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Abstract  

 

DNA metabarcoding approaches to analyse complex mixtures of pollen has become the 

standard in pollination biology, especially in the light of recent threats affecting pollination. In 

spite of the increasing adoption of High Throughput Sequencing (HTS) approaches, these 

studies generate huge numbers of raw reads, some of which might be associated to false 

positives or infrequently recorded species with potentially little biological information. If these 

reads are not discarded (i.e. pruned), they can lead to changes in the ecological findings and 

lead to biased conclusions. In this study we reviewed 42 papers in the recent pollen DNA 

metabarcoding literature and focused on the type of pruning applied. We also tested whether 

the different types of those cut off threshold may leave a mark on the DNA metabarcoding 

data. To do so, we compared for the first time community composition, species richness and 

networks of species interactions (i.e. Connectace, Modularity, Connectivity and Shannon 

entropy) associated with the most relevant ways of treating HTS outputs: no cut (no reads 

filtering), or cutting levels obtained as proportional 1% of sample total reads, or as fixed 

amount of 100 reads, or from ROC (Receiver operator characteristic). Results clearly indicated 

that pruning type shapes species composition and that to apply or not a threshold dramatically 

impacts ecological indices, potentially increasing the risk of misinterpreting DNA 

metabarcoding data under an ecological point of view. Given the high methodological 

heterogeneity from the revised literature, we discuss in what conditions filtering types may be 

more appropriate, and also recommend to biologically justify the pruning threshold when 

analysing DNA metabarcoding raw reads, and to develop shared approaches to make future 

studies more comparable. 

 

Keywords:  

 

1- Introduction 

 

The study of plant-pollinator interactions is pivotal to address both theoretical and applicative 

issues at the global scale, with important implications in evolutionary studies, conservation 

biology, agrifood security and to provide reliable policies of land-use management and 

mitigation of anthropogenic stressors (Mitchell et al., 2009; Schweiger et al., 2010; Burke et 

al., 2011; Burke et al., 2017).  

Traditionally, studies of plant-pollinator interactions have been carried out through direct field 

observations of insects foraging activity while visiting flowers (CaraDonna & Waser, 2020; De 

Manincor et al., 2020). However, another valuable approach to unveil information on plant-

pollinator interactions is based on the identification of the pollen grains that the pollinator 

insects carry on their body (Bosch et al., 2009; Cullen et al., 2021). While visiting flowers, 
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pollinators get in touch with the flower’s anthers or actively collect and accumulate the pollen 

in specialized structures such as the scopa or the corbiculae. The characterization of the 

transported pollen allows shedding light on the foraging ‘history’ of insects prior to a sampling 

event. In this way, it is possible to retrieve complete behavioral and ecological information on 

flower resource exploitation, and to properly address ecological research questions. The 

palynology approach has traditionally been used to identify pollen samples, and it requires 

high expertise with light-microscopy-based species assessment and is time-consuming (Bell 

et al., 2016 (a), Bell et al., 2016 (b)). In addition, reaching a detailed taxonomic resolution 

through morphological criteria could be limited by the lack of diagnostic characters among 

congeneric species (Khansari et al., 2012).  

In the last decade, these difficulties have progressively been addressed due to the increasingly 

accessible DNA-based identification technologies that significantly reduced the time required 

for pollen identification (Galimberti et al. 2014, Bruni et al., 2015). Recent developments in 

DNA sequencing technologies, such as the increasing adoption of High-Throughput 

Sequencing (HTS) facilities, made it possible to analyse the taxonomic composition of 

complex DNA matrices, including pollen (Liu et al., 2012), using standard DNA barcode 

regions in a so-called DNA metabarcoding approach (Taberlet et al., 2012). In the field of 

pollen-based studies, the use of DNA metabarcoding soon become a standard approach and 

to date, it has been employed not only in the characterization of the pollen retrieved from 

insects bodies (see e.g. Biella et al, 2019), but also in the analysis of other kinds of matrices, 

such as the pollen stored in cavity nests (McFrederick et al., 2016), honey (Richardson et al., 

2015 (a)), sediments (Niemeyer et al., 2017; Alsos et al., 2018) and was also employed in the 

fields of honey authentication (Bruni et al., 2015;  Prosser & Hebert, 2017) and forensics 

sciences (Ezegbogu, 2021, Bell et al 2016 (b)). In the context of plant-pollinator interactions, 

the data retrieved from pollen DNA metabarcoding could potentially shed light on how 

pollinators exploit flower resources and consequently to evaluate the complexity and resilience 

of the interaction networks in a given habitat. This methodological revolution not only improved 

ecological knowledge, but also offered new insights into the development of effective 

conservation and restoration actions (Bell et al., 2016 (a)). Given the astounding number of 

sequences (hereafter “reads”) obtained through HTS techniques, (Churko et al., 2013; Bell et 

al., 2019) it is necessary to process the data through a proper bioinformatic pipeline. This is a 

critical phase of the dry lab activities and usually consists in (i) the assembly of paired-end 

reads resulting from bidirectional sequencing of the DNA templates, (ii) the analysis of the 

variation among sequences and the clustering of molecular features (e.g., Operational 

Taxonomic Units OTUs sensu Blaxter et al., 2005 or exact sequence variants ESVs sensu 

Callahan et al., 2017), and finally (iii) the removal of chimeras, artifacts and spurious 

sequences (Alberdi et al., 2018). However, this process does not solve the biases that could 

be introduced at different stages of the DNA metabarcoding workflow and that could alter the 

species detection. These include for example the choice of primer that could preferentially 

amplify certain taxa during PCR (as highlighted in Piñol et al., 2019), to the choice of the 

clustering method for calculating the molecular features (Clare et al., 2016). Species 

characterization could also be altered by the application of a cut-off threshold, usually applied 

to remove those reads resulting from rare occurrence and/or potential contaminants, and this 

is likely the most crucial step where severe biases in terms of species composition of the 

investigated biological matrix can be introduced (Ficetola et al., 2016; Alberdi et al., 2018). 

HTS technologies have the potential to magnify the sequencing errors and overestimate the 

presence of rare species, thus the application of a threshold that balances the detection of 

rare reads and removing artifacts is of particular importance (Alberdi et al., 2018). These 
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artifacts include for example the false positives that are clusters of molecular features (i.e., 

OTUs and ESVs) generated as a consequence of inaccuracies during field sampling 

operations (e.g cross-contamination among samples), laboratory processing (e.g., 

contamination of DNA extraction or amplification reagents), or bioinformatics analysis (e.g., 

misidentification or maintenance of chimeric sequences) (Ficetola et al., 2016; Bell et al., 

2019). Therefore, the extreme sensitivity of DNA metabarcoding approaches makes it crucial 

to filter out false positives and rare occurrences during the post-sequencing bioinformatics 

processing. A typical problem in studies that use DNA metabarcoding related to pollination 

biology could derive for example from the identification of plant pollinator interactions that 

actually have never occurred in the field, or that are accidental or extremely rare. The 

characterization of plant taxa from pollen samples could also depend on rare pollen 

occurrences (i.e a single pollen grain) whose presence led to ecological interpretation 

consequences, especially when reads count are converted and used as presence absence 

data. These, in turn, could lead to the overestimation of the generalist attitudes of the 

investigated insects and therefore to misleading ecological interpretations. 

The application of an appropriate “cut-off threshold” to “prune” the DNA metabarcoding data 

from the signal of possible false positives and rarest occurrence is therefore a critical step of 

the bioinformatics pipeline. Although some studies did not apply any cut-off threshold, different 

types of pruning have been used so far in recent literature. This highlights the absence of 

agreement on whether and how to prune a DNA metabarcoding output. In practice, some 

studies are based on fixed cut-off thresholds, such as a defined number of reads used as 

reference level for accepting a molecular feature in a sample (Pornon et al., 2019). Other 

studies employed proportional cut-off thresholds, where molecular features are discarded if 

represented by less than a certain percentage of the total reads produced for a sample (Wilson 

et al., 2021). Alternatively, statistical approaches have been used for estimating a variable 

threshold based on Receiver operator characteristic (ROC) curves, thus depending on the 

distribution of reads among molecular features within a sample (Biella et al., 2019). However, 

to date, no studies have investigated the effect of different cut-off thresholds on molecular 

datasets, specifically from studies related to mixed pollen samples (or honey) and plant-

pollinator interactions. 

In this study, we investigated the criteria adopted for pruning the false positives and rarest 

occurrence in published pollen DNA metabarcoding studies, first by summarising the 

strategies on the application of the cut-off threshold for false positives removal in the recent 

scientific literature. Moreover, we aimed at evaluating the direct ecological effects of the most 

commonly applied false positive removal methods on publicly available pollen/honey DNA 

metabarcoding datasets. To do this, we measured how different cut-off thresholds impacted i) 

species composition and species richness in the samples, and iii) the interactions among 

plants and pollinators described by network indexes calculated at both at the community and 

the individual level. This approach allowed us to evaluate how the different pruning strategies 

could alter the identification of species and thus the ecological interpretation of results. 

 

 

2- Methods 

 

2.1 - CUT-OFF THRESHOLD APPLICATION IN POLLEN DNA METABARCODING: 

LITERATURE OVERVIEW 
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To summarise the typology of cut-off threshold already applied in the scientific literature a 

bibliographical research was conducted in Scopus using the following keywords: “DNA” + 

“metabarcoding” + “pollen”. Within the results, we selected only peer-reviewed original 

published articles that dealt with pollination, pollinator diet (pollen and honey), and plant 

pollinator interactions with a DNA metabarcoding approach. We excluded reviews, news, 

views, opinions, and perspectives papers, keeping only research articles based on original 

data. Papers on airborne pollen or other pollen matrices have been excluded too because 

unrelated to pollinators. We selected studies spanning between 2012, when the term DNA 

metabarcoding was proposed for the first time (Taberlet et al., 2012) and 2021, with the last 

update on the 9th of May 2021. The retrieved articles were used for the creation of a review 

table to summarise the following information: (i) the type of sample from which the DNA was 

extracted, (ii) the studied organism, (iii) the details of the post-sequencing cut-off threshold 

applied in the analysis pipeline, and (iv) the DNA barcoding markers used to achieve the 

amplification reaction. 

 

2.2 EVALUATING THE CONSEQUENCES OF CUT-OFF THRESHOLDS APPLICATION 

 

To evaluate how the application of different cut-off thresholds could lead to changes in the 

results obtained through DNA metabarcoding of mixed pollen samples, publicly available DNA 

metabarcoding datasets (obtained by ITS2 DNA barcode marker sequencing, the most 

recurrent marker in pollen DNA metabarcoding studies) were retrieved from the previously 

mentioned literature search. Only datasets containing a non-filtered number of reads were 

kept for our analysis (see Table 1 and Results). In detail, we retrieved published non filtered 

dataset (hereafter named as “no cut”, equivalent to a 0-reads threshold), and we derived 

several subsequent “pruned” versions by applying each of three (independently) different 

approaches to calculate the reads cut-off thresholds. The chosen pruning types were based 

on utilization frequency in the literature, or if based on promising approaches of biological 

importance (i.e., the ROC approach). Specifically, the first method is proportional and discards 

molecular features represented in a sample with a number of reads lower than 1% of the total 

sample reads count (hereafter “proportional 1%”) as used in Danner et al., 2017. The second 

one estimates a cutting threshold accounting for the distribution of reads among molecular 

features, thus providing a customized proportion for each sample through the statistical ROC 

curve approach, as indicated in Biella et al (2019) (hereafter “statistical ROC”). This strategy 

is commonly applied in several disciplines and was specifically proposed for false positive 

detection (Metz, 1978), and it bears the advantage of adapting the threshold to an estimated 

distribution of reads in the sample. The last cut-off threshold is a fixed approach that removes 

the molecular features represented in a sample by less than 100 reads (hereafter “fixed 100 

reads”), thus mimicking studies where exclusion thresholds are based on reads found in 

sequencing blanks (e.g. Macgregor et al., 2019).  

 

For each dataset, the variation in pollen species composition and species richness 

(standardized for the maximum number of species observed in a sample) for each sample 

was evaluated in response to the type of filtering used (i.e. no cut, proportional 1%, fixed 100 

reads, and statistical ROC). Moreover, network indices describing the interactions between 

plants and pollinators were calculated through the R-package Bipartite and rnetcarto 

(Dormann, Gruber, & Fründ, 2008; Doulcier & Stouffer, 2015) for those datasets originated 

from studies based on insects direct characterization (specifically excluding one study on 

mock samples, Bell et al., 2019, and one study not clearly comparable with the other selected 
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for network indices calculation because of the sample size and the experimental design, 

deVere et al., 2017 ). Specifically, the following community level indices were calculated: 

Connectance (i.e., measure of proportion of possible links actually recorded), Modularity (i.e., 

measure of the division of species into compartments, or modules, where species within 

modules share more interactions with each other than they do with species from other 

modules), and Shannon entropy (i.e., a measure of the diversity and complexity in the 

interactions of a species). Furthermore, at the level of a single individual pollinator, the 

connectivity index was calculated. This index quantifies the putative central role of an 

individual or of a species while connecting different parts of the whole network (Biella et al., 

2017). 

 

To evaluate changes in the pollen species composition of samples in response to the applied 

cut-off thresholds, we used distance matrices (jaccard distance) for an analysis of variance 

that uses permutations test with pseudo F-ratio (Andeson 2001) through the “adonis” function 

with R-package Vegan (Dixon 2003). Each dataset was analysed independently. The effect of 

the different cut-off thresholds on species richness was evaluated through a Generalized 

Linear Mixed Model (GLMM) approach with species richness as response variable and the 

type of filtering used (i.e. no cut, proportional 1%, fixed 100 reads, and statistical ROC) as 

covariate. The identity of the pollinator insect nested within the dataset was set as a random 

effect. Changes in interaction indices, both at the network and the individual level, were also 

evaluated through either a Linear Mixed Model or GLMM depending on the distribution and 

range of the response variable, with the type of filtering used (i.e. no cut, proportional 1%, 

fixed 100 reads, and statistical ROC) as covariate, and the dataset as random effect. The 

individual level connectivity was analysed as response variable, the type of filtering used (i.e. 

no cut, proportional 1%, fixed 100 reads, and statistical ROC) as covariate in interaction with 

the normalised degree of the pollinator individuals which was calculated as the number of 

plant species found in each sample divided by the overall number of plants in a given 

community. In this case, the sample identity nested within the dataset was included in the 

model as a random effect. For all the mentioned analyses, a comparison between the type of 

filtering used (i.e. no cut, proportional 1%, fixed 100 reads, and statistical ROC) were 

performed through a post-hoc test (Tukey’s HSD test). All the statistical analyses explained 

above were carried out with R (Version 3.6.1;R CoreTeam2019). 

 

3 - RESULTS 

 

3.1- TO PRUNE OR NOT TO A POLLEN DNA METABARCODING OUTPUT? A 

LITERATURE OVERVIEW 

 

Overall, 42 research articles on pollen DNA metabarcoding were found and reviewed 

concerning the pruning of false positive or rare occurrences, and specifically the type of cut-

off threshold applied (Proportional, Fixed not proportional, Variable: statistical based, based 

on Negative controls, Mixed, or Not specified). Furthermore, the analysed type of sample (i.e., 

honey, pollen mock samples, or pollen recovered from the body of insects, specifying the 

target portion of the body) and the organism from which the pollen was recovered were 

considered. Brief details on the applied cut-off threshold have also been considered, along 

with the employed DNA barcode marker and the availability of non-filtered sample composition 

tables subsequently involved in our analysis (Table 1). Concerning the strategies for managing 

false positives and rare occurrence, about one quarter of studies did not exclude false 
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positives, while the remaining ones applied at least a pruning type. Specifically, the 

proportional cut-off thresholds was the most commonly applied, and involved 11 (26%) of the 

studies out of the panel of 42. Among these, the cut-off threshold calculated as 1% of the 

number of reads produced by each sample was the most recurrent. Only one study used a 

statistical approach (i.e., the ROC curve; Biella et al., 2019) to set a proportional cut-off 

threshold. Ten (24%) of the studies used a fixed number of reads chosen arbitrarily as cut-off 

threshold (e.g 100 or 1000 reads), and five (12%) used the number of reads produced by 

negative controls to set the threshold to remove false positives. Finally, five studies (12%) 

used a mixed approach that involved more than a single method to remove false positives. All 

of these details, along with a brief explanation of the strategies applied to set the false positive 

cut-off threshold for each of the reviewed studies are reported in Table 1. 

These studies adopted DNA metabarcoding to address a range of cases. Among these, 27 

studies (64%) recovered the pollen samples from the whole insect's body or from specific body 

portions such as scopa and corbiculae. Four studies (10%) focused on the pollen stored in 

cavity nests or in hives, while five (12%) investigated mixed pollen mock samples to address 

methodological issues (optimization of DNA extraction or quantitative use of DNA 

metabarcoding reads). Finally, six studies (14%) analysed the taxonomic composition of 

honey, by looking at the pollen grains contained in it.  

The vast majority of these studies (64%) relied on the ITS2 marker as a barcode region for 

species identification, although in some cases (26%), it was also combined with other barcode 

loci (e.g., rbcL). 

 
Table1: List of published studies subjected to review, including details on referencing, type of used samples in the 

metabarcoding analysis, the organisms from which the pollen samples were collected, the type of cut-off threshold 

with a brief explanation of the threshold actually applied. Additional information are on the DNA barcode marker(s) 

utilized and on the utilization of the non-filtered sample composition tables in this study. 

 
Source Type of 

sample 
Organism Cut-off 

threshold type 
Detail on utilized cut-off 

threshold 
DNA bacode 

marker(s) 
Non-

filtered 
dataset 
used in 

this 
study 

Baksay et al., 
2020 

Mock pollen 
samples 

- Mixed Sequences with a count 
of ≤10, with no variants 
and with a count <5% of 

of their own count 

ITS1, trnL  

Bansch et al., 
2020 

Pollen from 
legs 

Apis mellifera, 
Bombus spp. 

(Apidae) 

Not specified Threshold on read count 
not reported 

ITS2  

Bell et al., 
2017 

Mock pollen 
samples 

- Negative 
controls 

Removed identifications 
occurring at a lower 

frequency than 
identifications obtained in 

either negative control 
(isolation negative control 
34 reads, PCR negative 

control 30 reads) 

ITS2, rbcL  

Bell et al., 
2017(b) 

Pollen from 
the whole 

body 

Hymenoptera: 
Anthophila 

Negative 
controls 

Removed taxonomic 
classifications recorded 

from fewer reads than the 
maximum read number 
from a negative control 
(between 21-936 rbcL 

and 42-1124 ITS2) 

ITS2, rbcL X 

Bell et al., 
2019 

Mock pollen 
samples 

- Negative 
controls 

Threshold based on the 
maximum sequence 

count from any negative 
control (11 and 34 ITS2, 8 

and 30 rbcL) 

ITS2, rbcL X 
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Beltramo et al., 
2021 

Honey Apis mellifera 
(Apidae) 

Proportional OTUs with <0.2% of the 
reads 

trnL  

Biella et al., 
2019 

Pollen from 
legs 

Bombus 
terrestris 
(Apidae) 

Variable: 
statistical-based 

Receiver Operating 
Characteristics 

ITS2 X 

Danner et al., 
2017 

Pollen from 
legs 

Apis mellifera 
(Apidae) 

Proportional Species <1% of the 
relative reads abundance 

per sample 

ITS2  

deVere et al., 
2017 

Honey Apis mellifera 
(Apidae) 

Not specified Threshold on read count 
not reported 

rbcL X 

Elliott et al., 
2020 

Pollen from 
legs or 
scopa 

Hymenoptera: 
Apidae, 

Halictidae, 
Megachilidae, 

Colletidae 

Proportional Taxa <1% of the 
proportion of all reads per 
plant taxon for each bee 

species 

rbcL  

Fahimee et al., 
2021 

Pollen from 
the whole 

body 

Heterotrigona 
itama (Apidae) 

Fixed - Not 
proportional 

OTUs with <2 reads trnL  

Galliot et al., 
2017 

Pollen from 
the whole 

body 

Diptera, 
Hymenoptera, 

Coleoptera, 
Lepidoptera 

Negative 
controls 

Based on control 
samples: 3 reads/genus 

per sample 

ITS2  

Gous et al., 
2018 

Pollen from 
the scopa 

Megachile 
venusta 

(Megachilidae) 

Proportional Taxa <0.1% of total reads 
number per sample 

ITS1, ITS2, rbcL  

Gous et al., 
2021 

Pollen from 
the scopa 

Megahile spp. 
(Megachilidae) 

Proportional Taxa <0.1% of total reads 
number per sample 

ITS2  

Hawkins et al. 
2015 

Honey Apis mellifera 
(Apidae) 

Fixed - Not 
proportional 

Taxa <10 sequences rbcL  

Jones et al., 
2021 

Honey Apis mellifera 
(Apidae) 

Fixed - Not 
proportional 

Singletons discarded ITS2, rbcL X 

Khansaritoreh 
et al., 2020 

Honey Apis mellifera 
(Apidae) 

Not specified Threshold on read count 
not reported 

ITS2, rbcL  

Leidenfrost et 
al., 2020 

Pollen from 
legs 

Bombus 
terrestris 
(Apidae) 

Not specified Threshold on read count 
not reported 

ITS2  

Lucas et al., 
2018 

Pollen from 
the whole 

body 

Syrphidae Not specified Threshold on read count 
not reported 

rbcL  

Lucas et al., 
2018 (b) 

Pollen from 
the whole 

body 

Syrphidae Not specified Threshold on read count 
not reported 

rbcL  

Lucek et al., 
2019 

Honey Apis mellifera 
(Apidae) 

Fixed - Not 
proportional 

5 reads per cluster (97% 
similarity) 

ITS2 X 

MacGregor et 
al., 2019 

Pollen from 
proboscid 

Lepidoptera 
(moths) 

Negative 
controls 

Read depth of 50 reads 
based on positive and 

negative controls 

rbcL  

Nürnberger et 
al., 2019 

Pollen from 
legs 

Apis mellifera 
(Apidae) 

Not specified Threshold on read count 
not reported 

ITS2  

Peel et al., 
2019 

Pollen from 
legs 

Apis mellifera, 
Bombus spp. 

(Apidae) 

Proportional Species <1% of the total 
assigned long reads per 

sample 

Genomic DNA  

Piko et al., 
2021 

Pollen from 
the whole 

body 

Bombus 
terrestris, 

B.pascuorum, 
B.lucorum 
(Apidae) 

Mixed <100 reads per sample 
and removed species 

<1% of the sample's read 
count 

ITS2  

Pornon et al., 
2016 

Mock pollen 
samples, 

Pollen from 
whole body 

Hippaestrum 
sp., 

Chrysanthemum 

sp., Lilium sp. ; 
Diptera, 

Hymenoptera, 
Coleoptera, 
Lepidoptera 

Mixed <1‰ of the most common 
sequences and <10 reads 

per sample 

ITS1, trnL  

Pornon et al., 
2017 

Pollen from 
the whole 

body 

Diptera, 
Hymenoptera, 
Coleoptera, 
Lepidoptera 

Fixed - Not 
proportional 

Sequences in number 
<1000 

ITS1, trnL  

Pornon et al., 
2019 

Pollen from 
the whole 

body 

Syrphidae, 
Empididae, 

Apidae 

Fixed - Not 
proportional 

Sequences in number 
<1000 

ITS1, trnL  

Potter et al., 
2019 

Pollen from 
the whole 

body 

Hymenoptera: 
Anthophila 

Not specified Threshold on read count 
not reported 

rbcL  

Richardson et 
al. 2015 

Pollen from 
legs 

Apis mellifera 
(Apidae) 

Not specified Threshold on read count 
not reported 

ITS2  
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Richardson et 
al. 2015(b) 

Pollen from 
legs 

Apis mellifera 
(Apidae) 

Fixed - Not 
proportional 

Families found with only 
1/3 amplicon libraries per 

sample 

ITS2  

Richardson et 
al., 2019 

Pollen from 
legs 

Apis mellifera 
(Apidae) 

Proportional Genera identified with 
only one marker and taxa 

with proportion of 
sequences <0.01% 

ITS2, rbcL, trnL, trnH  

Richardson et 
al., 2021 

Pollen from 
legs 

Apis mellifera 
(Apidae) 

Proportional Genera identified with 
only one marker and with 

<0.001 proportional 
abundance of sequences 

ITS2, rbcL, trnL  

Sickel et al. 
2015 

Pollen from 
nest 

Osmia bicornis, 
O.truncorum 

(Megachilidae) 

Proportional Taxa <0.1% of reads per 
sample 

ITS2  

Simanonok et 
al., 2020 

Pollen from 
legs 

Bombus affinis 
(Apidae) 

Mixed <10 reads per OTU and 
taxa with <2% reads per 

sample 

ITS2  

Smart et al., 
2017 

Pollen from 
legs 

Apis mellifera 
(Apidae) 

Fixed - Not 
proportional 

Taxa <50 reads ITS1, ITS2  

Suchan et al., 
2019 

Pollen from 
the whole 

body 

Vanessa cardui 
(Lepidoptera) 

Fixed - Not 
proportional 

<100 reads per plant 
species per sample 

ITS2  

Swenson & 
Gemeinholzer, 

2021 

Mock pollen 
samples 

- Mixed Taxa <0.1% of the 
sample reads of ITS1 and 

ITS2; removed 
identifications occurring at 

a lower frequency than 
identifications obtained in 
either negative control for 

rbcL 

ITS1, ITS2, rbcl  

Tanaka et al., 
2020 

Pollen from 
honeycomb 

Apis mellifera 
(Apidae) 

Not specified Threshold on read count 
not reported 

rbcL  

Tremblay et al., 
2019 

Pollen from 
legs 

Apis mellifera 

(Apidae) 
Fixed - Not 
proportional 

Taxa <100 reads ITS2  

Vaudo et al., 
2020 

Pollen from 
nest 

Osmia 
cornifrons 

(Megachilidae) 

Proportional Taxa <1% relative read 
abundance and genera 
<0.3% of the total read 

counts per site across all 
sites 

ITS2 X 

Wilson et al., 
2021 

Pollen from 
nest 

Tetragonula 
carboniaria 

(Apidae) 

Proportional Taxa identified in blank 
controls with abundance 

<1% of relative read 
abundance in real sample 

ITS2, rbcL  

 
 

 

Table 2: Comparison of the selected cut-thresholds on sample pollen species composition of several datasets 

based on analysis of variance based on permutations test with pseudo-F ratio. Dataset names (entitled with main 

author and year, see Table 1 for further details) are reported in the first column “Dataset”. The column “F” reports 

the pseudo-F ratio value and P the associated significance (α=0.05). Columns “A” to “F” report P value for the 

comparison between the different applied thresholds. 

Dataset F 
P full 

model 

 
A 

 (Proportional 
1% vs No cut) 

B 
 (Fixed 100reads 

vs No cut) 

C 
 (Proportional 1% 
vs Fixed 100reads) 

D 
(Statistical ROC 

vs no cut) 

E 
 (Statistical 
ROC vs 1%) 

F 
 (Statistical ROC vs 
Fixed 100 reads) 

Tommasi et al., 
(unpublished) 0.819 0.806 1 1 1 0.031 0.314 0.045 

Bell et al., 2017 87.264 0.001 0.001 0.001 0.14 0.001 0.001 0.001 

Bell et al., 2018 39.817 0.001 0.001 0.001 0.01 0.001 0.658 0.001 

Biella et al., 2019 29.671 0.001 0.001 0.001 0.035 0.001 0.725 0.008 

Jones et al., 2021 6.538 0.001 0.001 0.001 0.944 0.001 0.233 0.855 

Lucek et al., 2019 5.465 0.001 0.001 0.001 0.038 0.001 0.975 0.058 
deVere et al., 
2017 2.415 0.024 0.004 0.212 0.538 0.003 0.704 0.152 
Vaudo et al., 
2020 11.553 0.001 0.001 0.001 0.556 0.001 1 0.578 
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3.2 EVALUATING THE CONSEQUENCES OF THE PRUNING TYPE  

 

From the 42 reviewed studies, seven non filtered publicly available dataset were retrieved 

along with one unpublished dataset, produced by the authors, that was also included in the 

subsequent analysis (available upon request at http://doi/10.6084/m9.figshare.13637576, this 

data will be published after paper acceptance, ndr). Among these, four datasets were obtained 

by processing pollen found in nests or carried on insects bodies (Bell et al., 2017; Biella et al., 

2019; Vaudo et al., 2020; along with the unpublished one, hereafter Tommasi et al., 

unpublished, that contains information about interactions between 249 insects and 156 

plants). Three dataset comes from honey sample analysis (Lucek et al 2019; DeVere et al., 

2017; Jones et al., 2021), and one was obtained from the analysis of pollen mock samples 

specially constructed for methodological assessments (Bell et al., 2019). 

The comparisons among the effects of different pruning types on the community (pollen plant 

species) composition are summarized in Table 2, showing significant changes in the pollen 

species composition. Specifically, the main differences occurred between the no-cut and all 

the threshold-based prunings in all datasets (Table 2). Only minor community composition 

changes among threshold-based prunings were only occasionally found (Table 2)  

Plant species richness of pollen from samples was found to be significantly influenced by the 

pruning type (χ3²= 468.22, p < 0.001). Specifically, consistently higher species richness per 

sample was found in the unfiltered (no cut), compared to all the other pruning types 

(proportional 1%, fixed 100 reads, and statistical ROC). A significant difference between the 

proportional 1% and the statistical ROC approaches was also found, with the latter reducing 

species richness more (Fig1a, Table 3).  

The effects of pruning type on the network level indices were significantly found on 

connectance (χ3² = 11.642, p = 0.008), modularity (χ3² =25.273, p < 0.001) and Shannon 

entropy (χ3² = 29.907, p < 0.001). Connectance (Fig1b, Table 3) and Shannon entropy indices 

(Fig1d, Table 3) were significantly higher while Modularity significantly lower (Fig1c, Table 3) 

in the unfiltered (no cut) compared to all the other pruning types (proportional 1%, fixed 100 

reads, and statistical ROC). In addition, in most cases, these indices after ROC pruning were 

notably different from values obtained from “proportional 1%” and “fixed 100 reads” networks 

(Fig 1c; Fig 1d). 
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Fig 1: Variation of Species richness (a), Connectance (b), Modularity (c), and Shannon entropy (d) using different 

cut-off thresholds (i.e No cut, Fixed 100 reads, Proportional 1%, Statistical ROC) 
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Table 3: Statistical comparison of the selected cut-off thresholds (i.e. No cut, Fixed 100 reads, Proportional 1%, 

Statistical ROC) on Species richness, Connectance, Modularity, and Shannon entropy (Tukey's multiple 

comparison test, α = 0.05 ).  

  Estimate difference p 

Species richness No cut – fixed 100 reads 0.383 <0.001 

 
Proportional 1% - fixed 100 reads 0.043 0.178 

 
Statistical ROC - fixed 100 reads -0.013 0.934 

 
Proportional 1% - No cut -0.340  <0.001 

 
Statistical ROC - No cut -0.396 <0.001 

 
Statistical ROC - Proportional 1% -0.055 0.040 

Connectance No cut – fixed 100 reads 0.660 0.008 

 
Proportional 1% - fixed 100 reads -0.068 0.991 

 
Statistical ROC - fixed 100 reads -0.131 0.941 

 
Proportional 1% - No cut -0.729 0.004 

 
Statistical ROC - No cut -0.792 0.001 

 
Statistical ROC - Proportional 1% -0.063 0.993 

Modularity No cut – fixed 100 reads -0.678 <0.001  

 
Proportional 1% - fixed 100 reads 0.000 1 

 
Statistical ROC - fixed 100 reads 0.259 0.176 

 
Proportional 1% - No cut 0.679 <0.001  

 
Statistical ROC - No cut 0.937 <0.001  

 
Statistical ROC - Proportional 1% 0.259 0.177 

Shannon entropy No cut – fixed 100 reads 1.189 <0.001 

 
Proportional 1% - fixed 100 reads -0.191 0.819 

 
Statistical ROC - fixed 100 reads -0.411 0.237 

 
Proportional 1% - No cut -1.380 <0.001 

 
Statistical ROC - No cut -1.600 <0.001 

 
Statistical ROC - Proportional 1% -0.220 0.746 

 

 
 

The individual level index of connectivity showed a significant effect of the interaction between 

the applied pruning and the normalised degree index (χ3² = 609.2, p < 0.001). Specifically, the 

connectivity was lower in the unfiltered (no cut) compared to all the other pruning types 

(proportional 1%, fixed 100 reads, and statistical ROC) for any value of the normalised degree 

(i.e., both for generalist and for specialist individual pollinators, Fig 2, Table 4). 
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Fig 2: Response of the species level index connectivity to the cut-off threshold-based treatments (i.e No cut, Fixed 

100 reads, proportional 1%, statistical-based ROC) in interaction with the individuals normalised degree. 

 

 

 
Table 4: Statistical output related to the comparison of the selected cut-off thresholds in interaction with individuals' 

normalized degree on the individual pollinator index Connectivity (Tukey's multiple comparison test, α = 0.05). 

  
Cut-off threshold:  normalised degree 

comparison Estimate difference p 

No cut – fixed 100 reads -11.896 <0.001 

Proportional 1% - fixed 100 reads 0.279 0.756 

Statistical ROC - fixed 100 reads 0.694 0.456 

Proportional 1% - No cut 12.175  <0.001 

Statistical ROC - No cut 12.590 <0.001 

Statistical ROC - Proportional 1% -0.414 0.662 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.14.448412doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448412
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISCUSSION 

 

Since its ‘formalization’ in 2012, the DNA metabarcoding approach has revolutionized the field 

of biodiversity investigation and provided many insights into the study of biological interactions. 

Its application has rapidly spread and has contributed to support several research contexts 

such as microbiome (Bruno et al., 2018; Frigerio et al., 2020), food, (Galimberti et al., 2015; 

2019; 2021), trophic ecology (Casey et al., 2019; Arrizabalaga‐Escudero et al., 2018), and 

environmental DNA-based analyses (Ruppert et al., 2019). In spite of its usefulness, the whole 

DNA metabarcoding pipeline and specifically the bioinformatic processing could deeply 

influence the obtained results and their interpretation (Andriollo et al., 2019; Zinger et al., 2019 

Elbrecht et al., 2017). Therefore, in this study we attempted to evaluate the effects of the 

adopted pruning approach used to filter the reads obtained through HTS. Specifically, we 

focused on the analysis of pollen DNA metabarcoding data in the framework of plant-insect 

interactions, being aware that the outputs of our investigation could be extended to the other 

typologies of DNA metabarcoding-based studies. Although the issue of removing false 

positives and rare species is quite neglected in the literature regarding the adopted 

bioinformatic DNA metabarcoding pipeline (but see Ficetola et al., 2016), the choices made 

when analysing a HTS output could generate relevant effects on the obtained community 

composition, species richness and species interactions. These aspects would deeply impact 

the ecological outcomes of the investigated experimental system. 

Reliable DNA metabarcoding outputs from pollen analysis require robust and replicable 

approaches for treating HTS molecular features (e.g.,ESVs and OTUs) that should be 

coherent and comparable among different studies. However, our literature overview 

highlighted a high heterogeneity in the type of pruning adopted to remove false positives and 

infrequent species. This is particularly appreciable even among studies that focused on similar 

analytical matrices (e.g. pollen from insect’s body, pollen from cavity nests and honey).  

Our literature review shows that the proportional approach emerges as the most recurrent, 

that is to remove those molecular features/species under a certain proportion of the total reads 

per sample. This is not surprising, as it is an approach also well represented in other DNA 

metabarcoding-based studies (e.g., Bohmann et al., 2018; Arribas et al., 2021 and Casey et 

al., 2019). This could be explained by the ease of calculating proportions, and by the 

advantages of using these rather than fixed thresholds (e.g., comparison among different 

samples and a low filtering impact in the case of samples with low number of total reads). 

However, in the case of pollen DNA metabarcoding data, we found no concordance between 

different authors about the exact amount of proportion of reads to be used as threshold, and 

the reason under the choice of a particular percentage (e.g. Sickel et al., 2015 used 0.1% 

while Richardson et al., 2019 used 0.01%; see Table 1). However, it should be noticed that 

Peel et al. (2019), while analysing mock pollen samples with known composition, highlighted 

that false positive identified in samples occurred at a rate lower than 1%, thus supporting this 

filtering strategy. On the other hand, caution should be recommended prior to generalising the 

1% threshold as a universally effective filtering practice, as for samples with extremely high 

total reads it might be better to use a lower value.  

The second most recurrent cut-off approach is based on a fixed number of read counts, used 

as a uniform threshold among all samples (e.g. 50 as in Smart et al., 2017, 100 as in Tremblay 

et al., 2019 see Table 1), the most frequent amount being 100 reads per sample. As reported 

above, also with this approach the specific amount of reads chosen as the cut-off threshold is 

usually poorly supported by clear biological reasons. Studies using higher threshold values 

would remove false positives and truly occurring taxa in excess. An example of this is Pornon 
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et al. (2017) and (2019), who observed how a threshold of 1000 reads per plant species 

ensures the removal of the vast majority of grass pollen species. Despite speculating that the 

source of that grass pollen was airborne contamination, the species that pollen belonged to, 

actually occurred at the study areas and thus those species shall be considered true positives. 

Therefore, lower or higher cutting values might be chosen based not only on removing false 

positives, but also potential environmental contamination or infrequent species. Conversely, 

in other studies, the choice of the cut-off value is clearer and derives from the use of 

sequenced negative controls. In this case, the maximum number of reads found in blank 

samples is set as the threshold for the false positive removal (see Table 1). The rationale 

behind this approach is that it should allow removing false positives exclusively originating 

from laboratory activities (Bell et al., 2019). It is not clear how effective this method is when it 

is adopted to remove rare, infrequent, ecologically unmeaningful species obtained from HTS 

processing. 

Unexpectedly, the literature survey (Table 1) showed that nearly a quarter of pollen DNA 

metabarcoding studies did not filter raw data and thus did not remove possible false positives 

from the analysed samples. This methodological choice can hardly be supported by biological 

reasons or particular research constraints. Removing false-positives is a priority, and the 

analyses we performed here clearly suggest that filtering the HTS output with a cut-off 

threshold leads to significant differences compared to the unfiltered output matrix, especially 

in species composition, species richness and plant-pollinator interactions. This indicates that 

a “no cut” strategy could deeply impact the ecological interpretation of results and could lead 

to misleading conclusions. 

Unfiltering could deceive results, and specifically, the application of any of the cut-off 

thresholds here investigated shape the community composition and also decrease the species 

richness in comparison to non-filtered data. These results are even amplified by the research 

aims. In studies related to the characterization of insects foraging behaviours, for example, 

un-filtering could overestimate the number of plants foraged by a pollinator, and obviously to 

the wrong assessment of generalism, foraging niche, and of delivered pollination ecosystem 

service. In studies on honey composition, a no cut strategy could mislead about the purity of 

products, with consequences that could involve commercial issues.  

In our simulations, the reads filtering impacted not only species composition and richness, but 

also the ecological networks associated with each non-filtering and filtering strategy. The 

significant variation of network indices in response to the applied cut-off thresholds, both at 

the community and the individual levels, further confirms how the ecological outputs of DNA 

metabarcoding studies are influenced by the strategy of rare species and false positive 

removal. Specifically, greater differences occurred when comparing index values calculated 

from filtered (Fixed 100 reads, proportional 1%, and statistical ROC) and non filtered (no cut) 

data. The implications of the changes in network indices are very high, as for instance network 

entropy, connectance, modularity and connectivity refer to the network stability and resilience, 

to the ability to buffer perturbations and to the stabilizing role of central hub species (Tylianakis 

et al., 2010; Thébault & Fontaine, 2010; Biella et al., 2017; Strydom et al., 2020), since the 

higher the index difference between filtering strategy, the higher the potential for misleading 

ecological results. In particular, filtering decreased the network's connectance and entropy 

indexes. This result aligns well with the recorded lower species richness per sample in filtered 

dataset and it can be explained by an overall decrease in network number of realized links 

(i.e., less plant species found on pollinator bodies or samples). In other words, by decreasing 

the numerosity of links, filtering likely yields networks with slightly higher element-specific 

linkage compared to networks deriving from a non filtering approach. Moreover, filtering 
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increased modularity and connectivity of networks. This result further clarifies that filtering 

decreases the ubiquity of links among elements (less features connecting to everyone), thus 

allowing for better emergence of ordered patterns of well-defined compartments of interactions 

and important hub species connecting them. Hence, in practice, unfiltering returns networks 

richer in links, which are even more ubiquitous among elements, with the high potential of 

overestimating foraging strategies and network resilience. Among the filtering strategies 

analysed here, the statistical ROC approach appears to be the most conservative one, since 

it tends to yield the lowest species richness, the highest modularity, and the lowest 

connectance and entropy. Thus, it might remove not only the false positives from samples, 

but also the infrequent and thus unmeaningful species. It should be noticed that ecological 

patterns emerging or confirmed even in a conservative framework are more likely to be 

trustworthy. Even if this approach has rarely been applied in the HTS pollen literature to date 

(Table 1), it was specifically developed to distinguish “true signals” from “noise” (Fan et al., 

2006) in molecular biology-based studies and could constitute a promising avenue for the 

interpretation of pollen DNA metabarcoding data (Biella et al 2019). For instance, it has been 

used in other DNA-based research fields (Nutz et al., 2011, Siddique et al., 2021), such as for 

eDNA where it is proved to increase the reliability of data (Serrao et al., 2018). Because it is 

a conservative approach, ROC may be favoured in studies willing to highlight ecologically 

meaningful species composition, richness and interactions, while sacrificing the pursuit of high 

species richness based on keeping elements of rarity, potential contaminants and false 

positives.  

 

In conclusion, our survey should help in improving the awareness on the use of DNA 

metabarcoding for pollen identification and its applications in a broad spectrum of ecological 

and biological research. To date this powerful tool still requires the development of shared 

approaches to provide reliable, repeatable, and comparable data, since high heterogeneity 

emerges from the scientific literature on the bioinformatics filtering of molecular features 

obtained from HTS outputs. In particular, we recommend that researchers may (i) always 

make both raw unfiltered and filtered data easily accessible, thus improving the possibility of 

exploring large amounts of data, and consequently the growing rate of human knowledge in 

strategic research fields such as pollination ecology. The authors may also (ii) apply (and 

Journals’ reviewers may encourage for) filtering from false-positives and possibly also from 

infrequent species although depending on research aims. Moreover, (iii) the specific type of 

filtering shall be clearly justified under a biological perspective, also evaluating the efficiency 

and universality of the loci selected for species identification and the consequent taxonomic 

resolution of molecular feature assignments. Moreover, (iv) the specific strategy might be 

decided based on whether the research aim would benefit from or need a conservative 

approach. This is the case, for example, of using DNA metabarcoding reads as 

presence/absence data, an approach that leads to large difference in species detection in 

case false positives and rare species are non removed from the assignments (Ficetola et al., 

2015; Deagle et al., 2018); if so, the ROC filtering should be preferably adopted. Otherwise, it 

is always recommended to apply a filter either based on a percentage with a clear biological 

support or rather based on a fixed value like sequencing blanks, thus excluding only false 

positives while keeping environmental contamination and infrequent species. 

By analysing available dataset from pollen DNA metabarcoding we proved that all the possible 

false positive removal strategies affect sample composition and consequently the ecological 

interpretation that could be extracted by them. This emphasizes the need to firstly adopt and 

secondly clearly justify the choice behind the adoption of different criteria for false positives 
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and rare occurrences removal, taking into account the research aims and the expected 

ecological outputs as well. 
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