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15 Abstract

16 Identification and quantitation of newly synthesized proteins (NSPs) are critical to understanding 

17 protein dynamics in development and disease. Probing the nascent proteome can be achieved using non-

18 canonical amino acids (ncAAs) to selectively label the NSPs utilizing endogenous translation machinery, 

19 which can then be quantitated with mass spectrometry. Since its conception, ncAA labeling has been 

20 applied to study many in vitro systems and more recently the in vivo proteomes of complex organisms such 

21 as rodents. In vivo labeling is typically achieved by introducing ncAAs into diet, which requires extended 

22 labeling times. We have previously demonstrated that labeling the murine proteome is feasible via injection 

23 of azidohomoalanine (Aha), a ncAA and methionine (Met) analog, without the need for Met depletion. 

24 With the ability to isolate NSPs without applying stress from dietary changes, Aha labeling can address 

25 biological questions wherein temporal protein dynamics are significant. However, accessing this temporal 

26 resolution requires a more complete understanding of Aha distribution kinetics in tissues. Furthermore, 

27 studies of physiological effects of ncAA administration have been limited to gross observation of animal 

28 appearance. To address these gaps, we created a deterministic, compartmental model of the biokinetic 

29 transport and incorporation of Aha in mice. Parameters were informed from literature and experimentally. 

30 Model results demonstrate the ability to predict Aha distribution and labeling under a variety of dosing 

31 paradigms and confirms the use of the model as a tool for design of future studies. To establish the suitability 

32 of the method for in vivo studies, we investigated the impact of Aha administration on normal physiology 

33 by analyzing the plasma metabolome following Aha injection. We show that Aha administration does not 

34 significantly perturb cellular functions as reflected by an unchanged plasma metabolome compared to non-

35 injected controls.

36 Keywords: Non-canonical amino acids, protein labeling, kinetics, compartment modeling, metabolomics 
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38 Abbreviations: Aha, azidohomoalanine; HCA, hierarchical clustering analysis; hpi, hours post injection; 

39 KEGG, kyoto encyclopedia of genes and genomes; KNN, k-nearest neighbor; LC-MS/MS, liquid 

40 chromatography tandem-mass spectrometry; LHS, Latin hypercube sampling, Met, methionine; MRM, 

41 multiple reaction monitoring; ncAA, non-canonical amino acid; NSP, newly synthesized protein; ODE, 

42 ordinary differential equation; PCA, principal component analysis, PRCC, partial rank correlation 

43 coefficient; rF, relative fluorescence; SEf, standard error of fitting; fAha, free Aha; pAha, proteinous Aha; 

44 Sysrv, systemic venous reservoir.
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46 Author Summary

47 As the machinery of life, proteins play a key role in dynamic processes within an organism. As 

48 such, the response of the proteome to perturbation is increasingly becoming a critical component of 

49 biological and medical studies. Dysregulation of protein mechanisms following exposure to experimental 

50 treatment conditions can implicate physiological mechanisms of health and disease, elucidate toxin/drug 

51 response, and highlight potential targets for novel therapies. Traditionally, these questions have been probed 

52 by studying perturbations in total proteins following an experimental treatment. However, the proteome is 

53 expansive and noisy, often an early response can be indiscernible against the background of unperturbed 

54 proteins. Here, we apply a technique to selectively label newly synthesized proteins, which enables 

55 capturing early changes in protein behavior. We utilize an amino acid analog that naturally incorporates 

56 into proteins, and investigate the tissue distribution, protein labeling efficiency, and potential physiological 

57 impact of this analog in mice. Our results demonstrate that we can reproducibly predict protein labeling and 

58 that the administration of this analog does not significantly alter in vivo physiology over the course of our 

59 experimental study. We further present a computational model that can be used to guide future experiments 

60 utilizing this technique to study proteomic responses to stimuli. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448308doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448308
http://creativecommons.org/licenses/by/4.0/


5

61 Introduction

62 The use of non-canonical amino acid (ncAA) labeling for selective identification of newly 

63 synthesized proteins (NSPs) in mammalian cells was first introduced by Dieterich et al. in 2006 (1) and has 

64 since been applied to study several biological systems (see reviews (2, 3)). In this technique, an ncAA, 

65 typically a methionine (Met) analog, is introduced to the biological system of interest and incorporated into 

66 newly synthesized polypeptide chains using endogenous or engineered cellular translational machinery  

67 Distinction of nascent proteins from the constituent proteome is enabled by reactive chemical groups, such 

68 as azides and alkynes, which can be covalently modified via azide-alkyne cycloaddition (a click chemistry 

69 reaction) (2). As such, ncAA-labeled NSPs can be selectively conjugated to affinity or fluorescent tags for 

70 identification or visualization, respectively (1, 4). This technique has been successfully employed to probe 

71 protein dynamics in a variety of bacterial (5-7) and mammalian cells in vitro (8-10), as well as model 

72 organisms in vivo, including zebrafish (11) and Xenopus (12). More recently, ncAA labeling has also been 

73 shown to be effective in identifying NSPs in rodents (13-15). The expanding applications of ncAA labeling 

74 will enable previously inaccessible biological questions, wherein understanding the temporal dynamics of 

75 protein synthesis and turnover is critical, to be addressed.

76 For rodent proteome labeling, dietary administration of ncAA, typically enhanced with a Met-free 

77 diet, has been shown to achieve adequate labeling efficiency (13, 16). However, Met deprivation may affect 

78 normal physiology, particularly over longer labeling periods. Notably, the presence of Met in mammalian 

79 diet is essential for normal embryonic development (17-19), which constrains this method to studies of 

80 adult animals. In this regard, our group has previously demonstrated that labeling the adult and embryonic 

81 murine proteome can instead be achieved via systemic injection of ncAAs without the need for Met 

82 depletion (14, 20). Compared to feeding with an ncAA-enriched diet, the injection method achieves global 

83 proteome labeling in a shorter period of time, which enables the detection of proteins synthesized shortly 

84 after injection and proteins with high turnover rates (20). In addition, injections allow for accurate dosing 
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85 calculations, which eliminates the inherent variability of the feeding method due to fluctuations in feeding 

86 patterns and intestinal absorption.

87 Despite the application of ncAA labeling in a number of studies to decipher complex cellular 

88 processes in animal models (13, 15, 16, 21), understanding of the kinetics of ncAA distribution in tissues, 

89 especially as it pertains to rates of protein incorporation and loss by degradation, is lacking. Determination 

90 of the timescale of ncAA uptake by tissues following administration and the lag time before maximum 

91 protein labeling are critical information for the design of robust temporal experiments to study the nascent 

92 proteome. Predicting ncAA pharmacokinetics in murine models will also enable optimizing the dosing 

93 regimen to attain the ideal concentrations to achieve sufficient protein labeling in the desired tissue over 

94 the course of the study. 

95 In addition to the lack of knowledge of ncAAs distribution kinetics in vivo, evaluation of the 

96 physiological impact of ncAA administration to animals has been limited to examining changes in gross 

97 behavior, physical appearance and body weight (13-15). A more robust analysis of the effect of ncAA 

98 administration on the metabolome, and the corresponding implications for cellular function, is required to 

99 confirm the suitability of the method for in vivo studies. 

100 The aim of this study was to characterize the distribution kinetics of azidohomoalanine (Aha), a 

101 widely used Met analog, in mice following subcutaneous injection, and to investigate the impact on normal 

102 physiology. To study the biodistribution of Aha, we measured the concentration in the plasma, liver, kidney, 

103 brain and skeletal muscle using liquid chromatography-tandem mass spectrometry (LC-MS/MS) over a 

104 period of 24 h. This dataset was used to develop a deterministic compartment model of small molecule 

105 biokinetics that characterizes the movement of freely diffusive Aha (fAha) throughout the mouse 

106 circulatory system and into tissues. In addition, we used fluorescent western blotting to measure protein 

107 labeling in these tissues during the same period of time. This second dataset was used to inform a model of 

108 relative protein labeling as a function of fAha availability to characterize both the predicted labeling profile 
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109 for a given experimental treatment of Aha and the relative synthesis and turnover rates of Aha-labeled 

110 proteins. We demonstrate that this model can be used to characterize nascent protein synthesis and turnover 

111 within distinct tissues. Furthermore, we validated the capability of this model to predict NSP labeling under 

112 more complex, multiple injection dosing paradigms, which can be a tool to guide the design of future 

113 experiments utilizing Aha labeling.

114 We also probed the effect of Aha incorporation into NSPs and investigated whether Aha labeling 

115 perturbs normal physiological functions. We compared the plasma metabolome 24 h after Aha injection to 

116 that of non-injected mice to identify if metabolic pathways were dysregulated due to protein labeling with 

117 Aha. Only ~ 1.3% of metabolites were differentially regulated in the injected mice, indicating that Aha 

118 administration does not have a significant impact on normal physiology. Taken together, these results 

119 provide a fundamental understanding of the interrelation between the distribution kinetics of the ncAA into 

120 murine tissues and the associated degree of protein labeling, as well as the impact of ncAA injection on 

121 physiological functions.

122 Results and Discussion

123 Effective protein labeling is critical to enrich Aha-labeled proteins with high signal-to-noise ratio 

124 for accurate quantitative MS measurements and identification of newly synthesized proteins. Depending on 

125 the tissue type and biological processes to be studied, multiple injections of Aha may be required to attain 

126 a high enough degree of labeling that results in a suitable MS signal. Therefore, optimizing the dose and 

127 frequency of Aha injections is critical for the appropriate design of labeling studies. In this regard, we 

128 sought to describe the distribution and labeling kinetics of Aha with an experimentally informed 

129 deterministic model. Our model was developed to describe: (1) the transport of freely diffusive Aha (fAha), 

130 Aha that is yet to be incorporated into protein, in the plasma, (2) the circulatory exchange of fAha into 

131 tissues of adult mice and (3) the degree of Aha incorporation into proteins (pAha) in specific tissues. 

132 Kinetic Model of Aha Biodistribution Describes Transport and Exchange
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133 To capture the dynamics of fAha distribution in vivo, an in silico model system of ordinary 

134 differential equations (ODEs) was generated describing the physiological processes of small molecule 

135 transport. Dosed fAha was introduced into the model at a non-localized reservoir, to mimic the injection 

136 site of our subcutaneous dosing paradigm. From this reservoir, fAha enters the murine circulatory system, 

137 at a rate that is a function of reservoir concentration and transport kinetics, and is distributed to distinct 

138 tissue compartments (Figure 1).

139
140 Figure 1. Biodistribution of fAha via transport and exchange. Introduced at a distinct injection site, fAha is 
141 allowed to enter the circulation at a systemic venous reservoir. Driven by circulation, fAha is passed through 
142 the arterial system (red) into distinct tissue compartments where exchange occurs at tissue specific rates. 
143 Arrows indicate directional movement of fAha. Each tissue compartment consists of two sub-
144 compartments: plasma available for surface exchange (red to blue gradient) and an intracellular volume 
145 (illustrated here as the bottom compartments: from left to right muscle, liver, brain, and kidney). A 
146 mechanism for oral dosing (via plasma exchange with the gastrointestinal lumen) is illustrated, but not 
147 included in this model.
148
149 Within each compartment, the time-dependent rate of change of the fAha plasma concentration 

150 ([fAhap]) available for exchange with each tissue can be described as a mass balance with two stages: 

151 transport and exchange. The transport stage is governed by circulatory blood flow.  
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(𝑑[𝑓𝐴ℎ𝑎𝑝]𝑥

𝑑𝑡 )
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

=  
𝑄𝑥

𝑉𝑥
([fAha𝑝]𝑠𝑦𝑠𝑟𝑣 ― [𝑓𝐴ℎ𝑎𝑝]𝑥) Eq. 1

152 where Qx is the blood flow rate between tissue ‘x’ and a systemic venous reservoir (sysrv), and Vx is the 

153 corresponding volume of plasma relevant to each tissue (Q/V represented as a lumped constant qb in 

154 Supplements S2,S3). All kinetic parameters for circulatory transport were normalized by tissue mass to 

155 compare relative perfusion rates between tissue compartments of differing size. Once localized to a tissue, 

156 fAha in the plasma can also be exchanged across the cell membrane with the intracellular Aha concentration 

157 ([fAhat]) and is described as follows:

(𝑑[𝑓𝐴ℎ𝑎𝑝]𝑥

𝑑𝑡 )
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒

=  𝑘𝑒,𝑥[𝑓𝐴ℎ𝑎𝑡]𝑥 ― 𝑘𝑖,𝑥[𝑓𝐴ℎ𝑎𝑝]𝑥 Eq. 2

(𝑑[𝑓𝐴ℎ𝑎𝑡]𝑥

𝑑𝑡 )
𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒

=  𝑘𝑖,𝑥[𝑓𝐴ℎ𝑎𝑝]𝑥 ― 𝑘𝑒,𝑥[𝑓𝐴ℎ𝑎𝑡]𝑥 Eq. 3

158 where ki,x and ke,x are the tissue specific import and export rates (min-1⋅mg-1) for fAha across the cell 

159 membrane. The liver tissue, gut and kidney plasma compartments were assigned additional system removal 

160 terms (kr,x, Supplements S2,S3) accounting for excretion and metabolization of fAha. The two stages of 

161 distribution were combined into a single system of ODEs, parameterized and bound within reasonable 

162 ranges for a model of small molecule pharmacokinetics (Supplements S2-S5) (22-25). 

163 Kinetic Model of Protein Labeling Captures Aha Incorporation

164 Within each tissue compartment,  fAhat is incorporated into proteins via protein synthesis. As a Met 

165 analog, Aha is able to bind to methionyl-tRNA synthase, albeit at a much slower rate (kcat·Km
-1 Aha: 1.42E-3, 

166 Met: 5.47E-1 μM-1·s-1) (26). Because the rate constant of Aha binding to the methionyl-tRNA synthase is 

167 much slower than Met, and previous estimates of the amount of Aha incorporation into NSPs was less than 

168 10% (14), we made a modeling assumption that [fAhat] is negligibly depleted by incorporation into protein 

169 (further justification, Supplement S2) and that recycling of Aha is nonexistent.
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[𝑓𝐴ℎ𝑎𝑡]𝑥 ≪  [𝑝𝐴ℎ𝑎𝑡]𝑥 Eq. 4

(𝑑[𝑓𝐴ℎ𝑎𝑡]𝑥

𝑑𝑡 )
𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠

=  ―𝑘𝑠,𝑥[𝑓𝐴ℎ𝑎𝑡]𝑥 ≈ 0 ≪  (𝑑[𝑓𝐴ℎ𝑎𝑡]𝑥

𝑑𝑡 )
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

Eq. 5

(𝑑[𝑝𝐴ℎ𝑎𝑡]𝑥

𝑑𝑡 )
𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠

=  𝑘𝑠,𝑥[𝑓𝐴ℎ𝑎𝑡]𝑥 ― 𝑘𝑑,𝑥[𝑝𝐴ℎ𝑎𝑡]𝑥 Eq. 6

170 where ks,x and kd,x are the tissue-specific (denoted for tissue ‘x’ as above) rate constants of incorporation of 

171 Aha into proteins due to synthesis and loss of Aha-labeled proteins due to degradation. These equations 

172 describing Aha labeling of proteins in each tissue were added to the biodistribution model establishing a 

173 time resolved predictive model of tissue-specific protein labeling given a variety of input dosing paradigms.

174 Experimental LC-MS/MS and Western Blotting Data Enables Parameter Fitting  

175 Model parameters were initialized and bound within reasonable ranges, informed from literature 

176 and experimental measurements as described in the methods (Supplements S3-5) (22-25), then underwent 

177 least squares regression to match experimentally measured data of Aha concentration and labeling. To 

178 inform fitting, fAha concentration profiles in plasma and tissues were determined by injecting Aha 

179 subcutaneously into mice at 0.1 mg·g-1 total body weight and sacrificing 0.5-24 h post injection (hpi). 

180 Accurate identification of fAha in each tissue was performed using LC-MS/MS multiple reaction 

181 monitoring (Figure 2A). Additionally, the kinetics of Aha incorporation into tissue proteins were described 

182 by examining the degree of protein labeling within each tissue over the duration of the study. To this end, 

183 tissue homogenates were reacted with biotin-alkyne via copper-catalyzed click reaction, analyzed by 

184 western blotting using a fluorescent streptavidin conjugate and the change in fluorescence intensity relative 

185 to the non-injected controls was measured as an analog for pAha labeling (Figure 2B,C).
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186
187 Figure 2. Free Aha concentration and protein incorporation and turnover kinetics in murine tissues were 
188 determined experimentally to inform the pharmacokinetics model. (A) The concentration profile of fAha 
189 in the plasma and different tissues. The amount of Aha (μg) measured by LC-MS/MS was normalized by 
190 the total plasma volume or tissue mass and averages were plotted over time. (B) Fluorescent western blots 
191 of the tissue homogenates of control non-injected samples (C) and samples collected 0.5 – 24 h post Aha 
192 injection (hpi). (C) Fluorescence intensity of western blot lanes were normalized to that of the respective 
193 control samples and averages were plotted as function of time (n=3 biological replicates).

194 The degree of fluorescent signal normalized relative to the background (rF) measured in relative 

195 fluorescence units (RFU) by semi-quantitative western blotting was assumed to be linearly proportional to 

196 the concentration of pAha using a fluorescent labeling factor, kf. For each tissue (denoted ‘x’) 

𝑟𝐹𝑥 =
𝑠𝑖𝑔𝑛𝑎𝑙 ― 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑  = 𝑘𝑓[𝑝𝐴ℎ𝑎𝑡]𝑥 Eq. 7

(𝑑(𝑟𝐹𝑥)
𝑑𝑡 ) =  𝑘𝑓𝑘𝑠,𝑥[𝑓𝐴ℎ𝑎𝑡]𝑥 ― 𝑘𝑑,𝑥(𝑟𝐹𝑥) Eq. 8
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197 Aha Labeling Captures Relative Protein Synthesis and Turnover Dynamics in Murine Tissues

198 The concentration profiles of fAha in the plasma and tissues peaked between 0.5 and 1 hpi and was 

199 mostly cleared from the system by 12 hpi, with the liver having the earliest peak compared to the other 

200 tissues (Figure 3A-D). The early peak can be attributed to the high blood perfusion of the liver (27), which 

201 likely results in faster distribution equilibrium of Aha into the liver compared to other tissues.

202 In all tissues, maximum protein labeling was observed around 6 hpi (Figure 3E-H). However, the 

203 degree of labeling, represented by the maximum fold increase in fluorescence intensity compared to an 

204 internal control, and the kinetics of protein incorporation and turnover varied considerably between tissues. 

205 The liver showed the highest degree of labeling (Figure 3F) as well as the highest relative rates of Aha 

206 incorporation and protein turnover (Table 1), whereas skeletal muscle had the lowest degree of labeling 

207 (Figure 3E) and the slowest relative rates of incorporation and turnover (Table 1). Interestingly, the amount 

208 of fAha (g) per unit mass tissue (g) was higher in skeletal muscle than in liver (Figure 3A,B), indicating 

209 that the low degree of labeling observed in skeletal muscle is predominantly due to a slow rate of muscle 

210 Aha incorporation, implying a lower rate of Met incorporation and protein synthesis. 

211 The observed differences in fluorescence intensities are in agreement with previous isotope labeling 

212 studies that showed faster protein turnover rates in liver and kidney compared to brain and skeletal muscle 

213 (28-30). Notably, our model estimated a protein half-life in the brain that is 2.7 times higher than the liver 

214 (Table 1), in close agreement with the findings of Price et al. (9 h-1 and 3 h-1 days for brain and liver, 

215 respectively) (29). The discrepancies between previously reported values and the half-lives values estimated 

216 here can be attributed to the shorter timescale of our experimental setup as compared to stable isotope 

217 labeling  technique and the use of semi-quantitative western blotting measurements rather than MS. A more 

218 robust quantitation of pAha concentrations using MS will be required for a more precise determination of 

219 absolute protein kinetics in different murine tissues. 
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220
221 Figure 3. Aha kinetics and protein labeling following subcutaneous injection of Aha. (A-D) The 
222 concentration profiles of free Aha (fAha) in the plasma and different tissues. The amount of Aha (µg) 
223 measured by LC-MS/MS analysis was normalized by the total tissue mass and plotted over time. (E-H) 
224 Relative fluorescence (rF), as measured by western blotting, of proteins isolated from each tissue as a 
225 function of time. Filled points represent mean experimental measurement at each time point, error bars 
226 indicate experimental standard deviation (n = 3 biological replicates). Colored traces indicate best fit of 
227 model to each dataset, with darker and lighter shaded regions showing 95% prediction intervals for residual 
228 error calculated from mean experimental values and all experimental replicates, respectively.

229
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230 Table 1. Protein incorporation and degradation estimated from Aha dynamics. Best fit parameter values 
231 for Aha incorporation, and protein turnover and half-lives in studied tissues.

Parameter, Units Muscle Liver Brain Kidney
Protein turnover rate, h―1 2.23E-2 4.97E-2 2.12E-2 5.06E-2
Protein half-life, h 31.05 13.94 32.6 13.69
Aha Incorporation*, RFU(μg pAha ∙ h)―1 5.36E-4 2.28E-2 6.06E-3 5.43E-2

232 *Relative incorporation rate = 𝑘𝑓 ∙ 𝑘𝑠 ∙ 𝑚𝑡―1, units include RFU per mass pAha.

233 Descriptive Statistics Support Model of Biodistribution and Labeling 

234 Model validity was examined using the following metrics to investigate parameter stability and 

235 goodness of fit. First, a prediction interval of residuals was generated for each tissue studied, for both the 

236 biodistribution and protein labeling models. A 95% prediction interval (PIα=0.05) of residuals was calculated 

237 using all experimental replicates (Figure 3). A second, tighter prediction interval was calculated using the 

238 mean for each time point (Figure 3). For each tissue, the width of  PIα=0.05 from the average line of best fit 

239 (𝑦) can be approximated using a naively informed forecast interval that assumes a normal distribution of 

240 residual error (31).

𝑃𝐼𝛼=0.05(𝑡) =  𝑦(𝑡) ± 1.96 ∗
∑ (𝑦𝑖 ― 𝑦𝑖)2

𝑛 ∗  1 +
1
𝑛 +

(𝑡 ― 𝑡)2

∑ (𝑡𝑖 ― 𝑡)2  Eq. 7

241 where, n is the total number of observations, (ti , yi) are the coordinates for each observation, t is the time 

242 point of the predicted residual, 𝑡 is the average time of all experimental observations. These prediction 

243 intervals demonstrate a narrow range of residual error and capture all experimental means and >95% of 

244 experimental values, indicating an accurate predictive model.  

245 Second, the covariance matrix of least squares regression was used to inform a standard error of 

246 fitting (SEf) for all fitted parameters in the biodistribution model (Supplements S3-S5). SEf describes 

247 variability of each parameter, but also reflects upon the definition of the model. Parameters with best fit 

248 values near to the constraints are less predictable; wide error would be indicative of a poorly constrained 

249 system. Error also increases with the number of fitted parameters, is inversely related to the quantity of data 
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250 points available for fitting, and is weighted by the metric used for optimization. Among all fit parameters, 

251 we found relatively few SEf values greater than best fit values by more than an order of magnitude (Figure 

252 3, Supplements S3-5). Notably, we found that the widest error ranges in parameters that were the least well 

253 characterized in the literature, specifically rates describing tissue import and export of fAha. Low SEf 

254 values, particularly among parameters within reported literature values, support a well characterized model, 

255 although this metric is not fully sufficient to describe a complex non-linear regression. 

256 A more thorough analysis was achieved using Monte-Carlo Latin hypercube sampling (LHS) to 

257 perform efficient sampling of the input parameter space and correlation with partial rank correlation 

258 coefficients (PRCCs). This global sensitivity analysis was performed against several metrics to probe the 

259 influence of variation in parameter values on (1) model fitness (2) predicted Aha labeling levels in each 

260 tissue (rF). To address the first of these, PRCC values, which vary between 1 (perfect positive correlation) 

261 and -1 (perfect negative correlation), were calculated comparing variation in the input parameter values 

262 against the sum of square errors for each fitting model. This analysis generates a PRCC value for each 

263 parameter (PRCCf) that characterizes its relative effect on the fitting metric, and therefore the fitting 

264 process. PRCCf values higher in absolute magnitude indicate parameters that, when varied independently, 

265 have the greatest influence on the fitting metric with values > 0.8 considered as indications of regions of 

266 instability in the model (32, 33). All parameters fall safely below a PRCCf value of 0.3. Parameters with 

267 the highest PRCCf values are those that influence the system removal of fAha, likely due to the rapid 

268 metabolic profile exhibited following subcutaneous injection (Figure 3). PRCCf values for elimination and 

269 import rates into tissues that work actively to remove fAha were > 0.2. 

270 Taken together, PRCCf and SEf values demonstrate that influential parameters are not those with 

271 the widest error ranges (Figure 4, Supplements S5-S7). Furthermore, when comparing these values across 

272 the parameter space, there is no one tissue that exhibits over-sensitive behavior by either metric, beyond 
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273 systemic elimination. These findings provide support for the model definition, boundary constraints, and 

274 biological relevance of best fit parameters.

275
276 Figure 4. Sensitivity analysis for model parameter fitting. Each point represents a distinct parameter from 
277 the model (colored by associated tissues) and coordinates indicate absolute values of normalized standard 
278 error of fitting (nSEf = SEf / best fit value) on the x-axis and PRCCf on the y-axis. Light gray shaded regions 
279 indicate parameters that have either a relatively high model influence (PRCCf > 0.2) or variability (nSEf > 
280 10). The dark grey shaded region indicates a domain where parameters would be considered unstable or 
281 poorly constrained with both a high variability and influence on the model.
282
283 Further application of PRCC analysis allowed examination of the influence of parameter values 

284 upon the predicted degree of Aha labeling in each tissue over time. All model parameters were varied within 

285 their estimated fitting range (Supplements S5-S7) and sampled via LHS (n=10000). An rF value in each 

286 tissue was predicted for each timepoint from 0-24 hpi and the resulting output was correlated to the input 

287 parameter variation using PRCC analysis. Resulting traces elucidate kinetic parameters and physiological 

288 mechanisms that most influence rF during different time domains (Figure 5). For example, immediately 

289 after injection (0-4 hpi), the rate of absorption of Aha from initial injection site (kaSubcu) is a critical 

290 mechanism driving rapid labeling efficiency in all four studied tissues. However, the importance of this 
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291 parameter declines over time, just as the influence of other parameters increases, particularly those 

292 representing Aha degradation and elimination. The influence of liver transport is prominent in all four 

293 tissues indicating the liver plays a major role in Aha kinetics. This suggests Aha may be primarily 

294 metabolized and eliminated by the liver, rather than by eliminated via excretion. This possibility is 

295 consistent with the known liver functions of toxin removal and amino acid metabolism (34).

296
297 Figure 5.Sensitivity analysis of input parameter variation and Aha labeling in tissues over 24 hpi. Each plot 
298 shows the time resolved PRCC values for a selection of parameters using predicted rF in each tissue as a 
299 correlation metric. Parameters shown are either (1) descriptive of dynamics within the relevant tissue or (2) 
300 related to a different tissue, but with a significant influence on the tissue of interest based upon PRCC 
301 values > |0.2|. Trace colors indicate associated tissues (black = systemic param8883eter, blue = liver, orange 
302 = muscle, green = brain, purple = kidney), trace patterns indicate parameter type (solid = fAha transport, 
303 dotted = fAha elimination, dashed = pAha synthesis/degradation,  dot-dashed = tissue mass).
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304
305 Predictive Simulations Accurately Capture Alternate Dosing Paradigms

306 Attaining sufficient protein labeling is critical for accurate identification and quantitation of Aha-

307 labeled proteins using LC-MS/MS. For instance, note the near negligible labeling of skeletal muscle in 

308 Figure 3. If muscle labeling is desired, a much higher Aha dose might be required to attain sufficient 

309 labeling. This underlines the importance of tailoring the dosing regimen of Aha (i.e. amount per dose and 

310 dosing frequency) to the tissue of interest and the biological question under investigation. Using the model 

311 described above, fAha biodistribution and tissue protein labeling can be predicted for alternative dosing 

312 regimens to aid future experimental design and predict labeling efficiency depending on the conditions of 

313 a study. However, the model was based on the concentration of Aha in plasma and tissues over 24 h after a 

314 single subcutaneous injection. While this data was sufficiently robust to develop a well-informed model of 

315 Aha patterning after one subcutaneous dose, the use of this model to predict Aha content for longer time 

316 scales or multiple dose paradigms would generate naïve forecasts. To address this gap, we validated the 

317 predictions of our model against a data set that spans a longer time period and multiple injected doses. The 

318 model was used to predict the rF labeling of brain and liver tissues for two alternative dosing paradigms 

319 with either 12 h repeated doses (hrd) or 24 hrd over a 36 h period (Figure S7). As an internal control for 

320 western blotting variation, these new experimental values were normalized by a shared time point with the 

321 previous study (6 hours post initial injection) for each tissue (Figure 6). 
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322
323 Figure 6. Model accurately predicts relative labeling in the brain and liver with multiple injection doses.  
324 rF experimental data (dots) and model predictions (lines) for (A) 12 hrd and (B) 24 hrd. For each tissue, 
325 experimental replicates from the repeated dose study are displayed at 6, 18, and 32 hpi as individual points. 
326 The solid line is the predicted trace using the best fit model from the original robust dataset. The dashed 
327 line is the model with parameter values refit to the data from the repeated dose experiments. The vertical 
328 dotted line indicates dose injection timepoints.
329
330 To determine the ability of the original model to predict Aha incorporation into proteins in various 

331 tissues, the data from each repeated dose study was used to refit the relative pAha synthesis rate and 

332 degradation for each tissue under each repeated dose paradigm. Relative to the parameter fit with the 

333 original experimental data, there was only a slight reduction in the standard error of regression (SEreg), a 

334 goodness-of-fit metric, between the original and refit parameters in each tissue (Table 2). Additionally, 

335 among all refit parameters, a single parameter was adjusted beyond a single standard error of fit (SEf) from 

336 the original best fit value (12 hrd liver Δ(kf ·ks) ≈  +1.97SE), and only the degradation rate in the brain 

337 changed by >20% (Table 2). 

338 Table 2. Parameter and goodness-of-fit statistics related to the alternative dosing models in Figure 6.
Tissue Parameter, Units Pred. Value (SEf) Refit Value %Δ

𝑘𝑓 ∙ 𝑘𝑠, 𝑅𝐹𝑈(𝜇𝑔 𝑓𝐴ℎ𝑎 ∙ 𝜇𝑔 𝑝𝐴ℎ𝑎 ∙ ℎ)―1 3.16E-4 (2.49E-5) 3.65E-4 + 15.5%
𝑘𝑑, ℎ―1 8.29E-4 (1.80E-4) 8.67E-4 + 4.6%

Liver,
12 hrd

𝑆𝐸𝑟𝑒𝑔, 𝑅𝐹𝑈 1.975 1.684 - 14.7%
𝑘𝑓 ∙ 𝑘𝑠,𝑅𝐹𝑈(𝜇𝑔 𝑓𝐴ℎ𝑎 ∙ 𝜇𝑔 𝑝𝐴ℎ𝑎 ∙ ℎ)―1 4.30E-4 (2.83E-5) 4.84E-5 +12.5%
𝑘𝑑, ℎ―1 3.54E-4 (1.11E-3) 1.37E-4 - 61.3%

Brain,
12 hrd

𝑆𝐸𝑟𝑒𝑔, 𝑅𝐹𝑈 1.147 1.082 - 5.7%
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𝑘𝑓 ∙ 𝑘𝑠,𝑅𝐹𝑈(𝜇𝑔 𝑓𝐴ℎ𝑎 ∙ 𝜇𝑔 𝑝𝐴ℎ𝑎 ∙ ℎ)―1 3.16E-4 (2.49E-5) 3.02E-4 - 4.4 %
𝑘𝑑, ℎ―1 8.29E-4 (1.80E-4) 6.72E-4 - 18.9%

Liver,
24 hrd

𝑆𝐸𝑟𝑒𝑔, 𝑅𝐹𝑈 1.558 1.524 - 2.2%
𝑘𝑓 ∙ 𝑘𝑠, 𝑅𝐹𝑈(𝜇𝑔 𝑓𝐴ℎ𝑎 ∙ 𝜇𝑔 𝑝𝐴ℎ𝑎 ∙ ℎ)―1 4.30E-4 (2.83E-5) 4.28E-5 - 0.5%
𝑘𝑑, ℎ―1 3.54E-4 (1.11E-3) 1.37E-9 - 99.9%

Brain, 
24 hrd

𝑆𝐸𝑟𝑒𝑔, 𝑅𝐹𝑈 0.953 0.916 - 3.9%
339

340 Aha Administration Does Not Perturb Normal Physiology in Mice

341 In addition to the characterization of Aha distribution kinetics in mice, the impact of Aha 

342 administration on normal physiology must be qualified to establish the applicability of the method for in 

343 vivo studies. To this end, the physiological impact of Aha incorporation into newly synthesized proteins 

344 was evaluated using untargeted plasma metabolomic analysis. Since metabolites are the end products of 

345 cellular biological processes, we reasoned that a lag time is expected between potential changes in protein 

346 functions due to Aha incorporation and any associated effects on metabolism. Therefore, given that 

347 maximum protein labeling occurred ~ 6 hpi (Figure 2B,C and Figure 3E-H), we analyzed the plasma 

348 metabolome 24 hpi to identify any potential changes in metabolic pathways in response to Aha 

349 incorporation. 

350 LC-MS metabolomic analysis of the plasma identified a total of 1268 mass features (i.e. 

351 metabolites). The peak area of each mass feature is proportional to the amount of the corresponding ion in 

352 the sample and was used as a measurement for the relative abundance of each identified metabolite across 

353 samples. Principal component analysis (PCA) revealed no distinct segregation between the control and Aha 

354 mice, indicating that there were no global differences in the plasma metabolome between the two groups 

355 (Figure 7A). 

356 It should be noted that PCA cannot be performed in the presence of missing values. The occurrence 

357 of missing values is common in untargeted metabolomic data, resulting from the presence of metabolites 

358 with concentrations that are lower than the MS detection limit or due to technical reasons such as incomplete 
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359 ionization or inaccurate peak detection [35]. In our dataset, a total of 194 (2.5%) missing values were 

360 detected across all samples. Since the percentage of missing values was low, it was assumed that the 

361 potential impact of missing values is insignificant [36]. Therefore, the remaining 1112 mass features were 

362 used for PCA (Figure 7A). To confirm the validity of this approach, PCA was also conducted on the dataset 

363 after missing value imputation using the K-nearest neighbor (KNN) method and showed similar indistinct 

364 grouping of the injected and control mice (Figure S8A).

365 In addition to PCA, unsupervised hierarchical clustering analysis (HCA) was conducted and a 

366 heatmap was generated to examine variations in metabolic patterns between the Aha and control groups 

367 (Figure 7B). HCA and heatmap visualization showed no clustering between the biological replicates of 

368 each group and no distinct differential abundance patterns between the two groups. This result further 

369 establishes that there are no substantial metabolic differences between control and injected mice. Similar to 

370 PCA, HCA performed using the dataset imputed via the KNN method resulted in indistinct clustering of 

371 the mice (Figure S8B).  

372 Following global analysis using PCA and HCA, Student’s t-test was employed to identify 

373 metabolites that were differentially regulated between the two groups. In this analysis, a total of 15 out of 

374 1112 metabolites were differentially abundant using a p-value of 0.05 and a fold change of > 2 as cut-offs 

375 (Figure 7C). Of the 15 metabolites, 3 were upregulated and 12 were downregulated in Aha-treated mice 

376 compared to the control. Searching the 15 metabolites in the METLIN metabolite database using a mass 

377 tolerance of 5 ppm did not identify any known metabolite. The presence of a large number of unknown 

378 mass features is an intrinsic characteristic of untargeted metabolomic studies due to the complexity of the 

379 mammalian metabolome and the lack of structure characterization of a large number of metabolites (35, 

380 36). Yet, the fact that only ~1.3% of metabolites were dysregulated, and that these dysregulated metabolites 

381 did not belong to any of the known major metabolic pathways, signifies that minimal metabolic alterations 

382 occur due to Aha administration. 
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383
384 Figure 7. Aha administration does not significantly change the murine plasma metabolome. (A) Principal 
385 component analysis (PCA) showed no clear separation between control and Aha-treated groups in the first 
386 two components. Components 1 and 2 account for 39.6% and 28.6% of the total data variability, 
387 respectively. Green and red dots denote control and Aha samples, respectively. Green and red shaded areas 
388 represent the 95% confidence bands of the control and Aha samples, respectively. (B) Heat map of 
389 unsupervised hierarchal clustering analysis (HCA) of the identified metabolites show lack of clustering 
390 between replicates of each group. Color scale indicates metabolite abundance; blue: lowest, red: highest. 
391 (C) Volcano plot comparing the relative abundance of the identified metabolites between control and Aha 
392 groups according to statistical significance and fold change. Horizontal line indicates p-value = 0.05 and 
393 vertical lines indicate + 2-fold change. Grey, red and blue circles denote equally-abundant, upregulated 
394 and downregulated metabolites, respectively.

395 Finally, to identify the metabolic pathways covered by the LC-MS analysis, analysis of equally-

396 expressed metabolites was conducted using Metaboanalyst and the Kyoto Encyclopedia of Genes and 
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397 Genomes (KEGG) metabolic pathway database (37). Several metabolic pathways were detected, including 

398 arachidonic acid metabolism, vitamin B6 metabolism, valine, leucine and isoleucine biosynthesis, galactose 

399 metabolism, and cysteine and Met metabolism (Table S9). This result indicates that the LC-MS analysis 

400 identified metabolites that belong to various metabolic pathways and that these pathways are not 

401 significantly changed in mice injected with Aha. 

402 Collectively, the metabolomic analyses demonstrate that Aha administration does not significantly 

403 alter the murine plasma metabolome. This is in agreement with a recent study that investigated the 

404 metabolic effect of growing E.coli in media supplemented with ncAAs (38). A major advantage of our 

405 labeling technique is that it does not involve Met restriction or depletion as the case with other labeling 

406 strategies that use a Aha-enriched Met-free diet. Met dietary restriction has been shown to alter the 

407 metabolism in mouse models and in humans (39-41). Being a principle sulfur-containing amino acid, Met 

408 restriction specifically alters Met and sulfur metabolism (40, 41). Notably, the results of the pathway 

409 analysis identified several unchanged metabolites such as L-homocysteine, 5'-Methylthioadenosine, and 3-

410 sulfinoalanine that belong to cysteine (another sulfur-containing amino acid) and Met metabolism (Table 

411 S9), indicating the advantage of the injection method with regards to its potential impact on metabolic 

412 functions. 

413 Methods

414 Animal Model

415 Animals used in these studies were derived from female age-matched wild-type C57BL/6 mice 

416 (Mus musculus) purchased from The Jackson Laboratory. All experimental protocols were performed in 

417 compliance with established guidelines and all methods were approved by Purdue Animal Care and Use 

418 Committee (PACUC, protocols# 1209000723 and 1801001682). PACUC requires that all animal programs, 
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419 procedures, and facilities at Purdue University abide by the policies, recommendations, guidelines, and 

420 regulations of the United States Department of Agriculture (USDA) and the United States Public Health 

421 Service (USPHS) in accordance with the Animal Welfare Act and Purdue’s Animal Welfare Assurance.

422 Aha Injection, and Plasma and Tissue Collection

423 L-azidohomoalanine (Aha; Click Chemistry Tools) was resuspended in 1 × phosphate buffered 

424 saline (PBS) to 10 mg·mL-1, adjusted to pH 7.4, sterile filtered and stored at -20C. All Aha injections were 

425 administered subcutaneously at 0.1 mg·g-1 total mouse weight. Mice (n = 3, biological replicates) were 

426 euthanized 0.5, 1, 2, 4, 6, 12 and 24 h post injection (hpi). Blood was harvested by cardiac puncture, 

427 collected in EDTA-treated tubes and centrifuged at 1,500 × g for 10 min at 4°C. The supernatant (plasma) 

428 was transferred into a new tube, snap frozen in liquid nitrogen and stored at -80°C. Liver, brain, kidney and 

429 hindlimb skeletal muscle tissues were dissected at each time point, snap frozen in liquid nitrogen and stored 

430 at -80°C. Control plasma and tissues were collected as described above from non-injected mice (n = 3 

431 biological replicates). For the validation of model predictive ability, two Aha dosing regimens were used: 

432 (1) 12 h repeated doses (hrd) and (2) 24 hrd. Liver and brain tissues (n = 3 biological replicates) were 

433 dissected as described above at 6, 18,  and 32 hpi, snap frozen in liquid nitrogen and stored at -80°C.  

434 Sample Preparation for Aha Analysis

435 For plasma sample preparation, 50 µL of plasma were mixed with 10 µL of 1 × PBS, pH 7.4, and 

436 5 µL of 100 ng·µL-1 L-α-aminobutyric acid (α-ABA; Sigma Aldrich) that was used as an internal standard. 

437 12.5 µL of trichloroacetic acid (TCA; Sigma Aldrich) were added to the mixture to precipitate proteins. 

438 The mixture was incubated for 10 min at 4°C and centrifuged at 16,000 × g for 10 min at RT. The 

439 supernatant was then mixed with 100% acetonitrile (ACN; Fisher Scientific) at a 1:1 ratio (v/v). The mixture 

440 was transferred to an HPLC autosampler vial for LC-MS/MS analysis. For calibration curve generation, 
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441 Aha standards were prepared by mixing 50 µL of non-injected plasma with 10 µL of a known concentration 

442 of Aha and 5 µL of α-ABA. Proteins were then precipitated with TCA and prepared for LC-MS/MS analysis 

443 as described above.

444 For tissue sample preparation, tissues were rinsed with ice-cold 1 × PBS, pH 7.4 to remove residual 

445 blood and homogenized in ice-cold 1 × PBS, pH 7.4 using a TissueRuptor (Qiagen). The final homogenate 

446 weight was measured and converted to volume by using a homogenate density of 1 g·mL-1. Samples were 

447 then prepared for LC-MS/MS analysis as described for plasma by using 50 µL of the tissue homogenate. 

448 The remaining plasma samples and tissue homogenates were snap frozen and stored at -80°C until use for 

449 western blot and untargeted metabolomic analyses as described below. 

450 LC-MS/MS Targeted Analysis of Aha

451 An Agilent 1260 Rapid Resolution liquid chromatography (LC) system coupled to an Agilent 6470 

452 series QQQ mass spectrometer was used for Aha analysis (Agilent Technologies). An Intrada Amino Acid 

453 2.0 mm x 150 mm, 3.0 µm column (Imtakt Corporation) was used for LC separation. The buffers were (A) 

454 ACN, 0.3 % formic acid (FA; Sigma Aldrich) and (B) ACN/100 mM ammonium formate (20/80 v/v). The 

455 linear LC gradient was as follows: time 0 min, 20 % B; time 5 min, 20 % B; time 11 min, 35 % B; time 20 

456 min, 100 % B; time 22 min, 100 % B; time 22.5 min, 20 % B; time 30 min, 20% B. The flow rate was 0.3 

457 mL·min-1. Multiple reaction monitoring (MRM) was used for MS analysis. Data were acquired in a positive 

458 electrospray ionization (ESI) model based upon parameters in Table 3. The jet stream ESI interface had a 

459 gas temperature of 325°C, gas flow rate of 9 L·min-1, nebulizer pressure of 35 psi, sheath gas temperature 

460 of 250°C, sheath gas flow rate of 7 L·min-1, capillary voltage of 3500 V in a positive mode, and nozzle 

461 voltage of 1000 V. The delta electron multiplier voltage was 300 V. Agilent MassHunter Quantitative 

462 Analysis software was used for data analysis (v.8.0).  

463
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464 Table 3. Multiple reaction monitoring (MRM) table for amino acid LC-MS/MS data acquisition

Compound name Precursor ion (m/z) Product ion (m/z) Collision energy (eV)
Aha 145.1 101.3 5
Aha 145.1 71.3 10
Aha 145.1 58.3 40
Ala 90 44 15
Arg 175 116 18
Asn 133 87 12
Asp 134 88 14
Cys 122 76 15
Cys-Cys 241.1 152 15
Gln 147 84 22
Glu 148 130 12
Gly 76 30 15
His 156 110 19
Ile 132 86 15
Leu 132 86 15
Lys 147 84 20
Met 150 104 15
Phe 166 120 15
Pro 116 70 15

465
466 Western Blot Analysis of Aha-Labeled Tissues

467 Tissue homogenates were thawed and protein concentration was measured using the Pierce 660 nm 

468 Protein Assay (ThermoFisher Scientific). 200 µg of tissue homogenate was alkylated with 40 mM 

469 iodoacetamide for 30 min at RT in the dark with end-over-end rotation. Samples were then reacted for 2 h 

470 at RT with the following click reagents: 50 μM biotin-alkyne (ThermoFisher Scientific), 5 mM tris(3-

471 hydroxypropyltriazolylmethyl)amine (THPTA; Click Chemistry Tools), 2 mM copper sulfate, 20 mM 

472 aminoguanidine and 10 mM sodium ascorbate. Following the click reaction, proteins were precipitated by 

473 adding ice-cold 100% acetone to the samples at a 4:1 ratio (v/v). Samples were incubated overnight at -

474 20ºC, centrifuged at 21,100 × g for 20 min at 4ºC, supernatants were discarded, and protein pellets were 

475 vacuum-dried for 15 min at RT using a CentriVap (Labconco). Dried pellets were resuspended in 8 M urea 

476 in 1× PBS and centrifuged at 16,000 × g for 15 min at RT to remove insoluble particles. The supernatants 
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477 were transferred into new tubes and protein concentration was measured using the Pierce 660 nm Protein 

478 Assay (ThermoFisher Scientific). Proteins were resolved on 4 – 20% SDS-PAGE gels (BioRad), transferred 

479 to a PVDF membrane (ThermoFisher Scientific) using the Trans-Blot Turbo Transfer System (BioRad) and 

480 probed overnight at 4°C with IRDye 680 Streptavidin (LICOR) diluted 1:3000 in 1:1 TBST:Blocking 

481 Buffer (BioRad). Membranes were imaged using an Azure Biosystems c600. Western blot images were 

482 analyzed using ImageJ (National Institutes of Health) to calculate the mean fluorescence intensities of each 

483 time point. The intensity of the control sample was used to normalize the intensity of each time point (n = 

484 3 biological replicates per blot).

485 Kinetic Modelling of Aha Distribution

486 Simulations were run on a Lenovo Yoga with an Intel Core i7-8550U CPU @ 1.8 GHz and 8 GB 

487 RAM. Simulations were performed using custom modeling scripts written in Python 3.6 (Supplement S1). 

488 Systems of ordinary differential equations (Supplement S2) were solved using a flexible high order solver 

489 from the SciPy python package (42).  Most parameter values and ranges for fitting were informed from 

490 reported literature values or experimental measurements from this study. For parameters related to an 

491 experimental output ([fAha] or rF) without a reported literature value, an initial best estimate was selected 

492 to produce a single time-step change one order of magnitude lower than the maximum recorded 

493 experimental value. These parameters were then allowed to fit within a range of 1.5 orders of magnitude 

494 from the initial estimate. Parameters were fit with a least squares minimization algorithm from ‘Lmfit’, a 

495 prebuilt python library (43). All best fit values and boundary conditions can be found in the parameter tables 

496 (Supplements S3-5). 

497 Parameter Sensitivity Analysis and Model Validation 

498 To effectively sample the input parameter space, Latin hypercube sampling (LHS) was utilized to 

499 generate unique parameter sets (n = 10000), sweeping each parameter value through a range defined by the 

500 boundary constraints from literature (Tables S3-S5) as previously detailed (32, 33). Global sensitivity 
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501 analysis was performed on the LHS generated parameter sets using partial rank correlation coefficient 

502 (PRCC) analysis. This analysis quantifies the sensitivity of an output variable on the variation in input 

503 parameter values (32, 33). Here, PRCCs were determined for each of the 19 fitted parameters (Table S3) 

504 and 12 static parameters (Table S4) in the biodistribution model, as well as for all 8 parameters in the protein 

505 incorporation model (Table S5). PRCCs were used to characterize the influence of each parameter on the 

506 sum of square errors (SSE), the optimization metric for non-linear regression. Simulations used to inform 

507 PRCCs were performed on the Brown Supercomputing Community Cluster at Purdue University (44), with 

508 each simulation run on a single node with dual 12-core Intel Xeon Gold "Sky Lake" CPUs @ 2.60 GHz 

509 and 96 GB of memory.

510 The standard error of fitting was determined for the 19 fitted parameters (Table S3) in the 

511 biodistribution model and for all 8 fitted parameters (Table S5) in the protein incorporation model. Standard 

512 error values were determined from the covariance matrix during non-linear regression using the built-in 

513 functionalities of the ‘Lmfit’ python library (43).

514 Plasma Sample Preparation for Untargeted Metabolomic Analysis

515 The plasma metabolome of non-injected control samples (n = 3 biological replicates) and samples 

516 collected 24 h post Aha injection (n = 3 biological replicates) was extracted by adding methanol: 

517 chloroform: water (1:1:1 v/v) to 80 μL of each plasma sample. Samples were vortexed briefly and 

518 centrifuged at 8,000 × g for 5 min at RT. The upper layer was transferred into a new tube and vacuum-dried 

519 overnight at RT. The dried fraction was reconstituted in 75 μL 5% ACN and 0.1% FA. Reconstituted 

520 samples were sonicated for 5 min, centrifuged at 16,000 × g for 8 min at RT, and the supernatants were 

521 transferred to HPLC autosampler vials.
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522 Untargeted LC-MS Metabolomic Analysis

523 Separations were performed on an Agilent 1290 UPLC system (Agilent Technologies). The 

524 metabolites were analyzed using a Waters Acquity HSS T3 column (1.8 µm, 2.1 × 100 mm), with a mobile 

525 phase flow rate of 0.45 mL·min-1, where the mobile phase A and B were 0.1% FA in double distilled water 

526 and ACN at a 1:1 ratio, respectively. Initial conditions were 100:0 A:B, held for 1 minute, followed by a 

527 linear gradient to 20:80 at 16 min, then 5:95 at 22.5 min. Column re-equilibration was performed by 

528 returning to 100:0 A:B at 23.5 min and holding until 28.5 min.  

529 The mass analysis was obtained using an Agilent 6545 Quadrupole Time of Flight (Q-TOF) MS with ESI 

530 capillary voltage +3.2 kV, nitrogen gas temperature 325 °C, drying gas flow rate 8.0 L·min-1, nebulizer gas 

531 pressure 30 psig, fragmentor voltage 130 V, skimmer 45 V, and OCT RF 750 V. MS data scans (m/z 70-

532 1000) were collected using Agilent MassHunter Acquisition software (v.B.06). Mass accuracy was 

533 improved by infusing Agilent Reference Mass Correction Solution (G1969-85001). MS/MS was performed 

534 in a data-dependent acquisition mode on composite samples.  

535 Metabolomic Data Statistical Analysis

536 Peak deconvolution and integration were performed using Agilent ProFinder (v.10.0). 

537 Bioinformatic analyses were performed using Agilent Mass Profiler Professional (v.13.1). 

538 Chromatographic peaks were aligned across all samples. Peak areas were normalized by log2-

539 transformation and applying a 75% percentile shift. Metabolites were filtered out if present in only one 

540 sample. Furthermore, only metabolites present in all 3 replicates of either the control or Aha injected 

541 samples were included. Statistical analysis was performed using unpaired student’s t-test. Metabolites with 

542 P < 0.05 and fold change > 2 were considered significant. Peak annotations were performed using the 

543 METLIN metabolite database, with a mass error of less than 5 ppm. Identifications were aided by MS/MS 
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544 spectra comparisons. Principal component analysis (PCA), hierarchal clustering analysis (HCA) and 

545 metabolic pathway analysis were performed using MetaboAnalyst v.5.0.

546 Conclusions

547 Here, we report for the first time the biodistribution kinetics of the widely used Met analog, Aha, 

548 in murine tissues, as well as the associated relative rates of incorporation of Aha into protein via protein 

549 synthesis and loss via metabolism and protein turnover. These results showed that liver and kidney have 

550 faster protein synthesis and turnover rates compared to brain and skeletal muscle, which is consistent with 

551 previous studies that utilized isotope labeling (29). We also demonstrated that subcutaneous injection 

552 allows for observing maximum protein labeling in a relatively short time (~ 6 h), which enables studying 

553 proteins with shorter half-lives, in contrast to the traditional method of introducing the ncAA in diet or 

554 using isotope-labeled amino acids. To support these findings, we developed a mathematical framework that 

555 described the distribution kinetics of Aha in murine tissues and its relation to the degree of protein labeling 

556 and computed the relative rates of protein synthesis and turnover. We further validated this framework for 

557 predictive modeling of Aha labeling against an experimental dataset including two different repeated 

558 injection dosing paradigms to demonstrate its efficacy as a tool for future experimental design. Finally, we 

559 investigated the impact of Aha administration on the plasma metabolome and demonstrated that Aha 

560 incorporation into cellular proteins does not have adverse effects on the normal physiology of mice. This 

561 observation further confirms previous results from our group that demonstrated that ncAAs do not affect 

562 the gross behavior nor the physical appearance of treated mice.

563 Data Availability

564 All relevant data are within the manuscript and its Supporting Information files. Model and code files can 

565 be found at our lab’s GitHub repository  

566 (https://github.itap.purdue.edu/TamaraKinzerursemGroup/ncAABiokinetics)

567
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