
Abbreviations ERP: event related potential; MMN: mismatch negativity; TFR: time-frequency 
reponse; V1: primary visual cortex; VEP: visual evoked potential 

EEG-based visual deviance detection in freely behaving mice  1 

Renate Kata, Berry van den Bergb, Matthijs JL Perenboomc, Maarten Schenked, Arn MJM 2 

van den Maagdenbergc,d, Hilgo Bruininge, Else A Tolnerc,d*, Martien JH Kasa * 3 

aGroningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 4 

Nijenborgh 7, 9747 AG, Groningen, the Netherlands, r.kat@rug.nl, m.j.h.kas@rug.nl  5 

bFaculty of Behavioural and Social Sciences, Cognitive Neuroscience, Department of 6 

Experimental Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, 7 

Groningen, the Netherlands, berry.van.den.berg@rug.nl 8 

cDepartment of Neurology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, 9 

Leiden, the Netherlands, M.J.L.Perenboom@lumc.nl, 10 

A.M.J.M.van_den_Maagdenberg@lumc.nl, E.A.Tolner@lumc.nl 11 

dDepartment of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 12 

2300 RC, Leiden, the Netherlands. 13 

eDepartment of Child and Adolescent Psychiatry, Amsterdam University Medical Center, 14 

University of Amsterdam, Postbus 7057, 1007 MB, Amsterdam, the Netherlands, 15 

h.bruining@amsterdamumc.nl 16 

*These authors have contributed equally to this work 17 

 18 

Corresponding author: 19 

Prof. Dr. MJH Kas; Groningen Institute for Evolutionary Life Sciences (GELIFES), 20 

University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands 21 

m.j.h.kas@rug.nl 22 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

mailto:r.kat@rug.nl
mailto:m.j.h.kas@rug.nl
mailto:M.J.L.Perenboom@lumc.nl
mailto:A.M.J.M.van_den_Maagdenberg@lumc.nl
mailto:m.j.h.kas@rug.nl
https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


2 

Abstract 23 

The mouse is widely used as an experimental model to study visual processing. To probe 24 

how the visual system detects changes in the environment, functional paradigms in freely 25 

behaving mice are strongly needed. We developed and validated the first EEG-based 26 

method to investigate visual deviance detection in freely behaving mice. Mice with EEG 27 

implants were exposed to a visual deviant detection paradigm that involved changes in 28 

light intensity as standard and deviant stimuli. By subtracting the standard from the 29 

deviant evoked waveform, deviant detection was evident as bi-phasic negativity (starting 30 

around 70 ms) in the difference waveform. Additionally, deviance-associated evoked 31 

(beta/gamma) and induced (gamma) oscillatory responses were found. We showed that 32 

the results were stimulus independent by applying a “flip-flop” design and the results 33 

showed good repeatability in an independent measurement. Together, we put forward a 34 

validated, easy-to-use paradigm to measure visual deviance processing in freely behaving 35 

mice.  36 

 37 

Keywords 38 

visual processing, mismatch negativity, sensory processing deficits   39 
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1. Introduction 40 

The experiments by Hubel and Wiesel on direction selectivity of neurons in the cat visual 41 

cortex (Hubel, 1959; Hubel & Wiesel, 1968) have pioneered a growing scientific field on 42 

the visual system and its processing abilities. Since then, the mouse is a widely used 43 

animal model to investigate visual processing (Baker, 2013). One important reason is that 44 

mice are particularly suitable for genetic modification, such as the use of advanced 45 

genetically encoded tools for neuroimaging and neuromodulation that allow unravelling 46 

of neuronal network dynamics (Warden et al., 2014). Moreover, transgenic mouse 47 

models allow to examine the role of specific cell types or neuronal populations (Sohya et 48 

al., 2007; Hamm and Yuste, 2016), as well as to study altered visual processing in the 49 

context of human psychiatric disorders (Zhang et al., 2017; Hamm et al., 2020; 50 

Perenboom et al., 2020). However, visual processing has hardly been studied in awake, 51 

freely behaving mice, as typically head-fixation is used to ensure that visual stimuli reach 52 

the eye (Montijn et al., 2016; Carrillo-Reid et al., 2019; Fournier et al., 2020). Assessing 53 

measures of visual processing in freely moving mice requires a behavioural setup in 54 

which animals are constantly exposed to visual stimuli in their environment irrespective 55 

of their bodily position. 56 

  Detecting changes in the environment is an important function of sensory systems. 57 

The brain can shift attention to changes in the environment via either a passive reduction 58 

in the response to redundant stimuli, or an active memory-based increased response to 59 

unexpected, or deviant, stimuli (Garrido et al., 2009). The representation of deviance 60 

detection in the EEG signal has also been called mismatch negativity (MMN; May et al., 61 

1999). Deficits in deviance detection have been associated with various neuropsychiatric 62 

disorders, mainly schizophrenia (Näätänen et al., 2014; Tada et al., 2019). Visual deviance 63 
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detection has gained substantially less attention compared to auditory deviance 64 

detection and has only twice been studied in rodents (Hamm and Yuste, 2016; Vinken et 65 

al., 2017). While these studies were able to assess visual deviance detection, the animals 66 

were required to be head-fixated.  67 

  Here we set out to develop a novel paradigm to measure deviance-induced 68 

differences in visual evoked potentials (VEPs) in freely behaving mice. Based on MMN 69 

oddball concepts used in the context of auditory deviance detection (Harms et al., 2016), 70 

our visual deviant detection paradigm involves changes in light intensity as standard and 71 

deviant stimuli. In order to use the measured EEG waveform difference features for 72 

‘deviance detection’, the paradigm needs to comply with three principal criteria. First, the 73 

paradigm should be able to elicit a robust deviance response as measured through the 74 

difference between the deviant versus standard VEP responses. Second, the deviance 75 

response needs to be stimulus-independent, meaning that the same response difference is 76 

found when using either of the two stimuli - in our case increases versus decreases in 77 

light intensity – as deviant. Third, the VEP deviance effect needs to be repeatable in an 78 

independent measurement within the same subject (repeatability). After satisfying the 79 

three criteria based on VEP waveforms, characteristics of the frequency responses for the 80 

paradigm were explored to gain insight in visual deviance-induced oscillatory activity. In 81 

addition, the influence of the repeated light stimulation was explored by assessing how 82 

the strength of the observed deviance detection changed with increasing number of 83 

standards preceding a deviant. 84 

 85 

2. Materials and Methods 86 

2.1 Mice 87 
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Male C57BL/6J mice (n=13) were used to implement and validate the newly developed 88 

visual deviance detection paradigm. Animals were single-housed in individually 89 

ventilated cages for at least one week prior to surgeries and maintained on a 12:12 light-90 

dark cycle with ad libitum access to food and water. All experiments were approved by 91 

the Animal Experiment Ethics Committee of Leiden University Medical Center and were 92 

carried out in accordance with ARRIVE guidelines and EU Directive 2010/63/EU for 93 

animal experiments. All efforts were made to minimize discomfort of the experimental 94 

animals. 95 

2.2 EEG implantation surgery  96 

Stereotactic EEG electrode implantation surgery was performed in mice at the age of 2 97 

months. Under isoflurane anaesthesia (1.5%, in oxygen-enriched air), three silver (Ag) 98 

ball-tip electrodes were implanted epidurally above the right prefrontal cortex (bregma 99 

+2.6 mm anterior, -1.6 mm lateral) and the right and left primary visual cortex (V1; 100 

bregma -3.5 mm posterior, +/- 3.0 mm lateral). The relatively lateral V1 position was 101 

chosen since multiple studies indicate a role for the visual extra-striate areas (which are 102 

located more laterally on the occipital cortex) in the visual deviance detection (reviewed 103 

in: Kimura, 2012; Vinken et al., 2017). Two epidural platinum electrodes were placed 104 

above cerebellum to serve as reference and a ground electrode, respectively. 105 

Electromyogram (EMG) electrodes were placed on top of the neck muscles to record 106 

muscle activity. Light-activated bonding primer and dental cement (Kerr optibond / 107 

premise flowable, DiaDent Europe, Almere, the Netherlands) were used to attach 108 

electrodes to the skull. Post-operative pain relief was achieved by a subcutaneous 109 

injection of Carprofen (5 mg/kg). EEG recordings started after a 14-day recovery period. 110 

2.3 EEG and VEP recordings 111 
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Tethered EEG recordings were performed in a Faraday cage in which animals were 112 

connected to the recording hardware via a counterbalanced, low-torque custom-build 113 

electrical commutator. Signals were three times pre-amplified, band-pass filtered (0.05 114 

to 500 Hz), then amplified 1200 times and thereafter digitized (Power 1401, Cambridge 115 

Electronic Devices, Cambridge, UK) at a sampling rate of 5000 Hz. For the recording of 116 

VEPs, mice were placed inside a computer-controlled custom-built LED-illuminated 117 

sphere in which tethered mice were able to move freely (Van Diepen et al., 2013). The 118 

sphere (30 cm diameter) was coated with high-reflectance paint that spread light 119 

produced by a ring of white monochromatic LEDs at the top of the sphere around an 120 

opening for the swivel. A baffle prevented the mice from looking directly into the LEDs. 121 

After connecting mice to the setup in the sphere, animals were allowed to habituate for 122 

at least 10 min. Mice were tested once in an input-output paradigm and twice in an 123 

oddball paradigm, all on separate days. The input-output paradigm, in which a train of 124 

light flashes of increasing intensity was presented to the animals, was performed to 125 

determine VEP signal quality. 60 flashes of 1 ms with increasing light intensity between 126 

~0.4 to 1.1 μW/cm2/nm were presented at 2 Hz, and 5 flashes of increasing intensity 127 

between ~1.4 to 2.2 μW/cm2/nm at 0.5 Hz. The paradigm was repeated 50 times with 20 128 

s rest in-between blocks. 129 

2.4 Visual oddball paradigm 130 

To measure visual deviance detection, a light intensity-based oddball paradigm with 131 

decreases and increases in light intensity was developed (Fig. 1). To ensure stable levels 132 

of light-adaptation before onset of the oddball sequence, the paradigm started with 10 133 

min of constant light of medium intensity (0.15 μW/cm2/nm). Subsequently a 7-minute 134 

sequence started in which 300-ms pulses of increased (1.7 μW/cm2/nm) or decreased 135 
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light intensity (0.02 μW/cm2/nm) stimuli were interspersed by a 500-ms inter-stimulus 136 

interval of the 0.15 μW/cm2/nm constant light intensity (Fig. 1). The constant level of 137 

light in between the sequence of standard and deviant stimuli was used to prevent 138 

occurrence of dark adaptation between stimuli. The intensities of increases (1.7 139 

μW/cm2/nm) and decreases (0.02 μW/cm2/nm) were chosen based on VEP amplitudes 140 

in the grand average input-output curve in such a way that the amplitude change from 141 

decrease to ISI level was the same as the amplitude change from ISI to increase level. The 142 

stimulus duration of 300 ms was based on earlier visual MMN studies that used stimulus 143 

durations between 80 and 500 ms, in humans (Stagg et al., 2004; Kimura et al., 2010; 144 

Sulykos and Czigler, 2014) and rodents (Hamm and Yuste, 2016; Vinken et al., 2017). 145 

Deviant stimuli were semi-randomly spread through the sequence, with the constraint of 146 

a minimum of two standard presentations before the next deviant. The first stimulation 147 

block in the paradigm contained 500 stimuli, 473 (87.4%, the standard) of which were 148 

intensity increases and 63 (12.6%, the deviant) of which were light intensity decreases. 149 

After this block, the paradigm (including the 10 minutes constant light at the start) was 150 

repeated with a swap of standard and deviant stimulus type. This so called ‘flip-flop’ 151 

paradigm allowed for assessment of differences between standard and deviant stimuli 152 

irrespective of stimulus type (Harms et al., 2016), in our case increased vs decreased light 153 

intensity. The visual oddball paradigm was performed twice for every animal on separate 154 

days. The order of the first and second recording was counterbalanced over the morning 155 

(1st half of the light phase) and the afternoon (2nd half of the light phase). 156 

2.5 Analysis 157 

No animals had to be excluded on the basis of low signal quality found in the input-output 158 

paradigm. For two animals, positive-negative inverted signals were evident on one of the 159 
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visual cortex electrodes (once right V1 and once left V1); these electrodes were excluded 160 

from analysis. Next, recordings were manually checked to exclude recording periods with 161 

artefacts, as well as periods of sleep, as deviance detection is known to be attenuated or 162 

even absent in non-REM sleep (Sculthorpe et al., 2009). For sleep detection, recordings 163 

were first screened for the presence of periods where an infrared motion detector did not 164 

pick up non-specific locomotor activity. If periods without locomotor activity were 165 

present during stimulus presentation, they were checked for the presence of non-REM 166 

sleep, as defined by high amplitude delta (<4 Hz) waves, so called slow waves, in the 167 

frontal EEG signal in combination with an absence of activity in the EMG signal. Two 168 

recordings which contained periods of sleep were excluded from analysis (both being the 169 

first recording of the animal).   170 

  Data pre-processing was performed in Matlab (Versions 2018a & 2018b, 171 

MathWorks, Natick, MA, USA). EEG data were low-pass filtered at 70 Hz with a fourth 172 

order Butterworth filter. For evoked potential waveform analysis, VEPs were extracted 173 

from the data of each recording electrode from 50 ms before until 300 ms after stimulus 174 

onset. Subsequently, VEPs were grouped into deviant and standard stimuli, irrespective 175 

of being a light intensity increase or a light intensity decrease. Within those two 176 

categories, all VEPs were averaged, and baseline corrected, using a latency window that 177 

ranged from -50 to 0 to ms prior to the change in light intensity. Difference waves were 178 

calculated by subtracting the standard from the deviant VEP. A comparison between the 179 

difference waves of the right and left V1 electrode (using cluster-based permutation 180 

analysis) did not reveal any time windows of significant differences (data not shown). In 181 

subsequent analyses VEPs from the right and left electrode were averaged.   182 

  For analysis of time-frequency responses (TFRs), single trial data (i.e. from a single 183 

stimulation; either a standard or deviant) were extracted from the EEG signal from 1 s 184 
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before to 1.5 s after stimulus onset. For time-frequency analysis, the data was low-pass 185 

filtered at 150 Hz. Like with the VEP analysis, trials were grouped into standards and 186 

deviants irrespective of the stimulus being a light increase or decrease. Using the 187 

FieldTrip toolbox for EEG/MEG-analysis (Oostenveld et al., 2011; Donders Institute for 188 

Brain, Cognition and Behaviour, Radboud University, the Netherlands), Hanning window 189 

convolution was performed with 5ms time windows. Frequencies were extracted from 4 190 

- 150 Hz with 1-Hz linear steps. The number of cycles increased from 2 to 10 with 191 

increasing frequency. Next, power was converted to a log10 scale and an absolute 192 

baseline correction was performed using a window from 200 until 100 ms before 193 

stimulus onset as the baseline. This window was chosen to avoid including stimulus 194 

related activity that would be smeared (in time) due the width of the Hanning window. 195 

The average time-frequency map of standard trials was subtracted from the average 196 

time-frequency map of deviant trials. Additionally, to assess non-phase-locked TFRs, per 197 

condition the average VEP response was subtracted from individual trials in the time 198 

domain before performing the same time-frequency analysis as described above 199 

(Stothart and Kazanina, 2013). 200 

2.6 Statistics   201 

To test whether deviance detection was significantly different from zero for both the 202 

VEPs and TFRs, cluster-based permutation analysis was used as previously described 203 

(Maris and Oostenveld, 2007). In short, dependent t-test statics were obtained for every 204 

time- (0.2-ms steps) or time-frequency point (5-ms to 1-Hz steps) and were clustered 205 

over time (and frequency) along adjacent points that reached above the t-value threshold 206 

corresponding to an alpha-level of 0.05. The sum of all t-values in a cluster was used as 207 

the cluster statistic. To assess significance of these clusters, a ‘null’ distribution was 208 
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created by performing 1000 random permutations with the individual animal difference 209 

waves/maps and zero. Cluster statistics were extracted for every permutation in the 210 

same manner as described above. Both the largest positive and the largest negative 211 

cluster from each permutation were used to create two distributions. Clusters in the 212 

actual data were considered significant when exceeding the 97.5-percentile threshold 213 

for cluster size in either the positive or negative distribution.   214 

  Comparable procedures were used to compare VEP features between right and 215 

left electrodes, light intensity increases and decreases, and first and second recordings. 216 

However, in these cases permutations were performed by randomly exchanging the data 217 

between the two conditions in the comparison. Clusters were reported when p<0.2, were 218 

p<0.05 was considered significant. Cluster-based permutation analysis does not have a 219 

good level of precision for finding exact on- and off-sets, therefore borders of the time, 220 

as well as time-frequency, windows of reported clusters should be interpreted carefully 221 

(Sassenhagen and Draschkow, 2019). To explore the effects of the number of standards 222 

since the last deviant, in other words the number of preceding standards, on neural 223 

responses (both VEPs and TFRs) and deviance detection amplitude, linear mixed 224 

modelling was performed (Bates et al., 2015; Kuznetsova et al., 2017). Models were 225 

estimated and analysed using package lme4 (RStudio, version 1.2.5042 (R-version 4.0), 226 

Boston, MA, USA; lme4 package version 1.1-23) and lmerTest. Using mixed models 227 

allowed taking into account the number of individual trials that contribute to a condition 228 

(as opposed to calculating the unpoled means per subject, per condition, losing this type 229 

of information). The VEP waveform mean amplitudes were extracted from each 230 

individual trial in the latency windows that were found to be significant clusters in the 231 

evoked potential analysis, resulting in two separate models for an early (40 to 60 ms) 232 

and a late (70 to 150 ms) latency window. Similarly, the mean frequency power from 233 
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each of the TFR clusters (across frequencies and time) that were found to be significant 234 

was also extracted. These mixed modelling analyses should be viewed as exploratory 235 

only; by using a time and frequency window defined by an earlier statistical analysis, we 236 

are increasing type I error-rate by an unknown amount (Kriegeskorte et al., 2009).   237 

  The amplitude of the VEP waveforms and power of the TFRs were inspected as a 238 

function of the number of trials since the last deviant, for both standards and deviants, 239 

and light increases and decreases. Fewer observations were available for increasing 240 

number of trials since the last deviant. A model was constructed with model selection 241 

based on Akaike Information Criterion (AIC) to control for type I error rate, with 242 

statistical significance assessed using Satterthwaite estimation of effective degrees of 243 

freedom (pooled degrees of freedom) (Matuschek et al., 2017). 244 

 mVn | 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑜𝑤𝑒𝑟𝑛245 

= β0.j + β1#trialsj[n] +  β2stimulusj[n] + β3lightn + β4#trialsn. stimulus𝑛246 

+ β5#trialsn. light𝑛+ β6stimulusn. light𝑛+ β6#trialsn. stimulus𝑛 . light𝑛 + ϵn 247 

In this formula, for each trial n, the VEP and TFR amplitudes were described by an 248 

intercept β0 which indicates a random intercept per animal, β1 which indicates the 249 

number of trials since last deviant (1-30), β2 which relates to whether the trial was a 250 

deviant or a standard and β3 which indicates whether the trial was a light increase or 251 

decrease. Finally, β4-7 are the interactions between those terms and ϵn is the residual 252 

error term.   253 

  VEP figures were constructed in GraphPad Prism (Version 8, GraphPad Software, 254 

San Diego, CA, USA). Figures of the TFR were constructed in Matlab. Figures of the mixed 255 

linear modelling data were constructed in RStudio. All data and analysis code (R and 256 

Matlab) is available on the OSF data repository (www.osf.io/6bhwf/). 257 

 258 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

http://www.osf.io/6bhwf/
https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


12 

3. Results 259 

3.1 Visual deviance detection can be assessed in freely behaving mice  260 

For the development of the visual deviance detection paradigm for freely behaving mice, 261 

we designed an oddball paradigm with sequences of 300-ms white light pulses of 262 

increased (1.7 μW/cm2/nm) or decreased (0.2 μW/cm2/nm) light intensity, interspersed 263 

by a 500-ms interstimulus interval at constant light of intermediate intensity (0.15 264 

μW/cm2/nm, Fig. 1). Deviant stimuli (63 of 500 stimuli, 12.6%) were semi-randomly 265 

spread throughout the sequence with the constraint of a minimum of two standard 266 

presentations before the next deviant. In the paradigm both increases and decreases in 267 

light intensity were presented once as standard and once as deviant (‘flip-flop’ paradigm; 268 

Harms et al., 2016, Fig. 1). The paradigm was presented twice, on separate days. For the 269 

first analysis, VEP responses were averaged for, respectively, all standard and deviant 270 

stimuli, regardless of being a response to a light increase or light decrease. VEPs recorded 271 

from the right and left primary visual cortex (V1), and the first and the second 272 

measurement were combined.  273 

   Visual inspection of the averaged VEPs revealed a clear distinction between 274 

standard and deviant waveforms (Fig. 2A). Both for deviant and standard stimuli, VEPs 275 

showed an initial N1 negativity around 30 ms after stimulus onset, followed by a broad 276 

positivity between ~50 and ~150 ms. Compared to the response to standard stimuli, the 277 

deviant N1 deflection was slightly broadened, while the later broad positivity was of 278 

lower amplitude than observed for the standard response. Consequently, the difference 279 

wave, computed by subtracting the standard from the deviant response, consisted of a bi-280 

phasic negative component, between ~35 and ~150 ms, with a maximum peak amplitude 281 

of -0.048 ± 0.027 mV (Fig. 2B). Cluster-based permutation analysis revealed two  282 

 283 
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 284 

Figure 1 Graphical representation of the light-intensity oddball paradigm used for visual deviance 285 

detection in freely behaving mice. Mice were presented with an oddball paradigm with increases (1.7 286 

µW/cm2/mm) and decreases (0.02 µW/cm2/mm) in light intensity as stimuli, with intermittent 287 

intermediate intensity levels (0.15 µW/cm2/mm). The paradigm was presented as a ‘flip-flop’ in which the 288 

“initial” presentation with intensity increase standards and intensity decrease deviants (left), was followed 289 

by a “flipped” presentation with intensity decrease standards and intensity increase deviants (right). Initial 290 

and flipped stimulation blocks lasted ~ 7 min each. Before the initial stimulation block and in between the 291 

initial and flipped stimulation blocks, 10 min of constant intermediate light (0.15 μW/cm2/nm) was 292 

presented. For the analysis, standards of increased intensity were compared to deviants of increased 293 

intensity, and standards of decreased intensity are compared to deviants of decreased intensity.  294 

deviance-associated components. The early negative component in the difference wave, 295 

~35-60 ms after stimulus onset, showed a trend towards significance (p=0.072), whereas 296 

the late negative component, ~70-150 ms after stimulus onset, was significantly different 297 

from zero (p=0.004). Our visual oddball paradigm thus meets the first criterion of yielding 298 

a robust deviance response, as a significant difference in the response to deviant compared 299 

to standard light stimuli could be assessed from VEPs recorded from V1 in freely 300 
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behaving mice. Compared to the V1 EEG recordings, the oddball paradigm elicited no 301 

apparent VEP responses at the prefrontal electrode, nor a distinguishable difference 302 

wave (data not shown), indicating specificity of the test paradigm to the visual system. 303 

Figure 2 Visual deviance detection in the visual 304 

evoked potential responses to an intensity 305 

oddball paradigm in freely behaving mice. (A) 306 

Grand average VEP waveforms in response to 307 

standard and deviant stimuli. Responses were 308 

averaged for, respectively, all standard or all 309 

deviant stimuli, independent of the standard or 310 

deviant representing a stimulus of increased or 311 

decreased light intensity. Responses of the right 312 

and left V1, as well as the first and second 313 

recording were combined. Data are presented as 314 

mean ± standard error of the mean (SEM). (B) 315 

Deviant minus standard difference wave for the 316 

combined ‘intensity increase’ and ‘intensity 317 

decrease’ deviants and standards. Data are presented as mean ± 95% confidence interval. n = 13, *p<0.01, 318 

#p<0.1. 319 

 320 

3.2 Visual deviance detection in the late VEP component is stimulus-independent 321 

To meet the deviance detection criterion of stimulus independency, the difference 322 

between VEP responses to standard and deviant stimuli of intensity increases and 323 

intensity decreases should contain similar components. Visual inspection of the standard 324 

and deviant VEP waveforms (averaged over the responses from V1 left and right, and the 325 

two different recording days) revealed different features in the context of intensity 326 
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increase or decrease stimuli, in particular with respect to the early latencies. Specifically, 327 

the VEP in response to an intensity increase, for both standard and deviant stimuli, 328 

contained additional early latency components between 20 and 60 ms that were not 329 

evident in the VEP in response to an intensity decrease (Fig. 3A).   330 

  While the early components of standard and deviant VEP waveforms for light 331 

increases and decreases differed, when subtracting the standard from the deviant 332 

response for stimuli of the same light change (i.e. increase or decrease), the deviant-333 

minus-standard difference waves were remarkably similar for both light intensity 334 

changes with respect to the late component around 100 ms (Fig. 3B). The late component 335 

of the difference wave, at a latency range of ~70-150 ms, was significantly different from 336 

zero for both the intensity increase (p=0.04) as well as the intensity decrease responses 337 

(p=0.032). On the other hand, the early component of the difference wave was only 338 

evident in the difference wave of an intensity increase (p=0.024). For the difference wave 339 

of the intensity decrease responses, the shape of the early component was visible but did 340 

not differ in amplitude from zero (cluster-based permutation analysis found two clusters 341 

due to the return to baseline: p=0.528 and p=0.602, a one-sample t-test on the mean 342 

amplitude of the whole latency window 43-62 ms: p=0.071). After 150 ms, the difference 343 

waves from the intensity increase and decrease responses showed slow shifts in opposite 344 

direction which was most evident beyond the ~200 ms latency range of the original VEPs 345 

(intensity increase: p=0.034; intensity decrease: p=0.002). When comparing the features 346 

of the light increase and the light decrease difference waves directly, a trend-significant 347 

difference was found for the early component (~20-60 ms, p=0.054), but no differences 348 

were found for the late component (p=0.72). In addition, outside the identified window 349 

of deviance detection (~30-150 ms), a significant difference between the intensity 350 

increase and decrease difference waves was found for 351 
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 352 

Figure 3 Visual deviance detection in the visual evoked potential responses to light pulses of 353 

increased or decreased intensity. (A) The VEP waveforms for, respectively, ‘intensity increase’ (left) and 354 

‘intensity decrease’ (right) deviants and standards. Data are presented as mean ± standard error of the 355 

mean (SEM). (B) Overlay of the intensity increase and intensity decrease difference waves. The early 356 

negative wave component between 20-60 ms is present only in the difference wave for intensity increase 357 

deviants and standards, the late negative wave component around 100 ms is present in both difference 358 

waves. A trend level difference between the two difference waves is observed for the early latencies 359 

between 20-60 ms. For latencies between 170-300 ms, the waveforms of the intensity increase and 360 

decrease difference waves are significantly different. Data are presented as mean ± 95% confidence 361 

intervals. Responses were averaged for right and left V1, as well as the first and second recording. n = 13, 362 

*p<0.01, #p<0.1. 363 

the additional late component between ~170-300 ms (p=0.004). In conclusion, although 364 

the early latency component was more pronounced in light intensity increase difference 365 

waves, the late negative component at ~100 ms was highly similar for the responses to 366 

light intensity increases and decreases. With the use of this component of the deviant-367 
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minus-standard difference waves, our visual deviance detection paradigm thus satisfies 368 

our second criterion of stimulus independency.  369 

  The comparison of the intensity increase and decrease responses also revealed, 370 

perhaps not surprisingly, that the ‘off-response’ to an intensity increase – in essence 371 

being an intensity decrease – showed a VEP similarly shaped as the ‘on-response’ of the 372 

intensity decrease and vice versa (Supplementary Fig. 1). Increases and decreases in light 373 

intensity thus seemed to be processed as shifts in light intensity rather than as flashes of 374 

different intensities. The on- and off-responses to a light increase showed slightly higher 375 

amplitudes compared to the on- and off-responses to a light decrease. The chosen 376 

magnitude of the intensity shifts, which was larger for increases than decreases (i.e. a 377 

shift from 0.15 to 1.7 compared to 0.15 to 0.02 µW/cm2/mm), was selected based on tests 378 

with a 1-ms flash VEP paradigm that showed an equal amplitude difference for both 379 

increase and decrease intensities compared to the VEP amplitude response to the ISI 380 

intensity. However, in the deviant paradigm the larger intensity shifts still evoked a 381 

slightly higher amplitude response. As the latencies of all identified deviance detection 382 

components fall within the 300-ms duration of the light stimuli, these off-responses do 383 

not affect our deviance detection. 384 

3.3 Visual deviance detection shows repeatability in an independent measurement 385 

Our third criterion for a deviance detection paradigm concerns repeatability of the 386 

outcome in independent measurements. To assess this, each animal was subjected to the 387 

visual oddball paradigm twice on two separate days. Using cluster-based permutation 388 

analysis, no differences between the first and second recording were observed for either 389 

the standard VEPs, deviant VEPs or difference waves for the combined responses to 390 

intensity increases and decreases (Fig. 4). Only one small cluster with a trend towards 391 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


18 

significance was found for the standard VEP (~100-110 ms, p=0.066). These outcomes 392 

indicate that our visual oddball paradigm has a good test-retest reliability and therefore 393 

also meets the third criterion.  394 

395 

Figure 4. Comparison of the visual evoked potential responses from the 2 independent 396 

measurements. The same light intensity oddball paradigm was presented to all mice twice, on separate 397 

days (i.e. 1st and 2nd presentation). (A) VEPs in response to standard and deviant stimuli, averaged for, 398 

respectively, the 1st and the 2nd presentation. (B) Overlay of the deviant minus standard difference waves. 399 

n = 11, data are presented as mean ± 95% confidence interval. Cluster-based permutation analysis did not 400 

reveal any significant differences between the 1st and the 2nd presentation. 401 

3.4 Visual deviance detection is also evident from the light-triggered time-frequency 402 

response 403 
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In addition to examining VEP waveform features from the deviant-standard difference 404 

waves, we analysed the EEG TFR. Human studies showed that visual deviance detection 405 

has oscillatory components that are not phase-locked to the stimulus and would 406 

therefore cancel out when averaging over trials that is part of classical event-related 407 

potential (ERP) analysis (Stothart and Kazanina, 2013). TFRs are time-locked, but in 408 

contrast to ERP waveforms, not necessarily phase-locked to the stimulus and can 409 

therefore give a more complete picture of stimulus-associated activity. Visual inspection 410 

of the frequency spectra in response to standards and deviants revealed activity in 411 

several frequency ranges. The EEG response to standard stimuli – combined for intensity 412 

increases and decreases – showed an apparent increased power for the beta-lower 413 

gamma (~20-40 Hz, labelled with ‘1’ in Fig. 5A) and the gamma range (~50-100 Hz, 414 

labelled with ‘2’ in Fig. 5A) at a latency between ~20 and ~70 ms after stimulus onset. In 415 

addition, a broad increase in power was seen for the theta range (~4-9 Hz, labelled with 416 

‘3’ in Fig. 5A), evident from stimulus onset to a latency of ~200 ms. While the TFR to 417 

deviant stimuli showed an overall comparable pattern (Fig. 5A), comparison between 418 

deviant and standard TRFs in a deviant minus standard heatmap revealed multiple 419 

clusters with significantly different frequency components (Fig. 5A). Most evident was a 420 

cluster between ~20-120 ms, indicating increased EEG power in the range from ~10-70 421 

Hz in response to deviants (p=0.022, labelled with ‘A’ in Fig. 5A). This cluster seemed to 422 

be the result of a combination of an altered shape of the beta/gamma response (labelled 423 

with ‘1’) to the deviant compared to the standard stimuli, as well as an additional deviant 424 

response in the alpha/beta band (~10-20 Hz, labelled with ‘4’ in Fig. 5A) which was not 425 

evident in the response to the standard. The gamma response (~50-100 Hz) contained 426 

less power in response to deviant compared to standard stimuli (p=0.048, labelled with 427 

‘B’ in Fig. 5A). Lastly, increased EEG power in  428 
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 429 

Figure 5. Visual deviance detection in the time-frequency response. Panels show clusters of the power 430 

of both overall evoked oscillatory activity (A), as well as induced oscillatory activity (B) in the visual 431 

deviance detection paradigm. To isolate induced oscillatory activity, the averaged waveform was 432 

subtracted from each individual trial before running a time-frequency analysis. From top to bottom panel 433 

time-frequency responses to standard stimuli, deviant stimuli, and a deviant minus standard difference 434 

plot are shown. TFRs were obtained by performing Hanning-window convolution 4-150 Hz with 5 ms time 435 

steps. Absolute baseline-correction was performed using -0.2 - -0.1 ms as the baseline. TFRs to light 436 

increases and decreases, the right and left V1 as well as and second recording were averaged. Y-axis lower 437 

cut-off is 4 Hz. In the difference plot, significant (p<0.05) time-frequency clusters are outlined. n=13. 438 

the high gamma range (~80-150 Hz) was seen in response to the deviant compared to 439 

the standard, both shortly following stimulus onset between ~0-60 ms (p=0.036, labelled 440 

with ‘C’ in Fig. 5A) and in a later window between ~90 and ~300 ms (p=0.002, labelled 441 

with ‘D’ in Fig. 5A).   442 

  Oscillatory activity can be divided into evoked power, which is the direct 443 

frequency representation of the VEP waveform response, and induced power, which is 444 

the oscillatory activity that is non-phase-locked to the stimulus and thus not found in the 445 

VEP waveforms (Jones, 2016). To asses which oscillatory clusters in our analysis 446 
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represented evoked power and which clusters represented induced power, the time-447 

frequency analysis was also ran after subtracting the average VEP waveform from every 448 

single trial per condition (Park et al., 2018). Clusters 3 and 4 in the TFR and cluster A in 449 

the difference plot were no longer present after this analysis (Fig. 5B) and thus represent 450 

evoked power. On the other hand, clusters 1 and 2 in the TFR and clusters B, C and D in 451 

the difference plot were still present after running time-frequency analysis on mean-452 

subtracted data and represent the power of induced oscillatory activity. With our visual 453 

oddball paradigm in freely behaving mice, deviance detection was thus not only reflected 454 

in the VEP waveforms, but also in evoked as well as induced power in the EEG time-455 

frequency responses.  456 

3.5 Higher numbers of standards preceding a deviant strengthen visual deviance detection 457 

In light of the ongoing debate about the role of adaptation to the repeatedly presented 458 

standards in deviance detection paradigms (Garrido et al., 2009; Grimm et al., 2016), we 459 

assessed whether stimulus history influenced our VEP-based visual deviance detection. 460 

We explored whether the deviance detection amplitude (VEP- and TRF-based) changed 461 

with varying numbers of standards preceding the deviant. In addition, we assessed 462 

whether this was potentially also affected by the stimulus types, i.e., an intensity increase 463 

or decrease. The mean amplitude and oscillatory power of standard and deviant VEPs 464 

and TFRs were extracted from each trial, for both the cluster-based defined early (40-60 465 

ms) and late (70-150 ms) latency windows rounded to the nearest ten, and the identified 466 

gamma (B, ~50-100 Hz) and high gamma (C and D, ~80-150 Hz) induced frequency 467 

clusters.  468 
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 469 

Figure 6. Exploration of effects of stimulus history on the various VEP- and TFR-based deviance 470 

detection features. Analyses were performed for the earlier found VEP (A, separated for the early and late 471 

negativity) and TFR (B) components. Each of the different graphs depicts the mean amplitude (for VEP 472 

features) or power (for TFR features) as a function of the number of preceding standards since the 473 

occurrence of the last deviant. The deviance detection amplitude is, for both VEP and TFR features, the 474 

difference between the standard and deviant amplitude, which was in some cases found to increase with 475 

an increasing number of preceding standards. Data are presented separately for standard and deviant 476 

stimuli, as well as for intensity increases and decreases. n = 13, data is presented as mean ± 95% confidence 477 

interval. 478 

Early negativity (40-60 ms): the amplitude of the difference negativity (deviant minus 479 

standard) in the early latency increased with an increase in the number of trials since the 480 

last deviant, in other words an increase in the number of preceding standards (oddball × 481 
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trials since last deviance: F(1,25957)=24.6, p<0.0001, Fig. 5A). Post-hoc analysis revealed 482 

that the increase in amplitudes of standard VEPs with increasing preceding standards 483 

was significant (t-ratio(13.9)=4.453, p=0.0006). Interestingly, the deviant amplitude was 484 

also affected, but decreased with a higher number of preceding standards (t-485 

ratio(218.7)=2.549, p=0.0115). Furthermore, we confirmed our earlier observation that 486 

the amplitudes in the early latency window, irrespective of stimulus history, were 487 

stimulus specific (oddball × stimulus type: F(1,25957)=22.1, p<0.0001).  488 

Late negativity (70-150 ms): amplitudes of the difference negativity in the late latency 489 

window paralleled the observations for the early component with respect to a 490 

modulation of the deviance detection by stimulus history (oddball × trials since last 491 

deviant: F(1, 25958)=9.90, p=0.002). However, post-hoc analysis revealed that while the 492 

increase of the amplitude of standard VEPs with decreasing novelty was also significant 493 

(t-ratio(14.2)=3.295, p=0.0052), contrary to the early latency, the deviant amplitude did 494 

not show a significant decrease in amplitude (t-ratio(270.9)=-1.544, p=0.1237). In this 495 

latency window no overall effect of stimulus type on deviant processing was observed 496 

(oddball × stimulus type: F(1,25958=1.39, p=0.24). To further address the stimulus 497 

independency, it was tested whether the effects of stimulus history on the late component 498 

differed between the stimulus types. Addition of this interaction to the model did not 499 

improve the fit of the model (ΔAIC=+2.1; ΔBIC=+26.4; a decrease indicating improvement 500 

of the model), supporting the claim that the amplitudes in the late component were 501 

indeed stimulus non-specific. 502 

Oscillatory clusters: for the TRF-based analysis only the high gamma clusters (C and D, 80-503 

150 Hz) showed a trend-significant relationship between stimulus history and deviance 504 

detection (C: oddball × trials since last deviant: F(1, 25980)=4.18, p=0.04; D: oddball × 505 
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trials since last deviant: F(1, 25980)=2.94, p=0.09, Fig. 5B). However, the large variation 506 

and p-values close to the significance threshold suggest that these analyses were 507 

underpowered and therefore should be interpreted carefully.  508 

 509 

4. Discussion 510 

Deviance detection is an important function of the brain to identify environmental 511 

changes that may require subsequent appropriate behavioural and/or physiological 512 

responses. The goal of this study was to develop and validate a method for assessing 513 

visual deviance detection in freely behaving mice. The developed paradigm met all three 514 

pre-defined criteria: a robust deviance response, stimulus-independence, and repeatability. 515 

First, the light intensity-based oddball paradigm evoked a bi-phasic negativity in the VEP 516 

difference wave, of which the late 70-150 ms component was significantly different from 517 

zero, indicating that the paradigm was able to assess the ability of mice to differentiate 518 

between standard and deviant flashing light stimuli. Second, deviance detection in this 519 

late component was found to be independent of the type of stimulus (i.e., light increase 520 

or decrease) that was used a deviant. Third, the paradigm showed good repeatability in a 521 

second recording performed on a separate day.  522 

  The visual deviance detection presented with our paradigm matches well with 523 

previously reported visual deviance detection in both human and rodent EEG. The only 524 

other EEG-based visual deviance detection study in mice, in which a pattern-based 525 

oddball paradigm was used in head-fixed animals, also showed bi-phasic responses 526 

(Hamm and Yuste, 2016). They identified the differences in response to standard and 527 

deviant stimuli in early latencies to reflect stimulus-specific adaptation, while differences 528 

in later latencies reflected deviance detection activity. Also human visual ERP studies 529 
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indicated that early components of sensory processing represented adaptation effects, 530 

while later components were specifically associated with violations of expectation 531 

(Czigler et al., 2006; File et al., 2017). The onset and timing of the early and late phases 532 

differed for each of the studies, as well as the present study, both between and within 533 

species. Besides differences in neuronal pathways between species, deviance detection 534 

latencies may also be influenced by the stimulus complexity (Kojouharova et al., 2019). 535 

For example, Hamm and Yuste (2016), which used visual pattern stimuli instead of the 536 

light flashes used in our study, found longer latencies (between ~ 40 and 240 ms) in their 537 

mouse visual deviance detection features compared to the latencies observed in our 538 

paradigm. In our freely-moving deviance detection paradigm, we could not assess the 539 

contribution of stimulus-specific adaptation, as the ‘many standards control paradigm’ 540 

(Czigler et al., 2006; Hamm and Yuste, 2016; Harms et al., 2016; File et al., 2017) was not 541 

used. We were however able to show that the early component was sensitive to stimulus 542 

properties (i.e. a larger deviance detection effect for light intensity increases), while the 543 

late component was stimulus-type-independent. Taken together, our visual deviance 544 

detection matches well with that observed in human as well as in mice. Our data show 545 

that head fixation is not required for measuring visual deviance detection in mice, and 546 

that the implemented paradigm and observed responses in mice have translational value. 547 

  Exploratory analysis of the effect of stimulus history showed that an increased 548 

number of trials since the last deviant, in other words a longer stretch of preceding 549 

standard presentations, increased the amplitude of the deviance detection. This was the 550 

result of an increased amplitude of standard VEP responses and a decreased amplitude 551 

of deviant VEP responses with a higher number of preceding standards. These changes 552 

seem to suggest that our VEP-based deviance detection paradigm was sensitive to how 553 

deviant a deviant stimulus is; as it showed larger responses when the previous deviant 554 
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was presented a longer time ago. The observed positive relationship between deviance 555 

detection amplitude and number of preceding standards could be a result of stimulus-556 

specific adaptation of the standard, in our paradigm leading to increased amplitudes after 557 

more repetitions. However, larger deviance detection after more preceding standards 558 

could also result from the brain’s response to the violation of a stronger memory-based 559 

expectation of the standard (Garrido et al., 2009). Although counterintuitive, violation-560 

alerting activity in our data would actually be represented by the observed reduction in 561 

deviant amplitude, resulting in an increased difference with a standard. Further studies 562 

are needed to determine which of these two processes primarily drives the deviance 563 

detection features in our paradigm. 564 

  Larger differences in responses to standard and deviant visual pattern stimuli 565 

with more preceding standards have previously also been shown in rats, although this 566 

difference was dominantly driven by alterations in the responses to the deviant without 567 

a change in responses to the standard (Vinken et al., 2017). Also in human auditory MMN 568 

paradigms the amplitude of the MMN increases when the overall probability of deviants 569 

is decreased from 30% to 10% or from 13% to 1.5% (Sato et al., 2000; Sabri and 570 

Campbell, 2001), as well as with a higher number of standards preceding a deviant within 571 

a paradigm with a stable overall deviant probability of 20% (Matuoka et al., 2006). 572 

Together, these findings suggest that the effect size of our deviant detection paradigm 573 

could be further increased by having a higher minimum number of standards between 574 

deviants than the two currently used in our experiments.  575 

 In addition to the VEP waveforms, deviance detection was also found to be 576 

represented in both evoked and induced oscillatory activity. Human visual and mouse 577 

auditory studies have previously shown oscillatory responses related to deviance 578 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


27 

detection, but the paradigms and corresponding responses showed large variability 579 

(Stothart and Kazanina, 2013; Ahnaou et al., 2017; Hesse et al., 2017; Yan et al., 2017). 580 

Differences across paradigms and species, as well as the fact that some of these studies 581 

use auditory while others use visual stimuli, make a direct comparison of findings from 582 

the studies assessing frequency response in deviance detection paradigms difficult.   583 

  In the TFR the higher gamma clusters between 50-150 Hz represented induced 584 

(i.e. non-phase-locked) oscillatory activity. This is in line with the fact that induced power, 585 

thought to represent top-down connections, concerns higher frequencies over longer 586 

latencies, while evoked power, thought to represent bottom-up connections, concerns 587 

lower frequencies over shorter latencies (Chen et al., 2012). The broad increase in high 588 

gamma power (80-150 Hz) showed a tendency to be enhanced with more preceding 589 

standards, although this effect was not statistically significant. Gamma frequency cortical 590 

activity has generally been linked to increased spiking activity and network excitation 591 

(Yizhar et al., 2011; Cho et al., 2015; Vogt et al,. 2015). In the visual cortex of freely 592 

behaving mice, 30-100 Hz broadband gamma activity was found to functionally 593 

discriminate between segregated cortical layers of visual processing (Senzai et al., 2019). 594 

It was showed that gamma activity can be subdivided into functionally distinct broad- 595 

(30-90 Hz) and narrowband (60 Hz) gamma oscillations, which show complementary 596 

responses to changes in visual contrast (Saleem et al., 2017). While narrowband gamma 597 

has been associated with thalamocortical communication, broadband gamma power is 598 

thought to represent corticocortical communication. Although our recordings did not 599 

allow to distinguish between underlying network mechanisms, the broad increase in high 600 

gamma band activity we observed in the TFR deviant minus standard difference plots 601 

could reflect increased corticocortical network activity during deviance processing. This 602 

could suggest involvement of the prefrontal cortex, in line with what was found in human 603 
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visual deviance detection studies (Yucel et al., 2007; Kimura et al., 2010; Kimura et al., 604 

2011), although no robust visual evoked responses were recorded from our prefrontal 605 

cortex electrode. The presence of induced broadband gamma responses thus seems to 606 

suggest communication between the visual cortex and other cortical areas during visual 607 

deviance detection. Whether this concerns frontal cortical areas remains to be studied. 608 

  In conclusion, we developed the first, robust and repeatable visual deviance 609 

detection paradigm based on changes in light intensity in freely behaving mice. Our 610 

paradigm provides a functional outcome measure for visual processing in these mice. 611 

Because no head fixation is needed, our paradigm minimizes animal discomfort while 612 

increasing behavioural relevance. The paradigm can easily be implemented to assess 613 

sensory processing deficits in mouse models of brain disease, and has the possibility to 614 

be compared with experiments in humans which increases translatability of preclinical 615 

outcomes. 616 

 617 

 618 

Acknowledgements 619 

This work was supported by a ZonMW TOP [grant number 91216021, 2017, awarded to 620 

HB and MJK] and the national Medical NeuroDelta [awarded to AvdM].  621 

 622 

Declaration of interest 623 

None 624 

 625 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


29 

Author contribution statement 626 

Renate Kat: Conceptualization, methodology, investigation, formal analysis, 627 

visualization, writing – original draft Berry van der Berg: Formal analysis, visualization, 628 

writing – reviewing & editing Matthijs JL Perenboom: Methodology, software Maarten 629 

Schenke: Investigation Arn MJM van den Maagdenberg: Resources, funding 630 

acquisition, writing – review & editting Hilgo Bruining: Funding aquisition, writing – 631 

review & editting Else A Tolner: Conceptualization, writing – reviewing & editting, 632 

supervision Martien JH Kas: Conceptualization, funding aquisition, writing – reviewing 633 

& editting, supervision 634 

 635 

References 636 

Ahnaou, A., Moechars, D., Raeymaekers, L., Biermans, R., Manyakov, N. V., Bottelbergs, A., 637 

Wintmolders, C., Van Kolen, K., Van De Casteele, T., Kemp, J.A., Drinkenburg, W.H., 638 

2017. Emergence of early alterations in network oscillations and functional 639 

connectivity in a tau seeding mouse model of Alzheimer’s disease pathology. Sci. 640 

Rep. 7, 1–14. https://doi.org/10.1038/s41598-017-13839-6 641 

Baker, M., 2013. Neuroscience: Through the eyes of a mouse. Nature 502, 156–158. 642 

https://doi.org/10.1038/502156a 643 

Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Package lme4. J. Stat. Softw. 67, 1–91. 644 

https://doi.org/http://lme4.r-forge.r-project.org 645 

Carrillo-Reid, L., Han, S., Yang, W., Akrouh, A., Yuste, R., 2019. Controlling Visually 646 

Guided Behavior by Holographic Recalling of Cortical Ensembles. Cell 178, 447-647 

457.e5. https://doi.org/10.1016/j.cell.2019.05.045 648 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


30 

Chen, C.C., Kiebel, S.J., Kilner, J.M., Ward, N.S., Stephan, K.E., Wang, W.J., Friston, K.J., 649 

2012. A dynamic causal model for evoked and induced responses. Neuroimage 59, 650 

340–348. https://doi.org/10.1016/j.neuroimage.2011.07.066 651 

Cho, K.K.A., Hoch, R., Lee, A.T., Patel, T., Rubenstein, J.L.R., Sohal, V.S., 2015. Gamma 652 

rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in 653 

dlx5/6+/- mice. Neuron 85, 1332–1343. 654 

https://doi.org/10.1016/j.neuron.2015.02.019 655 

Czigler, I., Weisz, J., Winkler, I., 2006. ERPs and deviance detection: Visual mismatch 656 

negativity to repeated visual stimuli. Neurosci. Lett. 401, 178–182. 657 

https://doi.org/10.1016/j.neulet.2006.03.018 658 

File, D., File, B., Bodnár, F., Sulykos, I., Kecskés-Kovács, K., Czigler, I., 2017. Visual 659 

mismatch negativity (vMMN) for low- and high-level deviances: A control study. 660 

Attention, Perception, Psychophys. 79, 2153–2170. 661 

https://doi.org/10.3758/s13414-017-1373-y 662 

Fournier, J., Saleem, A.B., Diamanti, E.M., Wells, M.J., Harris, K.D., Carandini, M., 2020. 663 

Mouse Visual Cortex Is Modulated by Distance Traveled and by Theta Oscillations. 664 

Curr. Biol. 30, 3811-3817.e6. https://doi.org/10.1016/j.cub.2020.07.006 665 

Garrido, M.I., Kilner, J.M., Stephan, K.E., Friston, K.J., 2009. The mismatch negativity: A 666 

review of underlying mechanisms. Clin. Neurophysiol. 120, 453–463. 667 

https://doi.org/10.1016/j.clinph.2008.11.029 668 

Grimm, S., Escera, C., Nelken, I., 2016. Early indices of deviance detection in humans and 669 

animal models. Biol. Psychol. 116, 23–27. 670 

https://doi.org/10.1016/j.biopsycho.2015.11.017 671 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


31 

Hamm, J.P., Shymkiv, Y., Mukai, J., Gogos, J.A., Yuste, R., 2020. Aberrant Cortical 672 

Ensembles and Schizophrenia-like Sensory Phenotypes in Setd1a+/− Mice. Biol. 673 

Psychiatry 88, 215–223. https://doi.org/10.1016/j.biopsych.2020.01.004 674 

Hamm, J.P., Yuste, R., 2016. Somatostatin Interneurons Control a Key Component of 675 

Mismatch Negativity in Mouse Visual Cortex. Cell Rep. 16, 597–604. 676 

https://doi.org/10.1016/j.celrep.2016.06.037 677 

Harms, L., Michie, P.T., Näätänen, R., 2016. Criteria for determining whether mismatch 678 

responses exist in animal models: Focus on rodents. Biol. Psychol. 116, 28–35. 679 

https://doi.org/10.1016/j.biopsycho.2015.07.006 680 

Hesse, P.N., Schmitt, C., Klingenhoefer, S., Bremmer, F., 2017. Preattentive processing of 681 

numerical visual information. Front. Hum. Neurosci. 11, 1–14. 682 

https://doi.org/10.3389/fnhum.2017.00070 683 

Hubel, D., Wiesel, T., 1968. Receptive Fields and Functional Architecture of Monkey 684 

Striate Cortex. J. Physiol. 195, 215–243. 685 

https://doi.org/10.1113/jphysiol.1968.sp008455 686 

Hubel, D.H., 1959. Single unit activity in striate cortex of unrestrained cats. J. Physiol. 687 

147, 226–238. https://doi.org/10.1113/jphysiol.1959.sp006238 688 

Jones, S.R., 2016. When brain rhythms aren’t ‘rhythmic’: implication for their 689 

mechanisms and meaning. Curr. Opin. Neurobiol. 40, 72–80. 690 

https://doi.org/10.1016/j.conb.2016.06.010 691 

Kimura, M., 2012. Visual mismatch negativity and unintentional temporal-context-based 692 

prediction in vision. Int. J. Psychophysiol. 83, 144–155. 693 

https://doi.org/10.1016/j.ijpsycho.2011.11.010 694 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


32 

Kimura, M., Kondo, H., Ohira, H., Schröger, E., 2011. Unintentional temporal context-695 

based prediction of emotional faces: An electrophysiological study. Cereb. Cortex 696 

22, 1774–1785. https://doi.org/10.1093/cercor/bhr244 697 

Kimura, M., Ohira, H., Schröger, E., 2010a. Localizing sensory and cognitive systems for 698 

pre-attentive visual deviance detection: An sLORETA analysis of the data of Kimura 699 

et al. (2009). Neurosci. Lett. 485, 198–203. 700 

https://doi.org/10.1016/j.neulet.2010.09.011 701 

Kimura, M., Widmann, A., Schröger, E., 2010b. Human visual system automatically 702 

represents large-scale sequential regularities. Brain Res. 1317, 165–179. 703 

https://doi.org/10.1016/j.brainres.2009.12.076 704 

Kojouharova, P., File, D., Sulykos, I., Czigler, I., 2019. Visual mismatch negativity and 705 

stimulus-specific adaptation: the role of stimulus complexity. Exp. Brain Res. 237, 706 

1179–1194. https://doi.org/10.1007/s00221-019-05494-2 707 

Kriegeskorte, N., Simmons, W.K., Bellgowan, P.S., Baker, C.I., 2009. Circular analysis in 708 

systems neuroscience: The dangers of double dipping. Nat. Neurosci. 12, 535–540. 709 

https://doi.org/10.1038/nn.2303 710 

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest Package: Tests in 711 

Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26. 712 

https://doi.org/10.18637/jss.v082.i13 713 

Maris, E., Oostenveld, R., 2007. Nonparametric statistical testing of EEG- and MEG-data. 714 

J. Neurosci. Methods 164, 177–190. 715 

https://doi.org/10.1016/j.jneumeth.2007.03.024 716 

Matuoka, T., Yabe, H., Shinozaki, N., Sato, Y., Hiruma, T., Ren, A., Hara, E., Kaneko, S., 717 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


33 

2006. The Development of Memory Trace Depending on the Number of the 718 

Standard Stimuli. Clin. EEG Neurosci. 37, 223–229. 719 

https://doi.org/10.1177/155005940603700312 720 

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., Bates, D., 2017. Balancing Type I error 721 

and power in linear mixed models. J. Mem. Lang. 94, 305–315. 722 

https://doi.org/10.1016/j.jml.2017.01.001 723 

May, P., Tiitinen, H., Ilmoniemi, R.J., Nyman, G., Taylor, J.G., Näätänen, R., 1999. 724 

Frequency change detection in human auditory cortex. J. Comput. Neurosci. 6, 99–725 

120. https://doi.org/10.1023/A:1008896417606 726 

Montijn, J.S., Olcese, U., Pennartz, C.M.A., 2016. Visual stimulus detection correlates with 727 

the consistency of temporal sequences within stereotyped events of V1 neuronal 728 

population activity. J. Neurosci. 36, 8624–8640. 729 

https://doi.org/10.1523/JNEUROSCI.0853-16.2016 730 

Näätänen, R., Sussman, E.S., Salisbury, D., Shafer, V.L., 2014. Mismatch negativity (MMN) 731 

as an index of cognitive dysfunction. Brain Topogr. 27, 451–466. 732 

https://doi.org/10.1007/s10548-014-0374-6 733 

Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M., 2011. FieldTrip: Open source software 734 

for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. 735 

Intell. Neurosci. 2011. https://doi.org/10.1155/2011/156869 736 

Park, J., van den Berg, B., Chiang, C., Woldorff, M.G., Brannon, E.M., 2018. Developmental 737 

trajectory of neural specialization for letter and number visual processing. Dev. Sci. 738 

21, 1–14. https://doi.org/10.1111/desc.12578 739 

Perenboom, T., Schenke, M., Ferrari, M., Terwindt, G., van den Maagdenberg, A., Tolner, 740 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


34 

E., 2020. Responsivity to light in familial hemiplegic migraine type 1 mutant mice 741 

reveals frequency-dependent enhancement of visual network excitability. Eur. J. 742 

Neurosci. 53, 1672–1686. https://doi.org/10.1111/ejn.15041 743 

Sabri, M., Campbell, K.B., 2001. Effects of sequential and temporal probability of deviant 744 

occurrence on mismatch negativity. Cogn. Brain Res. 12, 171–180. 745 

https://doi.org/10.1016/S0926-6410(01)00026-X 746 

Saleem, A.B., Lien, A.D., Krumin, M., Haider, B., Rosón, M.R., Ayaz, A., Reinhold, K., Busse, 747 

L., Carandini, M., Harris, K.D., Carandini, M., 2017. Subcortical Source and 748 

Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex. Neuron 749 

93, 315–322. https://doi.org/10.1016/j.neuron.2016.12.028 750 

Sassenhagen, J., Draschkow, D., 2019. Cluster-based permutation tests of MEG/EEG data 751 

do not establish significance of effect latency or location. Psychophysiology 56, 1–8. 752 

https://doi.org/10.1111/psyp.13335 753 

Sato, Y., Yabe, H., Hiruma, T., Sutoh, T., Shinozaki, N., Nashida, T., Kaneko, S., 2000. The 754 

effect of deviant stimulus probability on the human mismatch process. Neuroreport 755 

11, 3703–3708. https://doi.org/10.1097/00001756-200011270-00023 756 

Sculthorpe, L.D., Ouellet, D.R., Campbell, K.B., 2009. MMN elicitation during natural sleep 757 

to violations of an auditory pattern. Brain Res. 1290, 52–62. 758 

https://doi.org/10.1016/j.brainres.2009.06.013 759 

Senzai, Y., Fernandez-Ruiz, A., Buzsáki, G., 2019. Layer-Specific Physiological Features 760 

and Interlaminar Interactions in the Primary Visual Cortex of the Mouse. Neuron 761 

101, 500-513.e5. https://doi.org/10.1016/j.neuron.2018.12.009 762 

Sohya, K., Kameyama, K., Yanagawa, Y., Obata, K., Tsumoto, T., 2007. GABAergic neurons 763 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


35 

are less selective to stimulus orientation than excitatory neurons in layer II/III of 764 

visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J. 765 

Neurosci. 27, 2145–2149. https://doi.org/10.1523/JNEUROSCI.4641-06.2007 766 

Stagg, C., Hindley, P., Tales, A., Butler, S., 2004. Visual mismatch negativity: the detection 767 

of stimulus change. Neuroreport 15, 487–491. 768 

https://doi.org/10.1097/01.wnr.00001 769 

Stothart, G., Kazanina, N., 2013. Oscillatory characteristics of the visual mismatch 770 

negativity; what evoked potentials aren’t telling us. Front. Hum. Neurosci. 7, 1–9. 771 

https://doi.org/10.3389/fnhum.2013.00426 772 

Sulykos, I., Czigler, I., 2014. Visual mismatch negativity is sensitive to illusory brightness 773 

changes. Brain Res. 1561, 48–59. https://doi.org/10.1016/j.brainres.2014.03.008 774 

Tada, M., Kirihara, K., Mizutani, S., Uka, T., Kunii, N., Koshiyama, D., Fujioka, M., Usui, K., 775 

Nagai, T., Araki, T., Kasai, K., 2019. Mismatch negativity (MMN) as a tool for 776 

translational investigations into early psychosis: A review. Int. J. Psychophysiol. 777 

145, 5–14. https://doi.org/10.1016/j.ijpsycho.2019.02.009 778 

Van Diepen, H.C., Ramkisoensing, A., Peirson, S.N., Foster, R.G., Meijer, J.H., 2013. 779 

Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors. 780 

FASEB J. 27, 4204–4212. https://doi.org/10.1096/fj.13-233098 781 

Vinken, K., Vogels, R., Op de Beeck, H., 2017. Recent Visual Experience Shapes Visual 782 

Processing in Rats through Stimulus-Specific Adaptation and Response 783 

Enhancement. Curr. Biol. 27, 914–919. https://doi.org/10.1016/j.cub.2017.02.024 784 

Vogt, D., Cho, K.K.A., Lee, A.T., Sohal, V.S., Rubenstein, J.L.R., 2015. The 785 

Parvalbumin/Somatostatin Ratio Is Increased in Pten Mutant Mice and by Human 786 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


36 

PTEN ASD Alleles. Cell Rep. 11, 944–956. 787 

https://doi.org/10.1016/j.celrep.2015.04.019 788 

Warden, M.R., Cardin, J.A., Deisseroth, K., 2014. Optical neural interfaces. Annu. Rev. 789 

Biomed. Eng. 16, 103–129. https://doi.org/10.1146/annurev-bioeng-071813-790 

104733 791 

Yan, T., Feng, Y., Liu, T., Wang, L., Mu, N., Dong, X., Liu, Z., Qin, T., Tang, X., Zhao, L., 2017. 792 

Theta oscillations related to orientation recognition in unattended condition: A 793 

vMMN study. Front. Behav. Neurosci. 11, 1–8. 794 

https://doi.org/10.3389/fnbeh.2017.00166 795 

Yizhar, O., Fenno, L.E., Prigge, M., Schneider, F., Davidson, T.J., Shea, D.J.O., Sohal, V.S., 796 

Goshen, I., Finkelstein, J., Paz, J.T., Stehfest, K., Fudim, R., Ramakrishnan, C., 797 

Huguenard, J.R., Hegemann, P., Deisseroth, K., 2011. Neocortical excitation / 798 

inhibition balance in information processing and social dysfunction. Nature 477, 799 

171–178. https://doi.org/10.1038/nature10360 800 

Yucel, G., McCarthy, G., Belger, A., 2007. fMRI reveals that involuntary visual deviance 801 

processing is resource limited. Neuroimage 34, 1245–1252. 802 

https://doi.org/10.1016/j.neuroimage.2006.08.050 803 

Zhang, D., Yu, B., Liu, J., Jiang, W., Xie, T., Zhang, R., Tong, D., Qiu, Z., Yao, H., 2017. Altered 804 

visual cortical processing in a mouse model of MECP2 duplication syndrome. Sci. 805 

Rep. 7, 1–14. https://doi.org/10.1038/s41598-017-06916-3 806 

 807 

 808 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448331doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448331
http://creativecommons.org/licenses/by-nd/4.0/


37 

Supplementary Material 809 

 810 

 811 

Figure S1. Comparison of VEP waveforms for the On- and Off-responses to a light 812 

intensity increase versus light intensity decreases. Light Stimuli lasted for 300 ms, 813 

whereby these plots show the ‘On-response’ to the start of the 300-ms intensity increase 814 

or decrease as well as the VEP ‘Off-response’ to the light intensity changing back to 815 

baseline level. The On-response of the light increase, as well as the Off-response of the 816 

light decrease, concern a response to an increase in light intensity. The On-response of 817 

the light decrease, as well as the Off-response of the light increase, concern a response to 818 

a light intensity decrease. Presented data show the responses to light increases and 819 

decreases, averaged for right and left V1 responses and the 2 recordings on separate days.  820 
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