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Abstract 38 

It has been suggested that sensorimotor adaptation involves at least two processes (i.e., fast and 39 

slow) that differ in retention and error sensitivity. Previous work has shown that repeated 40 

exposure to an abrupt force field perturbation results in greater error sensitivity for both the fast 41 

and slow processes. While this implies that the faster relearning is associated with increased 42 

error sensitivity, it remains unclear what aspects of prior experience modulate error sensitivity. 43 

In the present study, we manipulated the initial training using different perturbation schedules, 44 

thought to differentially affect fast and slow learning processes based on error magnitude, and 45 

then observed what effect prior learning had on subsequent adaptation. During initial training of 46 

a visuomotor rotation task, we exposed three groups of participants to either an abrupt, a gradual, 47 

or a random perturbation schedule. During a testing session, all three groups were subsequently 48 

exposed to an abrupt perturbation schedule. Comparing the two sessions of the control group 49 

who experienced repetition of the same perturbation, we found an increased error sensitivity for 50 

both processes. We found that the error sensitivity was increased for both the fast and slow 51 

processes, with no reliable changes in the retention, for both the gradual and structural learning 52 

groups when compared to the first session of the control group. We discuss the findings in the 53 

context of how fast and slow learning processes respond to a history of errors. 54 

 55 

  56 
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 62 
We investigated what aspects of prior experience modulate error sensitivity, within the 63 

framework of a two-state model of short-term sensorimotor adaptation. We manipulated initial 64 

training on a visuomotor adaptation reaching task using specific perturbation schedules that are 65 

thought to differentially affect fast and slow learning processes, and we tested what effect these 66 

had on subsequent adaptation. We found that sensitivity to adaptation error was similarly 67 

modulated by abrupt, gradual, and random perturbation schedules. 68 

 69 
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Introduction 76 

Adaptation is often defined as an error-driven process, in which the error experienced during a 77 

movement leads to a corrective adjustment in the motor output on the following movement (1-5). 78 

Behavioural measures of adaptation are well characterized by state-space models (1, 4), which 79 

represent trial-to-trial changes in movement as a function of how an error on a given trial affects 80 

motor output on the subsequent trial. The update from one trial to the next, or the change in 81 

motor output, is based on two parameters: a retention parameter which determines what 82 

proportion of motor output is retained from trial to trial, and an error sensitivity parameter which 83 

governs the proportion of error experienced on the current trial that is corrected for on the 84 

subsequent trial.  85 

Variations of the state-space model are built on the assumption that adaptation is the 86 

product of multiple underlying processes with distinct timescales (3, 6-8). Researchers have 87 

begun to provide neural evidence to strengthen the theory that sensorimotor learning is supported 88 

by multiple processes (9, 10). An influential two-state model of short-term motor adaptation was 89 

proposed by Smith et al. (3) that proposed a fast process that learns quickly but has poor 90 

retention and a slow process that learns more slowly, but has strong retention.  91 

The prevailing success of the two-state model continues to be that it accounts for the 92 

learning phenomenon known as savings, characterized as prior learning speeding up subsequent 93 

relearning (3, 11). While Smith et al. (3) initially argued that the reason for the fast relearning 94 

during a second introduction of the same perturbation was due to the resistance of the slow 95 

process to change, recent studies suggest that learning rate can be modified depending on factors 96 

such as the uncertainty of movement error (12, 13), size of movement error (14), and a history of 97 

movement errors (15-17). 98 
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The behavioural changes associated with savings suggest that some component of 99 

memory from the initial training must lead to the faster relearning, but what is remembered and 100 

recalled remains unclear (15-22). One perspective argues for the enhancement of an explicit 101 

strategy (18, 20, 23), while the other side suggests that faster relearning is driven by the 102 

experience of the motor errors (15-17, 24). 103 

In support of the latter possibility, Herzfeld and colleagues (16) proposed that a history of 104 

errors modulates the error sensitivity on each trial, systematically controlling how much the 105 

motor system learns from the current motor error. They suggested that an error-based adaptation 106 

model that provides for experience-dependent error sensitivity modification could account for 107 

savings. Furthermore, Leow et al. (17) demonstrated that it is a memory of errors, not previous 108 

actions, that is necessary for savings.   109 

Recent work has shown that repeated exposure to the same force field perturbation results 110 

in greater error sensitivity of both the fast and slow processes (15). While in Coltman et al. (15), 111 

the error sensitivity terms for the fast and slow processes were held constant within a session, we 112 

evaluated the theory of experience-dependent error sensitivity modulation in the context of 113 

changes in error sensitivity from one learning session to the next. Although these results clearly 114 

indicate that the motor system stored some component (i.e., memory) of prior training to speed 115 

up subsequent learning, it remains unclear how the fast and slow learning processes contribute to 116 

savings and what aspects of prior experience modulate error sensitivity. In other words, do both 117 

fast and slow processes access a single stored component of prior training, or do they store 118 

independent components? If the fast and slow processes depend on separate stored components 119 

of prior training, then it may be possible to independently modulate characteristics of the fast and 120 

slow processes (e.g., error sensitivity) by experimentally manipulating aspects of prior learning. 121 
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Recent findings demonstrate that participants do not adapt linearly in response to 122 

different magnitudes of error (13, 14, 25). Additionally, Orban de Xivry and Lefevre (26) 123 

propose that different perturbation schedules lead to distinct motor memories with different 124 

attributes and neural representations (i.e., the amount of reorganization of the motor cortex). We 125 

propose that perturbation schedules that are designed to produce learning using errors of 126 

different magnitudes may have a differential effect on session-to-session changes to the fast 127 

versus slow processes. In the present study, we manipulated initial training in a visuomotor 128 

adaptation task using perturbation schedules which involved errors of different magnitudes, and 129 

we tested what effect these different initial learning experiences had on subsequent adaptation, 130 

and specifically on characteristics of the fast versus slow adaptation processes. 131 

We asked one group of participants to counter a gradual perturbation schedule during 132 

initial training. When a perturbation is gradually introduced, such that participants never 133 

experience large errors, learning is believed to be more implicit in nature (26). We predicted that 134 

when participants in this group were later tested on an abrupt perturbation, only the slow process 135 

would be affected by the initial training, compared to a control group who were initially trained 136 

using an abrupt perturbation. For a second group of participants, initial training was based on a 137 

structural learning paradigm, involving a series of brief exposures to large, random perturbations 138 

(27, 28). This perturbation schedule is thought to be based on explicit learning mechanisms (20, 139 

29). During the original conception of the two-state model, Smith et al. (3) designed a rebound 140 

paradigm to test the theorized characteristics of each process. Much like the brief reversal used in 141 

the rebound paradigm, which includes large errors and limited exposure, the motor output during 142 

this phase of the paradigm is believed to be dependent on the fast process (3). For this group we 143 
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predicted that when later tested on an abrupt perturbation, only the fast process would be affected 144 

by the initial training, as compared to the control group.  145 

We modelled perturbation-driven changes in movement with the state-space equations 146 

proposed by Smith et al. (3), and focused on changes in the retention and error sensitivity 147 

parameters. The model estimates function as a tool for understanding how the underlying 148 

processes of adaptation were affected by the prior training. Substantiating the finding of Coltman 149 

et al. (15), we confirm that repetition of the same visuomotor perturbation results in an increase 150 

in error sensitivity for both processes, when comparing the two sessions of the control group. By 151 

comparing the model estimates of participants in the gradual and structural learning groups to the 152 

first session of the control, we expected to see changes in error sensitivity that depended on the 153 

type of prior training participants experienced. Interestingly, however, we found that error 154 

sensitivity of both the fast and slow processes was increased for both groups. The findings are 155 

discussed in the context of storing and accessing a history of errors. 156 

 157 

Methods 158 

Participants. A total of 60 healthy young adults (age range 21-35; mean age ± sd 27.9 ± 4.2 159 

years) participated in a visuomotor rotation experiment. Participants were recruited from the 160 

online platform maintained by Prolific.co and received £11.25 for their participation. As part of 161 

the Prolific platform, participants respond to a series of questions related to age, gender, health 162 

and economic status. Based on this prescreen information, 24 participants identified as female 163 

and 36 as male. Participants were recruited globally and reported being located in 17 different 164 

countries (Estonia, Finland, France, Greece, Hungary, Israel, Italy, Mexico, Netherlands, Poland, 165 

Portugal, Slovenia, South Africa, Spain, Sweden, United Kingdom and the United States). All 166 
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participants self-reported being right-handed and had normal or corrected-to-normal vision. The 167 

protocol was approved by Western University's Research Ethics Board and all participants 168 

indicated electronic consent.  169 

Apparatus. Participants used a standard computer mouse and their own computer to access a 170 

webpage hosted on a network computer located at Western Interdisciplinary Research Building. 171 

The task was written in and controlled by JavaScript, running locally within the participants’ 172 

web browser.  173 

Participants were asked to use a standard computer mouse and a standard credit or debit 174 

card to complete a spatial calibration procedure. Participants were initially instructed how to turn 175 

off the acceleration for the mouse, based on their operating system. Then, following an 176 

instruction video, participants were asked to align the top of their mouse with the top of the 177 

credit card. After a tone, they were instructed to move the mouse in a smooth and straight path, 178 

aligning the top of their mouse with the bottom of the card. Participants were asked to hold still 179 

while waiting for a second tone, indicating that they needed to realign the mouse with the top of 180 

the card. This was repeated at two different speeds indicated in the video. When the calibration 181 

procedure was successfully completed, participants watched an instructional video about the 182 

experimental task.  183 

The size and position of the stimuli were scaled based on a mouse calibration procedure. 184 

Real-time position of the mouse was used to control the visual display and to provide on-line 185 

visual feedback. The mouse speed was adjusted such that the distance from start position to 186 

target was exactly 6 cm based on the calibration. While the physical target distance was always 6 187 

cm, this translated to 300 pixels on screen. Therefore, the straight reach trajectory was 300 188 

pixels, however a participant's view of this was potentially compressed or expanded relative to 189 
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the target value of 6 cm, depending on their monitor as well their viewing distance from the 190 

monitor.  191 

Paradigm. At the start of each trial, participants were instructed to click their mouse to begin. A 192 

circular cursor (10 pixels radius) was virtually displayed on the participant’s computer monitor 193 

and was used to represent the position of the mouse on screen. The position of the mouse at the 194 

start of the trial, represented the start position on screen. A small square (20 pixels by 20 pixels) 195 

represented the target. The radial distance of the target from the start position was 300 pixels. 196 

The target appeared at either 45°, 90°, or 135°, relative to the start position (where 6 cm directly 197 

to the right of the start position represented 0°). The location of the target was randomized per 198 

trial, per participant, such that each participant saw a different order of targets with an equal 199 

number of presentations of each target over the course of a session.  200 

Participants were instructed to make a straight movement from the start position to the 201 

target, within a narrow temporal window. At the beginning of each trial the target appeared in 202 

white. Participants were required to hold still at the start position for 500 ms, at which time the 203 

target changed color to green, representing a “go” signal for participants to initiate a movement 204 

to the target. In addition to the colour change of the target, a tone was used as a secondary “go” 205 

signal. Participants needed to reach for the target and bring the centre of a red cursor 206 

representing the position of their computer mouse within 10 pixels of the centre of the target 207 

within 600–900 ms. If a participant’s movement time was less than 600 ms, the target turned red 208 

to indicate that the movement was “too fast”. If the participant’s movement time was within 209 

600–900 ms, the target remained green to indicate that the movement was “good”. If the 210 

participant’s movement time was greater than 900 ms, the target would turn blue to indicate “too 211 

slow”. Feedback related to movement time was displayed on the screen for 1000 ms before the 212 
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screen went blank and written instructions on screen indicated that the participant should return 213 

the mouse to a comfortable starting position within their workspace. Participants were instructed 214 

to try to obtain the “good” feedback as often as possible throughout the experiment. 215 

 To assist with making straight movements between the start position and the target using 216 

a computer mouse, the first 20 trials of the first session represented a practice session for 217 

participants. In these trials, a purple rectangle (50 pixels by 300 pixels), with two white lines on 218 

either side was shown on screen, highlighting a straight path to the target. Participants were 219 

instructed to keep the red cursor on the path, between the lines, toward the target. If the cursor 220 

moved outside the path, the background colour changed from black to pink.  221 

Participants were randomly assigned to one of three groups. Each group completed two 222 

sessions (initial training and testing), separated by a 5-minute break (Fig. 1).  223 

Each session included a total of 450 reaching movements, with a 1-minute mid-session break 224 

halfway. The experimental paradigm for each session consisted of 4 epochs. The first epoch 225 

(baseline) consisted of 70 trials in which participants were provided with veridical feedback of 226 

the cursor position. The second epoch (adaptation) consisted of 300 trials in which a visuomotor 227 

rotation was applied to the cursor feedback: an angular rotation was imposed on the cursor, such 228 

that a hand movement aimed directly at a target produced a cursor movement that was rotated 229 

radially about the start position and participants saw that their movement had generated an error. 230 

Participants had to learn to counter the rotation by moving their hand in an equal and opposite 231 

direction. With practice, participants adjusted their movements in such a manner that the visual 232 

feedback produced straight trajectories from start position to the target. In the third epoch (error-233 

clamp; consisting of 30 trials) the task error was clamped to zero. During the clamp trials, the 234 

angular position of the cursor relative to the start position was clamped to a straight line 235 
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connecting the start position to the target, while participants maintained control of the radial 236 

distance of the cursor from the start position. Finally, in the fourth epoch (washout; consisting of 237 

50 trials), participants were provided again with veridical feedback to bring performance back to 238 

baseline.   239 

During the adaptation epoch of the first session, participants experienced one of three 240 

conditions: (1) a control learning group (n=20) experienced an abrupt 30° clockwise (CW) 241 

rotation for all 300 trials during this phase (Fig. 1; top), (2) a gradual learning group, (n=20) in 242 

which a rotation was increased linearly from 0° to 30° CW over 250 trials and then held at a 243 

fixed 30° CW for another 50 trials (Fig. 1; middle), or (3) a structural learning group (n=20)  in 244 

which participants encountered random rotations, ranging from 60° counter-clockwise (CCW) to 245 

60° CW in blocks of 6 trials with the same rotation (27, 28, 29; Fig. 1; bottom). In this group, we 246 

deliberately set the average over all angles to zero, to prevent any accumulative learning. We 247 

also excluded rotation sizes within 10° of the test rotation (30° CW) and its inverse (30° CCW). 248 

We furthermore set the change in rotation angle to be equal to or greater than 15° to ensure the 249 

errors were always large, which characteristically has the greatest influence on the fast process 250 

(3, 29). During the second session, all three groups experienced an abrupt 30° CW rotation 251 

during the adaptation epoch.  252 

Data Analysis.  The position of the cursor in both x (lateral) and y (sagittal), were sampled in 253 

pixels at the refresh rate of their computer monitor (typically 60 Hz). Missed samples were 254 

interpolated during analysis (less than 1 % of samples on average). In cases in which data were 255 

acquired at higher sampling rates (for example because a participant’s computer monitor refresh 256 

rate exceeded 60 Hz), the data were down sampled to 60 Hz. Data were digitally smoothed using 257 
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a second-order low-pass Butterworth filter with a cut-off frequency of 15 Hz. All data were 258 

stored for offline analysis using custom MATLAB R2020a (The MathWorks) scripts.  259 

 Movement trajectories were selected using an algorithm in which movement initiation 260 

was defined as the time at which the tangential velocity of the mouse first exceeded 0.5 cm/s and 261 

movement end was defined as the first time after peak velocity that tangential velocity fell below 262 

0.5 cm/s, where peak velocity was defined as the fastest participants ever moved during the reach 263 

movement. For each trial we computed the angle between the line connecting the start position 264 

and the cursor position at peak velocity, and the line connecting the start position to the target. 265 

We determined the average reach angle, per subject during the last 50 trials of the baseline epoch 266 

and we subtracted this quantity from the reach angle measured on each trial.  267 

Model fitting. Smith et al. (3) outlined a method for mathematically modelling an iterative 268 

update of the states of the two proposed processes of short-term sensorimotor adaptation. 269 

Essentially, the model involves fitting four parameters: an error sensitivity and a retention 270 

parameter for both a fast and a slow process. The first parameter weighs the relative importance 271 

of recalling previous motor commands, which is interpreted as the retention factor. The second 272 

parameter is the sensitivity to error, which relates to the proportion of error that is corrected for 273 

trial-to-trial (1, 3, 4, 30). The two important assumptions in this model are that the error 274 

sensitivity is higher for the fast process compared with the slow process and that retention is 275 

stronger for the slow process compared with the fast process (3). Adaptation can be decomposed 276 

into a fast (Eq. 1) and a slow (Eq. 2) process, knowing that each state follows different learning 277 

dynamics. The two processes are summed together to produce the overall output x (Eq. 3). Error, 278 

denoted by e(n), arises on each trial n as the difference between the overall output xnet and the 279 

task parameter r (i.e., the degree of the rotation; Eq.4). 280 
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𝑥௙ሺ𝑛 + 1ሻ =  𝐴௙𝑥ሺ𝑛ሻ + 𝐵௙𝑒ሺ𝑛ሻ     (1) 281 

𝑥௦ሺ𝑛 + 1ሻ =  𝐴௦𝑥ሺ𝑛ሻ + 𝐵௦𝑒ሺ𝑛ሻ     (2) 282 

𝑥௡௘௧ሺ𝑛ሻ =  𝑥௙ሺ𝑛ሻ +  𝑥௦ሺ𝑛ሻ     (3) 283 

𝑒ሺ𝑛ሻ =  𝑟ሺ𝑛ሻ −  𝑥௡௘௧ሺ𝑛ሻ     (4) 284 

 285 
Linear inequality constraints were defined in order to apply to standard two-state model 286 

dynamics (31): 287 

𝐴௙ ≤  𝐴௦ +  0.001     (5) 288 

𝐵௙ ≥  𝐵௦ +  0.001     (6) 289 

In order to approximate the four parameters (i.e., Af, As, Bf, and Bs), we fit the model to 290 

the behavioral data (using the function fmincon in MATLAB r2020a) by minimizing the squared 291 

difference between the estimated net output (xnet) of the model and the average participant reach 292 

angle, measured on each trial. According to the methods described in Albert and Shadmehr (31), 293 

we also included a mathematical formalization of visual error clamp trials and set breaks. 294 

Statistical Design. Pairwise comparisons were performed with nonparametric bootstrap 295 

hypothesis tests, as well as paired and unpaired t-tests. For statistical analyses that require 296 

multiple comparisons, we used the Holm-Bonferroni correction (32). Statistical tests were 297 

considered significant at p < 0.05. For all reported and depicted values, we report the mean and 298 

SEM. 299 

Results 300 

Figure 2 shows the hand paths from one representative participant in the control group 301 

during both sessions one and two, as well as one representative participant per group in session 302 

two of the structural and gradual learning groups. During the baseline epoch (left column), these 303 

paths are relatively straight to the target. The representative participants were all adapting to an 304 

abrupt 30° CW rotation. During the early adaptation epoch (middle column) these movements 305 
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were initially deviated in the CW direction, with a corrective movement at the end of the 306 

trajectory to bring the cursor to the target. In all three groups, participants adapted to the 30° CW 307 

rotation by the late adaptation epoch (right column), reducing their movement errors and 308 

resuming relatively straight hand paths to the target.  309 

We used a kinematic behavioural measure to assess changes in performance. The primary 310 

outcome measure for the study was reach angle at peak velocity, which was measured as the 311 

angle between the straight line connecting the start position and the cursor position at peak 312 

velocity and the straight line connecting the start position to the target. The control group of 313 

participants adapted their movements to an abrupt 30° CW visuomotor rotation in both the first 314 

and second session. Figure 3A shows the angle at peak velocity for all trials in each session, 315 

averaged across participants in the control group. In both sessions, participants exhibited learning 316 

during the adaptation epoch, decay during the visual error clamp epoch, and a return towards 317 

baseline performance during the washout epoch. During the adaptation epoch we examined the 318 

learning at two different time points: early (first fifty trials during adaptation) and late (last fifty 319 

trials during adaptation; Fig. 3B). The mean angle in the early learning phase of the second 320 

session  (M = 23.7, SD = 3.15 ) was reliably greater than in the first session  [M = 19.9 , SD = 321 

4.6; paired t-test, t(19) = -6.2, P = 3.0e-06], indicating savings. We did not detect a reliable 322 

difference (P = 0.08) between sessions during late learning.  323 

A second group of participants was exposed to a gradual perturbation schedule during 324 

initial training. Figure 4A shows the angle at peak velocity for all trials in each session, averaged 325 

across participants in the gradual learning group. Participants exhibited learning during the 326 

adaptation epoch, decay during the visual error clamp epoch, and a return towards baseline 327 

performance during the washout epoch. A final group of participants was exposed to a series of 328 
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brief exposures to large, random perturbations. Each participant in this group experienced a 329 

different set of randomly varying rotations. Figure 4B illustrates the angle at peak velocity for 330 

all trials in session one for four representative individual participants from the structural learning 331 

group. We observed two participants who demonstrated learning within each block of six trials, 332 

but who also appeared to have maintained a fraction of error throughout the adaptation epoch 333 

(Fig. 4B, S2 and S8). In addition to a participant who adapted quickly to the randomly changing 334 

perturbation (Fig. 4B, S18), we observed a participant who qualitatively showed greater 335 

reduction of error in the latter half of the adaptation epoch, compared to the early half (Fig. 4B, 336 

S20).  337 

Figure 5A shows the angle at peak velocity averaged across participants for all trials in 338 

session one of the control group and session two of the structural and gradual learning groups. 339 

When comparing the model estimates of participants in the gradual and structural learning 340 

groups during the second session to the first session of the control group, we expected to see 341 

changes in error sensitivity that depended on the type of prior training participants experienced. 342 

To compare the changes in angle between the control, structural and gradual learning groups, we 343 

examined learning during the adaptation epoch at two different time points: early (first fifty trials 344 

during adaptation) and late (last fifty trials during adaptation; Fig. 5B). A one-way ANOVA 345 

revealed a significant effect of mean angle between the control, structural and gradual learning 346 

groups during early learning [F(2,57) = 14.4, P = 8.8 e-06].  347 

Post hoc comparisons using Tukey HSD tests indicated that the mean angle for the 348 

structural learning group (M = 24.9, SD = 2.9, P = 2.9 e-05) and the gradual learning group (M = 349 

24.5, SD = 2.9,  P = 1.4 e-04) were reliably higher than the mean angle for the control group (M 350 

= 19.9 , SD = 4.6). However, there was no reliable difference detected between the structural and 351 
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gradual learning groups (P = 0.9). During late learning, we did not detect a reliable difference in 352 

mean angle among the groups (P = 0.2). Therefore, the structural and gradual learning groups 353 

demonstrated fast learning when countering an abrupt 30° CW rotation, as compared to session 354 

one of the control group. While the control group represented naive learners, the prior experience 355 

from session one for the structural and gradual learning groups is suggested to have facilitated 356 

the improved learning. Likewise, this was observed in the control group, in which participants 357 

experienced a repetition of an abrupt rotation and demonstrated savings during the second 358 

session.  359 

 Recent work suggests that error sensitivity in sensorimotor adaptation is likely not 360 

constant, but rather can vary depending on prior experience (13, 14, 16, 33). We modelled 361 

movement angle across each session with the state-space equations proposed by Smith et al. (3), 362 

and focused on changes in the retention and error sensitivity parameters. The main objective of 363 

this study was to compare the model parameters across groups learning to counter the abrupt 30° 364 

CW rotation. To do this, we used the bootstrap procedure previously reported by Coltman et al. 365 

(15). In this manner, we always fit the model to averaged group data for each resampled 366 

population (15, 31). The estimated posterior distributions of each of the four two-state model 367 

parameter values are depicted in Fig. 6 for sessions one and two of the control group and session 368 

two of the gradual and structural learning groups. To determine whether the difference between 369 

the mean of each distribution was statistically reliable, we calculated the distribution of the 370 

differences in individual samples. The insets in Fig. 6 show the distribution of differences found. 371 

Table 1 shows the mean and standard deviation for each of the two-state parameters for each 372 

group.  373 
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We first compared parameter estimates from session one and session two for the control 374 

group (Fig. 6A). Across all comparisons made between groups, we did not observe a reliable 375 

difference in the retention parameters for either the fast or slow process. When participants 376 

experienced repetition of the same abrupt rotation, we found a statistically reliable increase in the 377 

error sensitivity parameter for both the fast (Bf, P = 0.007) and the slow (Bs, P = 0.003) 378 

processes. Importantly, this comparison allowed us to demonstrate that our previous finding from 379 

a force field adaptation task (15) was replicated in a visuomotor rotation task. Therefore, this 380 

result suggests that both the fast and slow processes are responsive to a history of error and both 381 

contribute to savings.  382 

 Next, we compared parameter estimates from session one of the control group with 383 

session two of the structural learning group (Fig. 6B). Based on the theory of structural learning, 384 

thought to be essential to capturing the initial rapid phase of learning, Braun et al. (27) 385 

demonstrated that the benefit of knowing the underlying structure of a task is that it leads to 386 

facilitated adaptation. For this group we predicted that when later tested on an abrupt 387 

perturbation, only the fast process would be affected by the initial training, as compared to the 388 

control group. When overall learning is decomposed into a fast and slow state, the initial rapid 389 

phase of learning is dominated by the output of the fast process. Therefore, we assumed that such 390 

practice would influence the fast process. In addition to a statistically reliable increase in the 391 

error sensitivity parameter for the fast process (Bf, P < 0.001), we also found a statistically 392 

reliable increase in the slow process error sensitivity (Bs, P = 0.002). 393 

 Learning is believed to be more implicit in nature when a perturbation is gradually 394 

applied using small undetectable increases, so that participants never encounter large sensory 395 

prediction errors(22, 26, 34). By exposing a group of participants to a gradual perturbation 396 
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schedule during initial training, we predicted that only the slow process would be influenced. 397 

When we compared the parameter estimates from session one of the control group with session 398 

two of the gradual learning group (Fig. 6C) we found the gradual learning group showed a 399 

statistically reliable increase in the error sensitivity parameter for both the fast (Bf, P = 0.009) 400 

and the slow (Bs, P = 2 e-04) processes. 401 

Lastly, we compared parameter estimates between the structural and gradual learning 402 

groups during session two (Fig. 6D). Our goal was to use two different adaptation schedules 403 

thought to differentially affect fast and slow learning processes and test the idea that error 404 

sensitivity for each process would be independently modulated. We expected that the error 405 

sensitivity parameter for the fast process would be greater in the structural learning group 406 

compared to the gradual learning group, while the error sensitivity parameter for the slow 407 

process would be greater in the gradual learning group compared to the structural learning group. 408 

The only statistically reliable difference was in the error sensitivity parameter for the fast process 409 

that was larger for the structural learning group (Bf, P = 0.02).  410 

From the bootstrap distributions we calculated the mean value for each parameter for 411 

session one and session two of the control group, and session two of the structural and gradual 412 

learning groups separately. Using these mean estimated parameter values, we used the two-state 413 

model to simulate our experimental paradigm and generate simulated learning curves to visualize 414 

the time course of the estimated fast and slow processes, as well as the simulated overall output. 415 

Figure 7 demonstrates that the simulated learning curves are qualitatively in good agreement 416 

with the measured behavioural data. The models explains 98 - 99 % of the variance in angle over 417 

the course of learning (control session 1: R2 = 0.98, P = 2.2 e-04; control session 2: R2 = 0.99, P 418 

= 1.2 e-04; structural session 2: R2 = 0.98, P = 2.3 e-04; gradual session 2: R2 = 0.99, P = 1.6 e-419 
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04 ). The model effectively captures the initial improvement in learning during the adaptation 420 

epoch, the decay during the visual error clamp epoch, as well as the subsequent return towards 421 

baseline performance during the washout epoch. 422 

Discussion 423 

The integration of different perturbation schedules and two-state modelling of measured 424 

behavioral data allowed us to test the role of prior experience on error sensitivity modulation 425 

during subsequent adaptation. The modelling of the data in turn describes adaptation as an 426 

interaction between error-sensitivity and retention. It has previously been shown in the context of 427 

force field learning that repetition of the same perturbation results in increased error sensitivity 428 

for both the fast and slow processes of adaptation (15). We substantiated this here by 429 

demonstrating that sensitivity to errors is similarly increased for both the fast and slow processes 430 

during the second session of a visuomotor rotation task. We found no reliable differences in the 431 

retention parameter across conditions and sessions.  432 

 The behavioural changes associated with savings suggest that some component of 433 

memory from the initial training must lead to the faster relearning, but what is remembered and 434 

recalled remains unclear. In the context of the present study, how the fast and slow processes 435 

individually contribute to savings, is not well known. To address this point, we used different 436 

perturbation schedules that relied on errors of different magnitudes to determine whether the 437 

underlying processes of adaptation could be independently manipulated, and whether an 438 

independent memory would subsequently be formed. We expected to see differences in error 439 

sensitivity depending on the type of prior training participants had received and therefore 440 

compared the model parameter estimates of participants in the gradual and structural learning 441 

groups to the first session of the control group, but we found that error sensitivity of both the fast 442 
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and slow processes was increased for both groups. Such a result might suggest that sensitivity to 443 

error during visuomotor adaptation is modulated by abrupt, gradual and random perturbation 444 

schedules.  445 

As an alternative account, savings has previously been explained by the retrieval of 446 

previous successful actions, reflecting the use of an explicit strategy (18-20, 23). Within the 447 

framework of a two-state model, this theory suggests that savings is driven purely by the fast 448 

process, without consideration of the contributions from the slow process (35). Several 449 

researchers have argued that explicit cognitive strategies can account for a significant amount of 450 

learning, particularly during the early phase of learning and relearning (36-38). The dissociation 451 

of learning into implicit and explicit learning processes often relies on the use of verbal aiming 452 

reports prior to reaching (18, 20, 23, 38). Recent findings, however, indicate that verbal aiming 453 

reports could lead to an overestimated explicit contribution to adaptation (21, 39). In fact, Leow 454 

et al. (21) demonstrated that the use of shortened preparation time, designed to prevent strategic 455 

re-aiming, resulted in the estimated implicit learning being larger than that which was obtained 456 

from verbal reports. Furthermore, Yin and Wei (22) provide supporting evidence that savings of 457 

motor adaptation is possible without forming or recalling a cognitive strategy with the use of a 458 

gradually introduced visuomotor rotation during initial learning. If savings is possible, with and 459 

without an explicit strategy being formed during initial learning and predominant measures of 460 

implicit and explicit processes may be confounding their mode of measurement, how reliable are 461 

the findings suggesting savings is driven exclusively by an explicit process? 462 

The debate about the contributions of explicit/implicit and fast/slow processes to savings 463 

stems from a recent proposal that fast and slow processes reflect explicit and implicit learning 464 

mechanisms, respectively (35). Motor memory development is thought to be based on two 465 
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components: recall, which involves retrieving past motor movements, and faster relearning, 466 

which involves increased sensitivity to errors (3, 40). By using the framework of a two-state 467 

model we focused on the dominant component of adaptation, which is sensory prediction error, 468 

and found that motor memory was associated with an increase in error sensitivity. In addition to 469 

sensory prediction error, there are other possible teaching cues that might drive adaptation. When 470 

researchers are focused on the more cognitive aspects of learning, exploring the use of an explicit 471 

strategy, the dominant component of adaptation may likely be the reinforcement of successful 472 

actions. Future research may shed light on this debate by probing both proposed methods of dual 473 

processing simultaneously during learning, and by assessing more directly their shared features.  474 

Another long-standing question is how quickly implicit changes in learning emerge. 475 

Huberdeau and colleagues (20) demonstrated that learning of an abrupt perturbation with only a 476 

few trials is sufficient to cause savings via the explicit process, based on the belief that the fast 477 

learning is too short for implicit learning to take its full effect. Ruttle et al. (41) however recently 478 

confronted the long standing notion that implicit learning is slowly developing, typically 479 

unfolding over tens of trials. By observing changes in both internal models and state estimates of 480 

limb position as a characterization of implicit learning, they found that after only one to three 481 

perturbed training trials participants had changes in both reach aftereffects and a shift in hand 482 

localization. Taking this into account, it seems possible that the 6-trial repetition used in the 483 

structural learning task, aiming to influence the fast process, may have simultaneously influenced 484 

the slow process. For that reason, it is possible that a common component of all three 485 

perturbation schedules used during initial training was that the slow process accounted for a 486 

significant portion of the error reduction.  487 
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Albert et al. (33) recently investigated the persistence of residual errors during motor 488 

adaptation in the context of implicit and explicit learning systems. Of importance to the present 489 

study, they propose that it is the implicit learning system which maintains a history for prior 490 

errors. Our results are consistent with this hypothesis that it is the implicit process that stored 491 

some component of prior training. Given the suggestion that the history of errors is stored by 492 

only one of the two proposed underlying processes, this finding would be lost if learning 493 

behavior was represented using a single-state model. Nevertheless, one may ask whether a two-494 

state model was necessary to represent learning in the behavioral tasks tested in the present 495 

study. To address this, we calculated AIC values for both single- and two-state models fits to the 496 

behavioral data. We used the data associated with the four sessions of abrupt rotations (i.e., the 497 

first and second sessions of the control group, and the second session of the gradual and 498 

structural learning groups) and for each we estimated the overall output based on a single-state 499 

model and separately using a two-state model. Based on the model with the lowest AIC value, in 500 

all four cases the best-fit model describing the measured behavioural data was the two-state 501 

model. As a follow-up to our initial question, we would further suggest that the stored memory is 502 

accessible to both processes during subsequent learning. As it pertains to our findings, we would 503 

argue that while the fast process may not maintain a history or errors, it does have access to this 504 

information in subsequent learning as evident by the increased error-sensitivity for the fast 505 

process during testing in all groups. 506 

Alternatively, while the experimental design and two-state model, used in the present 507 

study, account well for the results of savings, recent work looking at evoked recovery (42) posits 508 

that memory formation is related to the storing of information about the dynamical and sensory 509 

features of the environment is related to the context with which it is associated. Understanding 510 
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how contextual inference can be related to and accessed by each process of the two-state model 511 

can shed light on future discussions about multiple processes underlying motor learning.  512 

  513 
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 514 

Table 1. Two-state model parameters calculated from probability distribution 

 Fast Process Slow Process 

 A (mean ± SD) B (mean ± SD) A (mean ± SD) B (mean ± SD) 

Control Session 1 0.86 (0.02) 0.17 (0.02) 0.996 (7e-04) 0.05 (0.006) 

Control Session 2 0.87 (0.03) 0.28 (0.04) 0.994 (0.001) 0.07 (0.01) 

Structural Session 2 0.80 (0.05) 0.40 (0.03) 0.993 (0.002) 0.10 (0.02) 

Gradual Session 2 0.87 (0.02) 0.27 (0.04) 0.994 (0.001) 0.10 (0.02) 

 515 
516 
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Figure Captions 517 
 518 
Figure 1. Experimental design and perturbation schedule. The experiment was divided into two 519 
sessions, separated by a 5-min session break. Each session consisted of four blocks: 1) a baseline 520 
period of no rotation trials, 2) an adaptation period, 3) an error clamp period, and 4) a washout 521 
period. Participants were randomly assigned to one of three groups which differed in session one 522 
during the adaptation period: abrupt control group, gradual learning group, or structural learning 523 
group.   524 
 525 
Figure 2. Hand trajectories from a representative participant in the control group during both 526 
session one (light blue) and two (dark blue), and one representative participant per group in 527 
session two of the structural (purple) and gradual (pink) learning groups. Baseline reaches were 528 
from the last three trials (from trial 68 to trial 70) during the baseline epoch. Early and late 529 
adaptation reaches were from the first (from trial 71 to 73) and last (from trial 368 to trial 370) 530 
three trials of the adaptation epoch, respectively. Participants saw a random ordering of the three 531 
possible targets (represented by the squares). 532 
 533 
Figure 3. Control group. A: the average angle at peak velocity for all trials in session 1 (light 534 
blue) and session 2 (dark blue). The shaded region denotes ± SE. B: comparisons between 535 
session 1 and session 2 (dark blue) for the mean angle for the first 50 (early)  and last 50 (late) 536 
trials of the adaptation epoch. Circles represent individual data.  537 
 538 
Figure 4. Gradual and structural learning groups. A: the average angle at peak velocity for all 539 
trials in session 1 of the gradual learning group. The shaded region denotes ± SE. B: the data 540 
from four representative individual participants (S2, top left, S8 top right, S18 bottom left, S20 541 
bottom right). 542 
 543 
Figure 5. A: the average angle at peak velocity for all trials in session 1 for the control group 544 
(light blue) and session 2 for the structural (purple) and gradual (pink) learning groups. The 545 
shaded region denotes ± SE. B: comparisons between groups for the mean angle for the first fifty 546 
(early)  and last 50 (late) trials of the adaptation epoch. Circles represent individual data.  547 
 548 
Figure 6. Probability distribution of the model parameters given the data. Light blue and dark 549 
blue represent session 1 and session 2 of the control group, respectively. Purple represents 550 
session 2 of the structural learning group and Pink represents session 2 of the gradual learning 551 
group. Inset represents the distribution of pairwise differences. The four model parameters of the 552 
two-state model are fast retention (Af), slow retention (As), fast learning rate (Bf), and slow 553 
learning rate (Bs). 554 
 555 
Figure 7. Model simulations. Parameter estimates for each session were based on the mean 556 
values from the bootstrap distributions shown in Fig. 6. The four parameters of the model are fast 557 
retention (Af), fast learning rate (Bf), slow retention (As), and slow learning rate (Bs). 558 
 559 
 560 
  561 
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