectors than for human 32 

or chimpanzee adenovirus vectors, making these vectors attractive candidates for vaccine 33 

development. We observed that RhAd52 vaccines elicited robust binding and neutralizing 34 

antibody titers, which inversely correlated with viral replication after challenge. These data support 35 

the development of RhAd52 vaccines and the use of the MA10 challenge virus to screen novel 36 

vaccine candidates and to study the immunologic mechanisms that underscore protection from 37 

SARS-CoV-2 challenge in wild-type mice. 38 

 39 

Importance 40 

 We have developed a series of SARS-CoV-2 vaccines using rhesus adenovirus serotype 52 41 

(RhAd52) vectors, which exhibits a lower seroprevalence than human and chimpanzee vectors, 42 

supporting their development as novel vaccine vectors or as an alternative Ad vector for boosting.  43 

We sought to test these vaccines using a recently reported mouse-adapted SARS-CoV-2 (MA10) 44 

virus to i) evaluate the protective efficacy of RhAd52 vaccines and ii) further characterize this 45 

mouse-adapted challenge model and probe immune correlates of protection. We demonstrate 46 
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RhAd52 vaccines elicit robust SARS-CoV-2-specific antibody responses and protect against 47 

clinical disease and viral replication in the lungs. Further, binding and neutralizing antibody titers 48 

correlated with protective efficacy. These data validate the MA10 mouse model as a useful tool to 49 

screen and study novel vaccine candidates, as well as the development of RhAd52 vaccines for 50 

COVID-19. 51 

 52 

Introduction 53 

 A critical component of the evaluation of vaccine candidates for COVID-19 has been the 54 

development of pre-clinical challenge models. Transgenic mice [1-5], hamsters [6-9], and non-55 

human primates [10-12] have been shown to support viral replication and, to varying degrees, 56 

clinical disease following infection with SARS-CoV-2 [13]. We recently described a mouse-57 

adapted virus (MA10) to enable challenge of standard, wild-type laboratory mice and recapitulate 58 

several key features of human disease, such as viral replication in respiratory tract tissues and 59 

severe infection-associated weight loss [14]. This model has been explored to evaluate small 60 

molecule antivirals and candidate monoclonal antibodies for prophylactic or therapeutic 61 

applications, as well as prototype vaccine candidates [14-17]. For example, initial studies using 62 

viral replicon particles expressing SARS-CoV-2 Spike protein demonstrate the capacity of 63 

vaccines to restrain MA10 infection and disease [14].  64 

This model has not yet been utilized to study the characteristics of vaccine-elicited immune 65 

responses that protect against clinical disease and viral replication. Thus, we sought to test a series 66 

of candidate rhesus adenovirus serotype 52 (RhAd52) [18] vector-based vaccines expressing 67 

engineered versions of SARS-CoV-2 Spike. RhAd52 vectors have lower seroprevalence in human 68 

populations than Ad26 vectors, which recently received FDA Emergency Use Authorization as a 69 
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COVID-19 vaccine [19, 20]. We aimed to probe correlates of protection, including whether similar 70 

immune parameters such as neutralizing antibody titers emerge in the mouse model as predictors 71 

of challenge outcome, as has been observed in hamsters and nonhuman primates [9, 10, 21]. These 72 

data will inform applications of the MA10 virus to study key questions about clinical disease, 73 

infection, or both. 74 

 75 

Results 76 

Immunogenicity of RhAd52 vectors 77 

We designed a series of replication incompetent viral vector vaccines using rhesus 78 

adenovirus serotype 52 (RhAd52) vectors [18, 22] that encode variations of the SARS-CoV-2 79 

Spike (S) protein (Fig 1A). Similar to our previous reports with human adenovirus serotype 26 80 

(Ad26) vectors [9, 23, 24], inserts included: i) unmodified S, ii) truncations of the cytoplasmic tail 81 

(S.dCT) or the transmembrane region (S.dTM), or iii) select fragments, including the S1 domain 82 

and the receptor binding domain (RBD). In some cases, immunogens were modified with mutation 83 

of the furin cleavage site and the addition of proline mutations to stabilize protein prefusion 84 

conformation (PP) [25-27]. To explore the potential of candidate RhAd52 vaccines to elicit 85 

humoral immune responses, groups of wild-type BALB/c mice were immunized with 109 viral 86 

particles (VPs) of these vaccines via the intramuscular route (Fig 1B). Peripheral blood was 87 

collected on a biweekly basis to monitor antibody responses in serum.  88 

At week 2 following the initial immunization, 100% of mice immunized with RhAd52 89 

vaccines, irrespective of the immunogen insert, exhibited SARS-CoV-2 S-specific binding 90 

antibodies by enzyme-linked immunosorbent assay (ELISA) (Fig 1C). These responses generally 91 

increased over the time frame of 2-8 weeks post-prime. At week 8, RBD-specific binding 92 
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responses were also observed in 100% of mice immunized with RhAd52 candidates (Fig 1D). 93 

Furthermore, antibody function was assessed using in vitro assays to quantify the potential to 94 

neutralize either a pseudotyped virus [10, 28, 29] (Fig 1E) or live SARS-CoV-2 virus [10, 28, 30, 95 

31] (Fig 1F). Similar to the binding results, neutralizing titers were elicited by several of the 96 

RhAd52 candidate vaccines, with the lowest responses observed following immunization with the 97 

S1 domain insert, in which a subset of mice exhibited no detectable neutralizing responses at week 98 

8. Mice received a second identical dose of the respective RhAd52 vectors at week 8. Two weeks 99 

following the boost immunization, median S-specific ELISA titers were found to increase by 100 

approximately 10-fold for all the vaccine candidates (Fig 1G). These data demonstrate the 101 

immunogenicity of a homologous boost with a second immunization of a RhAd52 vector. 102 

We next designed a series of immunization regimens that we hypothesized would i) allow 103 

direct comparison of protective efficacy of single-shot versus two-dose prime-boost schedules, and 104 

ii) generate a range of binding and neutralizing antibody responses that could enable analyses of 105 

correlates of protection following challenge [21, 24, 28]. Briefly, groups of mice were immunized 106 

with a prime and a matched boost with the seven candidate RhAd52 vaccines, as in Fig 1B. At the 107 

time of boost (i.e., week 8), additional groups of mice were immunized with a single dose of select 108 

vaccines, RhAd52.S, RhAd52.S.dCT, and RhAd52.S.PP. At week 12, serum was collected to 109 

assess antibody responses prior to viral challenge. Expansion of S-specific (Fig 2A) and RBD-110 

specific (Fig 2B) binding antibody titers was again observed in all vaccinated mice. Groups of 111 

mice that received the two-dose regimens exhibited approximately one-log higher median titers 112 

compared with groups administered a single immunization. Furthermore, consistent with our 113 

previous data using a DNA vaccination platform in non-human primates [28], the S1 insert drove 114 

the lowest binding responses.  115 
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In evaluating neutralizing antibody activity elicited by these vaccine regimens, similar 116 

patterns were observed with pseudovirus (Fig 2C) and live virus (Fig 2D) assays. Among the 117 

groups administered prime-boost dosing schedules, high neutralizing antibody titers were 118 

observed across all vaccines with the exception of the S1 immunogen, for which 50% 119 

neutralization titer (NT50) values were below the assay limit of detection for several mice. Groups 120 

that received only one dose of select inserts exhibited lower neutralizing titers compared with 121 

boosted mice, with detectable responses in a subset of mice that, on average, were approximately 122 

one log lower than the boosted groups that received full length or truncated (e.g., S.dCT) vaccines. 123 

As consistent trends were observed across binding and neutralizing titers in the relative magnitude 124 

of responses elicited by various candidate vaccines, correlation analyses were performed to assess 125 

the relationship between these immunologic readouts (Fig 2E). Highly significant (P<0.0001, 126 

Spearman correlation) strong positive correlations were observed between binding ELISA titers to 127 

S and RBD proteins and capacity to neutralize either pseudovirus or live SARS-CoV-2 virus. 128 

 129 

Protective efficacy of RhAd52 vector vaccines against MA10 challenge 130 

At week 12, all groups of mice were challenged to evaluate whether vaccine-elicited 131 

responses protected from clinical disease and viral replication in this mouse-adapted model [14]. 132 

Vaccinated mice were challenged on day 0 with 104 PFU SARS-CoV-2 MA10 via the intranasal 133 

route (Fig 3A). Half of the mice were followed through day 4 post-challenge and body weight was 134 

monitored daily for signs of clinical disease. At the terminal time point, lung tissue was collected, 135 

and outgrowth assays were performed to quantify replication-competent virus (i.e., plaque forming 136 

units (PFU) in this key respiratory tract tissue. In parallel, half of the mice were sacrificed at day 137 

2 post-challenge to measure virus in the lungs. We hypothesized this approach would allow 138 
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evaluation of the potential to restrain clinical symptoms of disease as well as enable a virologic 139 

endpoint at the time of typical peak viral load (i.e., day 2 post-challenge). 140 

As expected, the sham control group exhibited significant weight loss following MA10 141 

challenge, with a median loss of 15.2% of body weight at day 4 post-challenge (Fig 3B-3C). All 142 

vaccine regimens provided robust protection from clinical signs of infection in terms of body 143 

weights (P<0.0001, one-way ANOVA with Dunnett’s multiple comparisons test), with body 144 

weight generally remaining stable irrespective of the RhAd52 insert or whether a single or two-145 

dose vaccine regimen was employed. Analyses of lungs revealed differences in the level of 146 

replication-competent virus detected in respiratory tract tissues among mice largely protected from 147 

weight loss (Fig 4A). In sham control mice at day 2 post-challenge, high levels of virus were 148 

recovered from lung, with a median titer of 3.1 x 107 PFU/lung (Fig 4B). In contrast, two-dose 149 

regimens with full-length (i.e., S, S.PP) or truncated (i.e., S.dCT, S.dTM, S.dTM.PP) S 150 

immunogens provided a dramatic reduction in viral titer, with a greater than a 6 log drop in median 151 

titer. In nearly all mice in these groups, no replication competent virus was recovered from the 152 

lungs (i.e., PFU<100/lung). Immunization with two doses of the S fragment immunogens – 153 

RhAd52.S1 and RhAd52.RBD – restrained the level of virus in the lung, with a median titer of 3.9 154 

x 105 and 5.0 x 103 PFU/lung, respectively. Similarly, in the single-shot groups, RhAd52.S and 155 

RhAd52.S.dCT provided significant but incomplete protection, reducing the viral burden in the 156 

lung to 3.3 x 102 and 1.0 x 104 PFU/lung, respectively. Finally, a single shot of RhAd52.S.PP 157 

dramatically reduced viral load, with no detectable viral outgrowth from lung tissues in 100% of 158 

mice. Of note, the S.PP insert previously proved optimal in nonhuman primates [24] and was 159 

advanced into clinical trials [19, 20].  160 

Similar analyses at day 4 revealed the level of virus in lung tissue was several logs lower 161 
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(median 4.4 x 104 PFU/lung) than at day 2 post-challenge (Fig 4C), consistent with our previous 162 

finding that tissue viral loads peak at day 1-2 post-challenge and gradually resolve over 163 

approximately 7 days [14]. Across vaccine regimens, virus levels were largely below the limit of 164 

detection of the outgrowth assay, with low levels observed in a subset of mice in the RhAd52.S 165 

and RhAd52.S1 two-dose groups. Together, these data suggest that all vaccines led to a reduction 166 

in respiratory tract tissue viral loads at the typical peak of infection as well as significantly 167 

decreased the persistence of virus in the lungs.  168 

 169 

Exploration of immune correlates of protection 170 

We next evaluated possible correlations between vaccine-elicited immune responses prior 171 

to challenge and peak viral levels following challenge. A highly significant (P<0.0001) correlation 172 

was observed between pre-challenge S ELISA titers and peak (i.e., day 2) lung PFU (Fig 4D). 173 

Furthermore, the resulting Spearman correlation coefficient (R=-0.7499) suggests a strong inverse 174 

relationship between pre-challenge binding antibody levels and virologic outcome post-challenge. 175 

Similar highly significant (P<0.0001) inverse correlations were observed between three additional 176 

pre-challenge immunologic metrics and viral replication in the lung: i) RBD ELISA titers (R=-177 

0.7234), ii) pseudovirus neutralization titers (R=-0.7446, and iii) live virus neutralization titers 178 

(R=-0.7744). Together, these data suggest that multiple vaccine-elicited humoral immune 179 

responses are inversely correlated with viral replication in respiratory tract tissue following MA10 180 

SARS-CoV-2 challenge.  181 

 182 

Discussion 183 

Our data indicate that RhAd52 vectors expressing SARS-CoV-2 S antigens elicit robust 184 
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and protective humoral immune responses in mice. Based on baseline seroprevalence as well as 185 

the expanded global use of Ad5, Ad26, and ChAdOx1 vaccines [19, 20, 32-35], developing 186 

additional adenoviral vectors for COVID-19 vaccines is critical. This approach could be important 187 

for developing future boosting vectors or to tune the innate immune signatures induced [36]. 188 

Similar to our recent reports in hamsters [9], non-human primates [24, 28], and humans [19], a 189 

robust correlation was observed between binding and neutralizing antibody responses. 190 

Furthermore, although single-shot vaccines were highly protective, we observed increased 191 

immune responses using a homologous prime-boost strategy. In particular, the expansion of 192 

neutralizing antibody responses, as measured by both pseudovirus and live virus assays, in mice 193 

is encouraging, as this metric has emerged as a potential correlate of protection in hamster and 194 

non-human primate challenge models [9, 10, 21, 24, 28].  195 

Importantly, the MA10 virus has previously been shown to drive significant clinical disease 196 

(i.e., weight loss) as well as replication localized in respiratory tract tissues, characteristics of 197 

interest for modeling severe COVID-19 disease. In contrast, nonhuman primate models for 198 

COVID-19 generally do not develop severe clinical disease [10-13].  The MA10 mouse model has 199 

proven useful for screening candidate therapeutics, but it remains relatively unexplored for testing 200 

vaccines [14-17]. The results from our challenge studies using RhAd52 vaccines suggest that 201 

candidate vaccines significantly protected against clinical disease and virus replication in lung 202 

tissue. However, only select immunization regimens drove full suppression of replicating virus in 203 

the lungs, as measured by viral outgrowth assays. Moreover, our data show that the recently-204 

reported mouse-adapted virus MA10 exhibits robust humoral immune correlates of vaccine 205 

protection [9, 10, 21], which will prove useful in future studies of vaccines and other interventions 206 

using this model. 207 
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Future studies could further explore mechanistic correlates of protection, such as defining 208 

how vaccine candidates tune systemic pro-inflammatory cytokine secretion typically triggered by 209 

viral infection, as well as exploring the role of T cell responses in the context of MA10 challenge. 210 

No signs of disease enhancement (e.g., enhanced weight loss) were observed with sub-protective 211 

immune responses, an important finding due to concerns of antibody-dependent enhancement. 212 

Together, these data support the MA10 mouse-adapted virus as a tool to screen vaccine candidates. 213 

This approach could help to test novel immunogens, delivery systems, or dosing regimens, 214 

harnessing a relatively high throughput, tractable small animal model, wild-type mice. These 215 

studies could be employed to identify promising approaches to advance to large animal pre-clinical 216 

and, subsequently, early clinical trials. Moreover, similar mouse challenge models could be 217 

developed for the newly described SARS-CoV-2 variants of concern. 218 

 219 

Materials and Methods 220 

RhAd52 vectors. 221 

RhAd52 vectors were constructed with seven variants of the SARS-CoV-2 Spike (S) 222 

protein sequence (Wuhan/WIV04/2019; GenBank MN996528.1). Sequences were codon 223 

optimized and synthesized. Replication-incompetent, E1/E3-deleted RhAd52-vectors were 224 

produced in HEK 293B-55K.TetR cells as previously described [23], with the E1 region replaced 225 

by a transgene cassette encoding for the S sequence of interest. Vectors were sequenced and tested 226 

for expression before use. 227 

 228 

Animals and study design. 229 

Female BALB/c mice (The Jackson Laboratory) were randomly allocated to groups. Mice 230 
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received RhAd52 vectors expressing different versions of the SARS-CoV-2 S protein or sham 231 

controls (N = 10 per group). Animals received a single immunization of 109 viral particles (VPs) 232 

of RhAd52 vectors by the intramuscular route without adjuvant. In some cases, eight weeks later, 233 

mice received a homologous boost immunization. At indicated timepoints, peripheral blood was 234 

collected via the submandibular route to isolate serum for immunologic assays. For viral challenge, 235 

mice were administered 1 x 104 PFU MA10 SARS-CoV-2 in a volume of 50µL via the intranasal 236 

route [14]. Following challenge, body weights were assessed daily. Subsets of animals were 237 

euthanized on days 2 and 4 post-challenge for viral outgrowth assays. All animal studies were 238 

conducted in compliance with all relevant local, state and federal regulations and were approved 239 

by the Beth Israel Deaconess Medical Center and University of North Carolina at Chapel Hill 240 

Institutional Animal Care and Use Committees. 241 

 242 

ELISA. 243 

S and RBD-specific binding antibodies were assessed by ELISA essentially as described 244 

[10, 28]. Briefly, plates were coated with 1 µg ml−1 of SARS-CoV-2 S protein (Sino Biological) 245 

or SARS-CoV-2 RBD protein (Aaron Schmidt, Massachusetts Consortium on Pathogen 246 

Readiness), diluted in 1× PBS, and incubated at 4 °C overnight. After incubation, plates were 247 

washed once with a wash buffer (0.05% TWEEN-20 in 1× PBS) and blocked with 350 µl of casein 248 

per well. The block solution was discarded after 2-3 hours of incubation at room temperature and 249 

plates were blotted dry. Three-fold serial dilutions of mouse serum in casein block were added to 250 

wells and plates were incubated for 1 hour at room temperature. Plates were then washed three 251 

times and rabbit anti-mouse IgG HRP (Jackson ImmunoResearch), diluted 1:1000 in casein block, 252 

was added to wells and incubated at room temperature in the dark. After 1 hour, plates were washed 253 
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three times, and 100 µl of SeraCare KPL TMB SureBlue Start solution was added to each well. 254 

Development was halted with the addition of 100 µl of SeraCare KPL TMB Stop solution per well. 255 

The absorbance at 450 nm was recorded using a VersaMax microplate reader. ELISA endpoint 256 

titers were defined as the highest reciprocal serum dilution that yielded an absorbance > 0.2. The 257 

raw OD values were transferred into GraphPad Prism for analysis. A standard curve was 258 

interpolated using a sigmoidal four-parameter logistic (4PL) fit. To quantify the endpoint titer, the 259 

interpolation function was used to calculate the dilution at which the OD value would be equal to 260 

a value of 0.2. 261 

 262 

Pseudovirus neutralization assay. 263 

A SARS-CoV-2 pseudovirus expressing a luciferase reporter gene was generated in an 264 

approach similar to as described previously [10, 28, 29]. Briefly, the packaging construct psPAX2 265 

(AIDS Resource and Reagent Program), luciferase reporter plasmid pLenti-CMV Puro-Luc 266 

(Addgene) and S protein expressing pcDNA3.1-SARS CoV-2 S.dCT were co-transfected into 267 

HEK293T cells using lipofectamine 2000 (Thermo Fisher Scientific). After 48 hours, supernatant 268 

was collected and pseudotype viruses were purified by filtration with a 0.45-µm filter. To 269 

determine the neutralization activity of the antisera from vaccinated animals, HEK293T-hACE2 270 

target cells were seeded in 96-well tissue culture plates at a density of 1.75 × 104 cells per well and 271 

incubated overnight. Three-fold serial dilutions of heat-inactivated serum were prepared and 272 

mixed with 50 µl of pseudovirus. The mixture was incubated at 37 °C for 1 hour before adding to 273 

HEK293T-hACE2 cells. 48 hours after infection, cells were lysed in Steady-Glo Luciferase 274 

(Promega) according to the manufacturer’s instructions. Neutralization titers were defined as the 275 

sample dilution at which a 50% reduction in relative light units was observed relative to the average 276 
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of the virus control wells. 277 

 278 

Live virus neutralization assay. 279 

Live virus neutralization of sera was determined using a nanoLuciferase-expressing SARS-280 

CoV-2 virus (SARS-CoV-2nLuc), bearing wild-type spike protein, as described [37, 38], with 281 

slight modification. Briefly, Vero E6 cells were seeded at 2 x 104 cells per well in a 96-well plate 282 

24 hours before the assay. 90 PFU of SARS-CoV-2-nLuc virus were mixed with serial diluted sera 283 

at 1:1 ratio and incubated at 37 °C for 1hour. An 8-point, 3-fold dilution curve was generated for 284 

each sample with starting concentration of 1:20. Virus and serum mix was added to cells and 285 

incubated at 37 °C + 5% CO2 for 48 hours. Luciferase activity was measured by Nano-Glo 286 

Luciferase Assay System (Promega) following manufacturer protocol using SpectraMax M3 287 

luminometer (Molecular Device). Fifty percent neutralization titer (NT50) was calculated in 288 

GraphPad Prism by fitting the data points to a sigmoidal dose-response (variable slope) curve. 289 

 290 

PFU assay. 291 

Lung viral titers were determined by plaque assay. Briefly, right caudal lung lobes were 292 

homogenized in 1mL PBS using glass beads and serial dilutions of the clarified lung homogenates 293 

were added to a monolayer of Vero E6 cells and overlayed with a solution of 0.8% agarose and 294 

media. After three days, plaques were visualized via staining with Neutral Red dye and counted. 295 

 296 
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Figures and Figure Captions 324 

Fig 1. RhAd52 vaccines elicit robust S-specific binding antibody responses. A) A series of 325 
replication incompetent RhAd52 vectors, encoding for variations on the SARS-CoV-2 Spike (S) 326 
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protein, was designed. Inserts included i) S, ii) deletion of the cytoplasmic tail (S.dCT), iii) deletion 327 
of the transmembrane domain and cytoplasmic tail (S.dTM), iv) the S1 domain with a foldon 328 
trimerization tag, v) the receptor binding domain (RBD) a foldon trimerization tag, vi) deletion of 329 
the transmembrane domain and cytoplasmic tail, with mutation of the furin cleavage site (red X), 330 
addition of stabilizing proline mutations (red lines), and a foldon trimerization tag (S.dTM.PP), 331 
and vii) S with mutation of the furin cleavage site (red X) and addition of stabilizing proline 332 
mutations (red lines) (S.PP). B) To explore the immunogenicity of these vaccine candidates, wild-333 
type BALB/c mice were immunized at week 0 with 109 viral particles (VPs) of candidate RhAd52 334 
vaccines or sham. Peripheral blood was collected at baseline and every two weeks following 335 
vaccination to monitor antibody responses in serum. Eight weeks post-prime, mice were 336 
administered a homologous boost to explore the potential to boost responses. C) For each RhAd52 337 
insert, as well as sham controls, S-specific binding antibody responses were quantified through 338 
enzyme-linked immunosorbent assay (ELISA) in serum every two weeks post-prime. D) The 339 
distribution of RBD-specific ELISA titers at week 8 across candidate RhAd52 vectors. Red lines 340 
indicate the median titer of each group. Neutralizing activity of vaccine-elicited antibody responses 341 
were assessed through E) pseudovirus or F) live SARS-CoV-2 virus in vitro neutralization assays. 342 
The 50% neutralization titer (NT50) is displayed, with the median of each vaccine regimen 343 
indicated with a red line. G) The distribution of S-specific ELISA titers at week 8 (open circles) 344 
and week 10 (two weeks post-boost, closed circles) was measured to characterize the 345 
immunogenicity of a homologous boost with candidate RhAd52 vaccines. Red lines indicate the 346 
median titer of each group. For panels C-G, N=9-10 mice/group and endpoint binding titers are 347 
reported. Representative data from one of two similar experiments are shown. 348 
 349 
  350 
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 351 
Fig 2. Serum binding and neutralizing antibody responses are tightly linked following 352 
RhAd52 vaccination. Groups of mice were administered a prime (week 0) and a boost (week 8) 353 
of 109 VP the indicated RhAd52 vaccines. At the time of boost (i.e., week 8), additional groups of 354 
mice were administered a single dose (i.e., Prime Only) of 109 VP of select indicated RhAd52 355 
vaccines. At week 12, serum was analyzed. A) S-specific and B) RBD-specific ELISA titers are 356 
shown, with median titer for each regimen indicated with a red line. Neutralizing activity of 357 
vaccine-elicited antibody responses were assessed through C) pseudovirus or D) live SARS-CoV-358 
2 virus neutralization assays. The 50% neutralization titer (NT50) is displayed, with the median of 359 
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each vaccine regimen indicated with a red line. E) Spearman correlation analyses of binding and 360 
neutralizing antibody responses are displayed. For panels A-E, data are pooled from two similar 361 
experiments. For panels A-D, N=9-10 mice/group for all regimens, with the exception of 362 
RhAd52.S Prime + Boost (N=19), RhAd52.S Prime Only (N=20), and Sham (N=23). In Panel E, 363 
data from all vaccine regimens are pooled to explore the relationship between binding and 364 
neutralizing antibody function independent of the RhAd52 insert. 365 
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Fig 3. RhAd52 vaccines protect from clinical disease following mouse-adapted SARS-CoV-366 
2 challenge. A) Groups of mice were immunized with either a prime and boost or a prime only 367 
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of 109 viral particles (VPs) of RhAd52 candidate vaccines following the indicated timeline. At 368 
week 12, mice were challenged with 104 PFU of MA10 SARS-CoV-2 via the intranasal route. 369 
After challenge, a subset of mice was followed through day 4 post-challenge to monitor for signs 370 
of clinical disease. B) Relative body weight following MA10 SARS-CoV-2 challenge in mice 371 
immunized with the indicated vaccine regimens. Median value of each group is displayed. 372 
P<0.0001 indicates results of a one-way ANOVA analysis followed by Dunnett’s multiple 373 
comparisons, comparing vaccinated groups to the sham control group. C) Traces of relative body 374 
weight in individual mice, immunized with the indicated RhAd52 vaccine regimen, following 375 
challenge. For panels B-C, data are pooled from two similar experiments. N=5 mice/group for all 376 
regimens, with the exception of RhAd52.S Prime + Boost (N=10), RhAd52.S Prime Only 377 
(N=10), and Sham (N=13).  378 

 379 
  380 
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Fig 4. RhAd52 vaccine-elicited antibody responses link to restraint of viral replication in the 381 
lung following mouse-adapted SARS-CoV-2 challenge. A) Groups of mice were immunized 382 
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with either a prime and a boost or a prime only of 109 viral particles (VPs) of RhAd52 candidate 383 
vaccines. At week 12, mice were challenged with 104 PFU of MA10 SARS-CoV-2 via the 384 
intranasal route. A subset of mice was monitored through day 4 post-challenge; at the terminal 385 
timepoint, lungs were harvested to measure virus via outgrowth assays to quantify plaque forming 386 
units (PFU) per tissue. The second subset of mice were followed through day 2 post-challenge for 387 
similar PFU assays at the time of peak viral replication. B-C) Quantification of PFU per lung at 388 
B) day two and C) day 4 post challenge. Median of each group indicated by the red line. N=4-5 389 
mice/group for all regimens, with the exception of RhAd52.S Prime + Boost (N=9), RhAd52.S 390 
Prime Only (N=10), and Sham (N=10). D) Spearman correlation analyses of pre-challenge serum 391 
binding or neutralizing antibody responses with day two post-challenge viral titers in lung are 392 
displayed. For panels B-C, data are pooled from two similar experiments. In Panel E, data from all 393 
vaccine regimens are pooled to explore the relationship between pre-challenge binding and 394 
neutralizing antibody responses and virologic endpoint independent of the RhAd52 insert.  395 
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