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17 Abstract

18 Predictive approaches such as virtual screening have been used in drug discovery with the 

19 objective of reducing developmental time and costs. Current machine learning and network-

20 based approaches have issues related to generalization, usability, or model interpretability, 

21 especially due to the complexity of target proteins’ structure/function, and bias in system 

22 training datasets. Here, we propose a new computational method “DRUIDom” to predict bio-

23 interactions between drug candidate compounds and target proteins by utilizing the domain 

24 modularity of proteins, to overcome problems associated with current approaches. 

25 DRUIDom is composed of two methodological steps. First, ligands/compounds are 

26 statistically mapped to structural domains of their target proteins, with the aim of identifying 

27 physical or functional interactions. As such, other proteins containing the mapped domain or 
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28 domain pair become new candidate targets for the corresponding compounds. Next, a 

29 million-scale dataset of small molecule compounds, including the ones mapped to domains 

30 in the previous step, are clustered based on their molecular similarities, and their domain 

31 associations are propagated to other compounds within the same clusters. Experimentally 

32 verified bioactivity data points, obtained from public databases, are meticulously filtered to 

33 construct datasets of active/interacting and inactive/non-interacting compound–target pairs 

34 (~2.9M data points), and used as training data for calculating parameters of compound–

35 domain mappings, which led to 27,032 high-confidence associations between 250 domains 

36 and 8,165 compounds, and a finalized output of ~5 million new compound–protein 

37 interactions. DRUIDom is experimentally validated by syntheses and bioactivity analyses of 

38 compounds predicted to target LIM-kinase proteins, which play critical roles in the regulation 

39 of cell motility, cell cycle progression, and differentiation through actin filament dynamics. 

40 We showed that LIMK-inhibitor-2 and its derivatives significantly block the cancer cell 

41 migration through inhibition of LIMK phosphorylation and the downstream protein cofilin. 

42 One of the derivative compounds (LIMKi-2d) was identified as a promising candidate due to 

43 its action on resistant Mahlavu liver cancer cells. The results demonstrated that DRUIDom 

44 can be exploited to identify drug candidate compounds for intended targets and to predict 

45 new target proteins based on the defined compound–domain relationships. The datasets, 

46 results, and the source code of DRUIDom are fully-available at: 

47 https://github.com/cansyl/DRUIDom.

48 Author Summary

49 Drug development comprises several interlinked steps from designing drug candidate 

50 molecules to running clinical trials, with the aim to bring a new drug to market. A critical yet 

51 costly and labor-intensive stage is drug discovery, in which drug candidate molecules that 

52 specifically interact with the intended biomolecular target (mostly proteins) are identified. 

53 Lately, data-centric computational methods have been proposed to aid experimental 

54 procedures in drug discovery. These methods have the ability to rapidly assess large 
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55 molecule libraries and reduce the time and cost of the process; however, most of them suffer 

56 from problems related to producing reliable biologically relevant results, preventing them 

57 from gaining real-world usage. Here, we have developed a new method called DRUIDom to 

58 predict unknown interactions between drugs/drug candidate compounds and biological 

59 targets by utilizing the modular structure of proteins. For this, we identify the domains, i.e., 

60 the evolutionary and functional building blocks of proteins, where these potential drug 

61 compounds can bind, and utilize this information along with protein domain annotations to 

62 predict new drug targets. We have tested the biological relevance of DRUIDom on selected 

63 proteins that play critical roles in the progression of numerous types of cancer. Cell-based 

64 experimental results indicated that predicted inhibitors are effective even on drug-resistant 

65 cancer cells. Our results suggest that DRUIDom produces novel and biologically relevant 

66 results that can be directly used in the early steps of the drug discovery process.

67

68 1. Introduction

69 Drug development is an expensive and lengthy process, the cost of developing a new drug 

70 in the USA has been estimated at about $1.8 billion and it takes on average 13 years [1]. 

71 One of the major factors affecting the cost is the attrition rate of drug candidates in late-

72 stage development due to unexpected side effects and toxicity problems, arising from 

73 previously unknown off-target interactions [2]. Indeed, the identification of molecular 

74 interactions between drug compounds and the intended target biomolecule(s) is the key to 

75 understanding and generating improved molecular designs leading to greater specificity. In 

76 the last decades, systematic high throughput screening (HTS) of large collections of 

77 chemical compounds has been widely utilized with the purpose of efficient lead identification, 

78 as well as efficacy evaluation and toxicity assessment [3]. Despite its advantages over 

79 previous strategies, HTS is an expensive technique that can only be afforded by big pharma. 

80 Furthermore, considering the combinations between millions of small molecule drug 
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81 candidate compounds and thousands of potential protein targets, the combinatorial number 

82 of experiments is extremely high, which is not possible to experimentally evaluate.

83 Over the last two decades, computational approaches have been developed with the 

84 objective of aiding experimental studies in drug discovery, defining a new field entitled 

85 "virtual screening" or "drug/compound – target protein interaction (DTI) prediction" [4-6]. 

86 Here, the aim is to predict unknown compound – target interactions with the construction 

87 and application of statistical models, using various types of molecular descriptors [7]. There 

88 are two distinct approaches to virtual screening. In the ligand-based approach, new chemical 

89 substances are predicted as binders of the intended target biomolecules. This is usually 

90 done by calculating molecular similarities between the drug/compound that is known to 

91 interact with the intended protein and other chemical substances in the library, thus, 

92 returning the most similar ones as predictions via “guilt by association” [8]. Since the 

93 predicted ligands of a target are usually limited to the compounds that are highly similar to its 

94 known ligands, discovering new scaffolds is difficult with this approach. In structure-based 

95 virtual screening methods, 3-D structural information of known ligand – receptor complexes 

96 are used to model the interactions and predict new DTIs with similar interactive properties 

97 [9]. Structure-based virtual screening is a costly process due to both highly intensive 

98 computational processes and challenges associated with obtaining 3-D structures of both 

99 protein and receptor-ligand complexes [2]. As a result, they are mostly limited to the well-

100 characterized portion of the target protein space. New computational approaches have 

101 emerged to address these issues by adopting machine learning and/or network analysis 

102 techniques [10-14]. There are cases where the drug candidate compounds, first discovered 

103 by virtual screening, or via computer-aided drug discovery in general, became approved 

104 drugs [4,15].

105 DTI prediction methods usually require large training datasets (i.e., experimentally verified 

106 interaction information between compounds and proteins), to build accurate models. 

107 Bioactivity databases such as PubChem [16] and ChEMBL [17] curate and publish in vitro 
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108 and in vivo bioassays, in the form of compound – target bioactivity measurements, which are 

109 used by DTI predictors as training data. The open-access data presented in these resources 

110 are extremely valuable for the research community; however, it is still difficult to find data 

111 concerning less-studied targets, which prevents building predictive models for these less 

112 common targets. Besides, the information in these databases is typically incomplete, 

113 meaning that there are many unknown interactions for the compounds and the targets 

114 presented in these resources, an aspect that is especially critical for estimating the off-target 

115 effects of the drug candidate compounds. Nevertheless, computational predictions 

116 concerning under-studied targets and never-before-targeted proteins is an important topic 

117 that may help researchers to assess the druggability of these proteins and develop new 

118 therapeutic approaches. 

119 Modelling the interaction between compounds and proteins is a difficult task especially due 

120 to the fact that molecular interactions between proteins and compounds are complex, also, 

121 many proteins expressed by the human genome are yet to be structurally characterized. In 

122 this sense, it is critical to reduce the complexity to a level where the modelling is feasible, the 

123 required data is available at large scale and the results produced are biologically relevant. 

124 Proteins have modular structures made up of functional building blocks called domains. 

125 Domains can fold, function, and evolve independently from the rest of the protein [18]. 

126 Protein regions that correspond to domains are evolutionarily highly conserved since 

127 mutations in these functionally critical regions may lead to adverse consequences for the 

128 organism. Once they are identified on the structures of characterized proteins, domains can 

129 be detected (i.e., predicted) on structurally uncharacterized proteins by constructing domain 

130 sequence profiles and by searching for these profiles on the amino acid sequences of 

131 uncharacterized proteins [19,20]. Thanks to this application, domain/family annotation 

132 coverage is considerably high on the documented protein sequence space in the UniProt 

133 Knowledgebase (UniProtKB), i.e., 96.7% for UniProtKB/Swiss-Prot and 81.3% for 

134 UniProtKB/TrEMBL. A few literature studies have investigated the relationship between 
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135 domains and small molecules within the perspective of drug discovery and repositioning. For 

136 instance, Li et al. characterized the experimentally known binding interactions between 

137 domains and small molecules using data from Protein Data Bank (PDB). Consequently, they 

138 constructed a drug-domain network and used this to interpret modules of similar ligands and 

139 domains [21]. Kruger et al. proposed a simple heuristic to map Pfam domains to small 

140 molecules using ChEMBL bioactivity data as the source. The authors investigated the 

141 structural relevance of the idea of mapping domains to Pfam profiles with statistical tests and 

142 concluded that their heuristic produced accurate results [22,23]. In a recent study, Kobren 

143 and Singh identified interactions between Pfam family/domain entries and various types of 

144 ligands using PDB co-complex structures. Their system InteracDome, employs the positional 

145 correspondence between Pfam HMMs and amino acid sequences of the protein chains in 

146 PDB structures, together with known ligand-binding regions on the same protein chains, to 

147 predict the interacting receptor-ligand pairs [24]. Despite generating highly accurate 

148 mappings, InteracDome's coverage is limited on the small molecule ligand side due to its 

149 reliance on PDB co-complex structures. These studies laid the foundation for the idea of 

150 associating small molecule binding to protein domains but they have neither proposed a 

151 complete end-to-end prediction pipeline, nor leveraged the advantage of using large-scale 

152 experimental bioactivity data accumulated in public databases such as PubChem and 

153 ChEMBL. Consequently, there is a clear requirement for new computational DTI prediction 

154 methods/tools, capable of producing reliable and consistent results by using all available 

155 data in data resources to aid experimental procedures in the field of drug discovery and 

156 repositioning.

157 In this study, we propose a new computational method called DRUIDom (DRUg Interacting 

158 Domain prediction) for the comprehensive prediction of interactions between drugs/drug-like 

159 compounds and target proteins to aid experimental and computational research in drug 

160 discovery and repositioning. DRUIDom is based on associating compounds (i.e., small 

161 molecule ligands) with complementary protein domains. The assumption behind the 
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162 mapping between domains and compounds is that, either the binding region of the ligand is 

163 on the mapped structural domain(s), or there is a functional relationship between the two, so 

164 that the mapped domain is required for the corresponding bioactivity to occur. Consequently, 

165 it is highly probable that other proteins containing the mapped domain (or combination of 

166 domains) will possess the required structural/functional properties to interact with the 

167 compound of interest. DRUIDom employs a supervised modelling approach, where the 

168 manually curated DTI information in ChEMBL and PubChem databases are used in 

169 combination with the protein sequence and annotation information in the UniProtKB [25] and 

170 the InterPro databases [20], for the construction of the predictive model. The resulting 

171 predictions cover compound and human target protein spaces recorded in the above-listed 

172 data repositories. In DRUIDom, we also evaluated compound to domain pair mappings, in 

173 order to account for the cases where multiple domains are required for the indented ligand 

174 interaction.

175 Our focus here was developing a complete chemogenomics-based drug/compound – target 

176 protein interaction prediction system with a global perspective without focusing on certain 

177 target families. For this, we constructed a large source bioactivity dataset and applied a 

178 scoring-based heuristic to generate the compound – domain associations, which are then 

179 propagated to other drug-like compounds and potential target proteins in the massive 

180 chemogenomics space to produce DTI predictions at large scale.  We believe this study will 

181 provide valuable information for estimating both novel on-target and off-target effects of 

182 drugs and drug candidate compounds.

183 With the aim of validating DRUIDom, we selected the PI3K/AKT/mTOR signalling pathway 

184 for our experimental use-case study. PI3K/AKT/mTOR pathway is altered during the 

185 progression of various cancer types [26]. Therefore, it is therapeutically relevant to target 

186 this pathway. In this sense, we analyzed interacting compound predictions for 

187 PI3K/AKT/mTOR pathway proteins, resulting in 116 novel ligand predictions for four targets 

188 (i.e., MDM2, VEGFA, LIMK1, and LIMK2). 
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189 The invasiveness of cancer cells is based on the changes in control mechanisms that 

190 regulate cytoskeletal remodeling and cell migration. LIMK proteins (i.e., serine/threonine-

191 protein kinases) play important roles in metastasis by phosphorylating cofilin proteins which 

192 are involved in the dynamic remodeling of actin filaments [27]. Recent studies have shown 

193 that inhibition of LIMKs, combined with other kinase inhibitors, is effective for various tumor 

194 cells in terms of decreasing their proliferative and metastatic features [28]. LIMKs are 

195 required for the collective invasion by taking roles in invadopodium formation and 

196 extracellular matrix degradation in cancer cells [29,30]. It has been reported that an 

197 overexpressed LIMK1 in breast and prostate cancer cells resulted in increased cell motility, 

198 and invasion capacity was attenuated when the inhibitors of upstream regulators of LIMKs 

199 are administered [31]. Therefore, we focused on LIMK1 and LIMK2 proteins for the in vitro 

200 experimental validation of the proposed method. We synthesized both the 4 initially 

201 predicted compounds and their 4 novel derivatives. The bioactivities of these small molecule 

202 compounds were analyzed on transformed normal cells and cancer cell lines. The results of 

203 these experimental assays, which are described in the following sections, validated the 

204 computational predictions and indicate potential novel inhibitors for LIMK1 and LIMK2 

205 proteins that can be further investigated for their anti-migratory effects.

206

207 2. Results

208 Our source/training dataset is composed of 2,869,943 drug/compound – target protein pair 

209 data points (1,637,599 actives and 1,232,344 inactives) between 1,033,581 compounds and 

210 3,644 target proteins. Using drug/compound – target associations contained in this dataset, 

211 we first mapped compounds to domains, then, we produced DTI predictions by propagating 

212 mappings to new compounds and new proteins (Figure 1). Detailed information about the 

213 procedure is given under 4.2.1 of the Methods section. Below, we first explained the 

214 conducted main test together with its results (section 2.1), serving both as a guide to 
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215 determine the mapping parameters/thresholds and as a predictive performance analysis of 

216 DRUIDom. This is followed by the detailed analysis of compound – domain pair mappings in 

217 comparison with single domain mappings (section 2.2), large-scale production of new 

218 drug/compound – target protein interaction predictions (section 2.3), a validation use-case 

219 study on hepatocellular carcinoma disease (section 2.4) with molecular docking of selected 

220 novel inhibitor predictions for LIMK proteins as an in silico validation of DRUIDom (section 

221 2.4.1), and the wet-lab in vitro analysis of LIMK inhibition with the treatment of predicted 

222 inhibitors via chemical syntheses and cell-based assays (section 2.4.2).

223 Figure 1. (a) The overall representation of the drug/compound – target protein interaction 

224 prediction approach used in DRUIDom (the diagram only depicts the relationship in terms of 

225 physical binding; however, DRUIDom also covers functional relationships between domains 

226 and compounds); (b) drug/compound – domain mapping procedure and its scoring over two 

227 representative (c1, c2) toy examples.

228 2.1 Predictive Performance Analysis

229 The performance of DRUIDom was measured over the success of the mappings between 

230 the compounds and domains, since compound – domain mappings are at the core of the 

231 whole predictive process. As the reference benchmark (i.e., performance test) dataset, 

232 experimentally identified binding between proteins and small molecule compounds (i.e., co-

233 complex structures) has been employed. For this, we used InteracDome (the non-redundant 

234 representable list - v0.3) mappings [24] as our reference (i.e., gold-standard / benchmark) 

235 dataset, and calculated the performance of our compound – domain mapping procedure, for 

236 arbitrarily selected mapping score threshold values. In the InteracDome representable non-

237 redundant set, there are 15,593 high-quality mappings indicating the interactions between 

238 2,375 Pfam family/domain entries and 1,522 drug-like small molecules. It is important to note 

239 that InteracDome focuses on the cases of physical binding, whereas we aimed to account 

240 for both physical and functional relationships between domains and small molecule 
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241 compounds. The main reasons behind using InteracDome as the reference dataset for the 

242 performance analysis of DRUIDom was first, cases of physical binding obtained from PDB 

243 are reliable, and second, there is no ground-truth/reference dataset for functional 

244 relationships between domains and small molecule ligands, as far as we are aware. 

245 To prepare the performance analysis dataset, we first extracted the intersecting domain 

246 entries and compounds between the InteracDome benchmark and our source bioactivity 

247 dataset, to carry out the performance analysis on the intersecting set. Out of the total 2,375 

248 Pfam family/domain entries in the InteracDome, 1,043 were included in the target proteins in 

249 our source dataset, and thus, constitute the intersecting domain set. Pfam-InterPro entry 

250 relationships were used for the conversion from Pfam to InterPro. Two main contributing 

251 factors to the reduced intersecting domain set are, we only used domain type entries in 

252 InterPro (leaving family type entries out since there is no structural correspondence to family 

253 entries), whereas InteracDome included family type entries along with domains; and second, 

254 there were several Pfam entries without any correspondence in InterPro and many InterPro 

255 entries without corresponding Pfam signatures. Out of 1,522 compounds in the non-

256 redundant representable InteracDome dataset, a total of 1,144 were included in our 

257 mappings, and thus, constitute the intersecting compounds set. The main reason behind the 

258 difference in numbers is that many of the ligands in the InteracDome were not drug-like 

259 small molecules; whereas, in our mappings, all of the ligands/compounds were drug-like, as 

260 they were obtained from ChEMBL and PubChem. Next, we extracted all compound – 

261 domain pairs in InteracDome that include the intersecting compounds and domains. 

262 Following the construction of the finalized benchmark dataset, we compared our compound 

263 – domain mappings constructed at different mapping score thresholds with the benchmark 

264 mappings, to observe what portion of the benchmark mappings can be retrieved. Thresholds 

265 were applied on the performance scores of our mappings, calculation of which are described 

266 in the Methods section 4.2.1. Thus, a threshold of 0.7 means all compound – domain 

267 mappings with a mapping score recall, precision, accuracy, and F1-score less than 0.7 are 
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268 discarded. At each threshold, if a compound – domain pair in the benchmark dataset is also 

269 retrieved in our mappings, it is counted as a true positive (TP). If a benchmark pair could not 

270 be retrieved in our mappings, it is counted as a false negative (FN). If a pair in our mappings 

271 could not be found in the benchmark dataset, it is counted as a false positive (FP). Finally, if 

272 a potential compound – domain pair could not be found both in our mappings and in the 

273 benchmark dataset, it is counted as a true negative (TN).

274 Table 1 displays the results of the compound – domain mapping performance analysis. As 

275 shown, performance increases with the increasing mapping score thresholds; however, the 

276 coverage of the mappings, with respect to InteracDome, decreases simultaneously. This 

277 was expected since increasing the confidence thresholds eliminates more and more 

278 compound – domain mappings from our set, but the remaining mappings are more reliable. 

279 The coverage can be considered low even with the lowest confidence score threshold (i.e., 

280 coverage for ligands: 31% and for domains: 16.5%) due to the fact that experimental data 

281 sources behind InteracDome and our mappings are different from each other (i.e., co-crystal 

282 structures and measured bioactivities, respectively). Since the performance was calculated 

283 considering the intersecting compounds and domains at each score threshold, the 

284 performance gradually increases with the increasing threshold, in terms of all metrics. Both 

285 the ligand and domain coverage, at the score threshold (0.9) that yielded the highest 

286 performance, was around 1% of the InteracDome. Considering the trade-off between 

287 coverage and performance, we selected the confidence threshold of 0.5, which provided an 

288 acceptable performance (i.e., accuracy: 0.95 and MCC: 0.78) and an InteracDome coverage 

289 of compounds: ~5% and domains: ~6%. At this score threshold, our approach produced 

290 27,032 mappings between 250 domains and 8,165 compounds/ligands. It is also important 

291 to check the coverage extensions yielded by our mappings over the InteracDome, which 

292 corresponds to the percentage of new domains and new ligands added to the mapping set. 

293 These new ligands and domains were not presented in the InteracDome dataset. For the 

294 selected confidence threshold (0.5), our mappings enriched the InteracDome dataset by 
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295 ~19% for domains and ~707% for ligands. The extended coverage values indicate the 

296 added value of our approach. In this study, all of the steps followed after this point were 

297 carried out using the mapping set generated with the mapping score threshold of 0.5. 

298 However, in order to allow users to select other score thresholds, we have also shared a file 

299 in our repository that includes raw/non-filtered compound – domain mappings together with 

300 their mapping scores.

301 Table 1. Compound – domain mapping performance analysis results. 

# of retrieved: Performance analysis results
Mapping 

score 
threshold Mappings Domains Compounds

Domain 
coverage 

(% of 
Interac 
Dome)

Compound 
coverage 

(% of 
Interac 
Dome)

Domain 
coverage 
extension 

(% of 
Interac 
Dome)

Compound 
coverage 
extension 

(% of 
Interac 
Dome)

TP FP FN TN Recall Precision Accuracy
F1-

Score
MCC

0 3,245,943 1,018 215,432 31.0 16.5 66.6 18814.9 163 3,235 116 9,414 0.58 0.05 0.74 0.09 0.11

0.1 1,872,420 894 193,538 23.8 15.9 61.9 16901.7 120 453 68 5,362 0.64 0.21 0.91 0.32 0.33

0.2 548,679 759 95,934 15.7 13.2 57.0 8372.6 96 170 36 2,328 0.73 0.36 0.92 0.48 0.48

0.3 143,332 590 36,887 10.5 9.9 46.1 3214.5 87 82 10 1,127 0.90 0.51 0.93 0.65 0.65

0.4 36,112 299 13,408 6.5 7.8 22.1 1164.2 80 54 4 787 0.95 0.60 0.94 0.73 0.73

*0.5 27,032 250 8,165 4.8 6.4 19.2 707.3 72 37 2 622 0.97 0.66 0.95 0.79 0.78

0.6 21,592 197 4,752 3.1 4.5 15.8 410.8 65 22 1 457 0.98 0.75 0.96 0.85 0.84

0.7 17,207 115 2,476 2.2 3.2 8.8 213.2 55 9 0 215 1.00 0.86 0.97 0.92 0.91

0.8 6,846 93 1,155 1.3 1.8 7.6 99.1 36 3 0 81 1.00 0.92 0.98 0.96 0.94

0.9 2,783 70 372 1.2 1.0 5.6 31.5 21 1 0 38 1.00 0.95 0.98 0.98 0.96

1 174 54 119 0.8 0.0 4.4 10.4 0 0 0 0 - - - - -

302 *The selected threshold and its results are shown in bold font.

303
304 2.2 Domain pair to compound mappings

305 Here, our aim was to observe if it would be possible to identify the cases where the 

306 presence of a single domain is not sufficient for the occurrence of the interaction with the 

307 intended compound, instead, an interface composed of multiple domains are required. Other 

308 possible explanations for the requirement of multiple domains would be the allosteric 

309 binding/regulation phenomenon [32], or just a complex functional relation. To analyze this 
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310 process, we generated compound – domain pair mappings using the procedure explained at 

311 the end of Methods section 4.2.1. For this procedure, we used the "bag of domains" 

312 approach where the order of the domains on the protein sequence was not taken into 

313 account and all possible pair combinations were then generated and tested. The reason for 

314 this evaluation is that domains that are quite far away from each other on the linear protein 

315 sequence can be located very close to each other upon folding of the protein.

316 Following the procedure described in the Methods section 4.2.1 and the thresholding/filtering 

317 of mappings with the selected parameter values described in the Results section 2.1, 3,721 

318 mappings were obtained between 1,456 compounds and 270 domain pairs. Next, these 

319 pairs were compared with single domain pairings of the same compounds, in terms of the 

320 mapping performance scores (e.g., C1 – DxDy is compared to C1-Dx and C1-Dy where C1 

321 represents a compound and DxDy represents a domain pair composed of the domains: Dx 

322 and Dy), to observe if there is any performance improvement by mapping a pair instead of a 

323 single domain (which is expected to provide more specific/defined interaction properties). In 

324 most of the cases, the performance of the domain pair mapping was the same as the 

325 mapping of the same compound to one of the single domains presented in the 

326 corresponding domain pair, which indicates that only a single domain is sufficient for the 

327 binding, and the other domain in the domain pair is just an extra (i.e., the second domain 

328 does not play a detectable role in the binding). We called these domain pair mappings 

329 "neutral domain pair associations". However, there were a few cases that domain pair 

330 mapping actually increased the association performance, namely "positive domain pair 

331 associations". To prepare the finalized compound – domain pair mapping set, all of the 

332 neutral associations were discarded, yielding only 22 positive associations between 10 

333 compounds and 12 domain pairs. Below, we investigated one example from positive domain 

334 pair associations as a case study. The experimental bioactivity results of the case study 

335 were obtained from the ChEMBL database (document link: 

336 https://www.ebi.ac.uk/chembl/document_report_card/CHEMBL3621091), which was 
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337 previously curated from the study by England et al. where the authors investigated potent 

338 inhibitors for KDM protein subfamilies [33].

339 The compound with the ChEMBL id “CHEMBL3621867” (link: 

340 https://www.ebi.ac.uk/chembl/compound_report_card/CHEMBL3621867) was mapped to a 

341 single InterPro domain record named: "JmjN domain" (id: IPR003349, description: domains 

342 frequently found in the jumonji family of transcription factors, link: 

343 https://www.ebi.ac.uk/interpro/entry/IPR003349) with the confusion matrix values TP:3, 

344 FN:0, FP:1 and TN:2 (recall:1.00, precision:0.75, accuracy:0.83, F1-core:0.86, and 

345 MCC:0.71), the false positive hit indicates that there is one protein that contains IPR003349 

346 (gene: KDM4E, protein: "Lysine-specific demethylase 4E" in human, UniProt protein 

347 accession: B2RXH2, link: https://www.uniprot.org/uniprot/B2RXH2), which was recorded to 

348 be inactive against CHEMBL3621867 in ChEMBL database with a bioactivity value of IC50 = 

349 79.4 M (and thus reported as a false positive in our analysis since the above mentioned 

350 single domain mapping predicted B2RXH2 as a target of CHEMBL3621867). Similarly, the 

351 same compound (CHEMBL3621867) was mapped to another single InterPro domain record 

352 named: "Zinc finger, PHD-type" (id: IPR001965, description: a C4HC3 zinc-finger-like motif 

353 found in nuclear proteins thought to be involved in chromatin-mediated transcriptional 

354 regulation, link: https://www.ebi.ac.uk/interpro/entry/IPR001965) with values TP:3, FN:0, 

355 FP:1 and TN:2 (recall:1.00, precision:0.75, accuracy:0.83, F1-core:0.86 and MCC:0.71), 

356 indicating that, again, there is one protein that contains IPR001965 (gene: KDM2A, protein: 

357 "Lysine-specific demethylase 2A" in human, UniProt protein accession: Q9Y2K7, link: 

358 https://www.uniprot.org/uniprot/Q9Y2K7), which was recorded to be inactive against 

359 CHEMBL3621867 in ChEMBL database with a bioactivity value of IC50 = 50.1 M (and thus 

360 reported as a false positive in our analysis since the above mentioned single domain 

361 mapping would predict Q9Y2K7 as a target of CHEMBL3621867). However, the mapping 

362 between CHEMBL3621867 and the domain pair IPR003349-IPR001965 yielded an excellent 

363 mapping performance with metrics TP:3, FN:0, FP:0 and TN:3 (recall:1.00, precision:1.00, 
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364 accuracy: 1.00, F1-core: 1.00 and MCC: 1.00), by eliminating the false positive target 

365 predictions of B2RXH2 and Q9Y2K7 for CHEMBL3621867. The domain pair IPR003349-

366 IPR001965 is presented in 3 reviewed human protein entries among 6 proteins with 

367 measured activities against CHEMBL3621867 (i.e., Lysine-specific demethylases 4C, 5C 

368 and 4A, genes: KDM4C, KDM5C, and KDM4A, UniProt protein accessions: Q9H3R0, 

369 P41229, and O75164), all of which were targets of the corresponding compound verified in 

370 their respective binding assays with bioactivities of IC50 = 7.9, 6.3 and 5.0 M, respectively. 

371 The protein that was accurately predicted as inactive by both single domain and domain pair 

372 mappings (i.e., as a true negative) was "Lysine-specific demethylase 6B" (gene: KDM6B, 

373 UniProt protein accession: O15054), which neither possessed IPR003349 nor IPR001965. 

374 This target also received a bioactivity measurement of IC50 = 63.1 M against 

375 CHEMBL3621867. IPR003349 domain is annotated to 10 reviewed human protein entries in 

376 the UniProtKB/Swiss-Prot database, also, IPR001965 domain is annotated to 88 reviewed 

377 human protein entries. Whereas together, IPR003349-IPR001965 domains are annotated to 

378 7 reviewed human protein entries. Due to sequence differences between KDM subfamily 

379 proteins (i.e., only 6 identical positions and 39 similar positions out of more than 1500 

380 positions in the multiple sequence alignment of 6 KDM subfamily proteins), their domain 

381 annotations are different from each other, which is possibly reflected in their 3-D structure 

382 (although it is not possible to be sure without a crystal structure), and thus, the interaction 

383 with the corresponding compound (i.e., CHEMBL3621867). 

384 It is important to note that, proteins annotated with only one of the domains listed above (i.e., 

385 IPR003349 or IPR001965) are also targeted by CHEMBL3621867; however, corresponding 

386 IC50s are way beyond plausible bioactivity values accepted for potential drug candidates 

387 (i.e., < 10 M). On the other hand, the presence of both domains on the target protein 

388 yielded IC50 values that are within the acceptable range. This predicted domain pair – 

389 compound mapping (or any association predicted by DRUIDom) does not directly state a 

390 true physical binding between the mapped domains and the compound, it only suggests a 
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391 relationship between the two entities (i.e., either physical or a functional interaction), where 

392 the interaction is stronger in the cases with the presence of both domains. Thus, targeting 

393 KDM subfamily proteins containing both IPR003349 and IPR001965 with CHEMBL3621867 

394 would have a higher chance of success in a drug discovery study.

395 It is probable for Q9Y2K7 (KDM2A) protein to partially possess the IPR003349 domain at 

396 the N-terminal side. If this is the case, the InterProScan tool might not report the hit due to 

397 obtaining a low score under the default statistical cut-off value. To analyze the case, we 

398 locally aligned (using Smith-Waterman with default parameters of gap open: 10, gap extend: 

399 0.5, and scoring matrix: BLOSUM62) the first 100 N-terminal residues of Q9Y2K7 (KDM2A) 

400 and O75164 (KDM4A), which is reported to possess IPR003349 between the positions 13 

401 and 56 according to InterPro (https://www.ebi.ac.uk/interpro/protein/UniProt/O75164/). The 

402 output alignment reported a statistically significant hit (with 53.6% similarity between two 

403 sequences along the alignment length of 28 residues) between KDM4A sequence positions 

404 11 and 38, which roughly spans the half of the IPR003349 domain, indicating the partial 

405 existence of the domain on Q9Y2K7 (KDM2A). Nevertheless, the partial existence of the 

406 domain may be the reason behind observing interaction with a rather high bioactivity value 

407 (i.e., IC50 = 50.1 M).  It is not possible for us to further comment on the physical binding as 

408 there is no co-crystal structure of a KDM subfamily protein with CHEMBL3621867.

409 Besides single domains and domain pairs, it is also possible for some of the compound – 

410 target interactions to require (either physically or functionally) three or even more domains to 

411 be presented at the target protein. We could not account for these cases in DRUIDom since 

412 they dramatically increase the complexity of the analysis, as a result, we chose to omit the 

413 cases with more than 2 domains.

414 2.3 Predicting New Drug/Compound – Target Protein Interactions

415 Drug/compound – target protein interaction predictions were generated by propagating the 

416 drug/compound – single domain (or domain pair) mappings to proteins and other 
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417 compounds, using the procedure explained in Methods section 4.2.2. The crossing of new 

418 compounds and targets for each mapping has led to a geometric increase in the number of 

419 associations/predictions. Finally, a simple post-processing filter was applied to predictions 

420 for removing the known/recorded compound – target protein interactions from the prediction 

421 set.

422 First, 3,672,076 novel interactions (between 8,158 compounds and 5,563 proteins) were 

423 generated with the propagation of single domains to proteins (i.e., 250 domains to 5,563 

424 proteins). Also, 631 novel interactions (between 9 compounds and 286 proteins) were 

425 produced with the propagation of domain pairs to proteins (i.e., 12 domain pairs to 286 

426 proteins). The low number of predictions with domain pairs was due to the elimination of the 

427 domain pair mappings that did not display a performance increase over the single domain 

428 mappings of the same compound. At this point, the merged prediction dataset contained 

429 3,672,220 novel interactions between 8,163 compounds and 5,563 proteins, after the 

430 removal of duplicates. The finalized prediction dataset was obtained following the 

431 propagation of the compounds in the previous prediction set to significantly similar 

432 compounds according to molecular similarity-based compound clusters, which yielded 

433 5,050,841 novel interactions between 10,944 compounds and 5,461 proteins in the finalized 

434 prediction dataset, following the removal of known interactions. One notable observation is 

435 that there was only a slight increase in the number of compounds (from 8,163 to 10,944) 

436 after the pairwise molecular similarity-based propagation, which can be explained by the 

437 strict Tanimoto threshold of 0.8, which only passes the most reliable predictions.

438 2.4 Validation of Predicted Molecular Interactions

439 To select inhibitory compound predictions for in silico and in vitro experimental validation, we 

440 first checked our large-scale drug/compound – target interaction prediction dataset and 

441 found 116 inhibitor predictions for PI3K/AKT/mTOR signalling pathway proteins (Table 2), 

442 mainly due to the critical role of this pathway in various types of cancer [26]. Out of these, 4 

443 compounds have been predicted as inhibitors of both LIMK1 and LIMK2 proteins 
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444 (serine/threonine-protein kinases taking important roles in metastasis by phosphorylating 

445 cofilin proteins [27]). Structures of these compounds are given in Figure 2 together with their 

446 ChEMBL database identifier and short names as used in this study. These compounds are 

447 associated with LIMKs over their “Serine-threonine/tyrosine-protein kinase, catalytic domain” 

448 (InterPro domain id: IPR001245). In addition, we designed, synthesized, and tested 4 novel 

449 derivatives of the most active compound LIMKi-2 (Figure 2, compounds LIMKi-2a-d). 

450 Table 2. Inhibiting compound predictions for PI3K/AKT/mTOR pathway proteins: MDM2, 

451 VEGFA, LIMK1 and LIMK2; given as ChEMBL molecule identifiers and gene names of the 

452 corresponding targets.

Predicted Compound 
(ChEMBL id)

Target Protein 
(Gene Name)

Predicted Compound 
(ChEMBL id)

Target Protein 
(Gene Name)

CHEMBL1316589 LIMK1 CHEMBL505899 MDM2

CHEMBL1512352 LIMK1 CHEMBL506261 MDM2

CHEMBL516650 LIMK1 CHEMBL506263 MDM2

CHEMBL518653 LIMK1 CHEMBL506507 MDM2

CHEMBL1316589 LIMK2 CHEMBL506623 MDM2

CHEMBL1512352 LIMK2 CHEMBL506646 MDM2

CHEMBL516650 LIMK2 CHEMBL506647 MDM2

CHEMBL518653 LIMK2 CHEMBL506740 MDM2

CHEMBL1241424 MDM2 CHEMBL507004 MDM2

CHEMBL1241425 MDM2 CHEMBL507649 MDM2

CHEMBL1241426 MDM2 CHEMBL508126 MDM2

CHEMBL1243385 MDM2 CHEMBL508377 MDM2

CHEMBL1242922 MDM2 CHEMBL508398 MDM2

CHEMBL458791 MDM2 CHEMBL508486 MDM2

CHEMBL514738 MDM2 CHEMBL508491 MDM2

CHEMBL515347 MDM2 CHEMBL508564 MDM2

CHEMBL515848 MDM2 CHEMBL508902 MDM2

CHEMBL516172 MDM2 CHEMBL508983 MDM2

CHEMBL475670 MDM2 CHEMBL509409 MDM2

CHEMBL481213 MDM2 CHEMBL509666 MDM2

CHEMBL481421 MDM2 CHEMBL510017 MDM2

CHEMBL1791379 MDM2 CHEMBL510066 MDM2

CHEMBL1791380 MDM2 CHEMBL510233 MDM2

CHEMBL1791382 MDM2 CHEMBL510473 MDM2

CHEMBL219860 MDM2 CHEMBL510817 MDM2

CHEMBL434556 MDM2 CHEMBL511030 MDM2

CHEMBL427239 MDM2 CHEMBL524509 MDM2
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CHEMBL1791381 MDM2 CHEMBL524659 MDM2

CHEMBL445253 MDM2 CHEMBL524691 MDM2

CHEMBL505051 MDM2 CHEMBL524856 MDM2

CHEMBL503520 MDM2 CHEMBL524887 MDM2

CHEMBL207341 MDM2 CHEMBL524908 MDM2

CHEMBL443697 MDM2 CHEMBL525014 MDM2

CHEMBL446284 MDM2 CHEMBL525018 MDM2

CHEMBL450322 MDM2 CHEMBL525040 MDM2

CHEMBL451424 MDM2 CHEMBL525045 MDM2

CHEMBL451944 MDM2 CHEMBL525060 MDM2

CHEMBL454229 MDM2 CHEMBL525201 MDM2

CHEMBL486090 MDM2 CHEMBL525263 MDM2

CHEMBL499121 MDM2 CHEMBL525265 MDM2

CHEMBL499749 MDM2 CHEMBL525594 MDM2

CHEMBL499766 MDM2 CHEMBL525614 MDM2

CHEMBL500441 MDM2 CHEMBL525624 MDM2

CHEMBL500788 MDM2 CHEMBL525635 MDM2

CHEMBL501541 MDM2 CHEMBL525636 MDM2

CHEMBL503191 MDM2 CHEMBL526187 MDM2

CHEMBL503489 MDM2 CHEMBL526336 MDM2

CHEMBL503730 MDM2 CHEMBL526337 MDM2

CHEMBL503983 MDM2 CHEMBL526381 MDM2

CHEMBL504226 MDM2 CHEMBL526861 MDM2

CHEMBL504266 MDM2 CHEMBL527080 MDM2

CHEMBL504423 MDM2 CHEMBL527084 MDM2

CHEMBL504493 MDM2 CHEMBL1089944 VEGF

CHEMBL504855 MDM2 CHEMBL1689394 VEGF

CHEMBL504919 MDM2 CHEMBL499790 VEGF

CHEMBL505501 MDM2 CHEMBL501558 VEGF

CHEMBL505622 MDM2 CHEMBL508411 VEGF

CHEMBL505790 MDM2 CHEMBL509774 VEGF

453

454 Figure 2. Structures, database identifiers, and 2-D representations of predicted LIMK 

455 inhibitory compounds (LIMKi-1, 1a, 2, and 3) and derivatives (LIMKi-2a, b, c, and d).

456 2.4.1 Molecular Docking of Novel LIMK Inhibitors

457 For in silico validation of computationally predicted LIMK inhibitors, molecular docking 

458 analyses were conducted. LIMK proteins (LIMK1 and LIMK2) are serine/threonine kinases 

459 with multidomain structures including 2 LIM zinc-binding domains, 1 PDZ domain and 1 

460 protein kinase domain. Multi-kinase inhibitor staurosporine and previously described LIMK 
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461 inhibitor 9D8 have published crystal structures with the kinase domains of LIMK1 and LIMK2 

462 proteins. These molecules were used as reference for docking to compare their binding free 

463 energies (ΔG) with the computationally predicted and novel LIMK inhibitors. In addition to 

464 computationally predicted compounds (i.e., LIMKi-1, LIMKi-1a, LIMKi-2 and LIMKi-3), novel 

465 derivatives of LIMKi-2 (i.e., LIMKi-2a, LIMKi-2b, LIMKi-2c and LIMKi-2d) were also docked 

466 against kinase domains of LIMK1 and LIMK2 proteins. AutoDock grid box parameters used 

467 in these analyses are displayed in Table 3a, and the docking results of each LIMK protein – 

468 compound combination are shown in Table 3b, which displays the lowest binding free 

469 energy calculation at the best pose obtained either from rigid or flexible docking in 

470 AutoDock. All files and results of the docking analysis, including the ones for online 

471 MTiAutoDock and SwissDock docking runs, are available in the data repository of this study. 

472 Based on the results in Table 3b; LIMKi-2, LIMKi-2d, and LIMKi-3 have binding free energy 

473 values close to that of the reference ligand staurosporine (“staurosporine” ΔG=-10.55 

474 kcal/mol, Ki=18.47 nM; “9D8” ΔG=-12.38 kcal/mol, Ki=0.837 nM) for the LIMK1 protein, 

475 where the lower values indicate stronger interactions. As for the LIMK2 protein, binding free 

476 energy values for all ligands, except LIMKi-1 and LIMKi-1a, were around the generally 

477 accepted thresholds to assume a potential activity (i.e., -10 to -12 kcal/mol), which were 

478 close to the value of reference ligand 9D8 (i.e., -12.38 kcal/mol). In Figure 3, the best poses 

479 of LIMKi-2 and LIMKi-3 dockings against kinase domain binding sites of LIMK proteins are 

480 visualized along with the docking of reference molecules. The results indicate 

481 computationally predicted LIMK inhibitors, especially LIMKi-2 (including its derivatives) and 

482 LIMKi-3, could be promising candidate molecules for targeting LIM kinases.

483 Table 3. (a) Grid box parameters for AutoDock in the molecular docking analysis; (b) 

484 molecular docking results of computationally predicted LIMK inhibitors and their derivatives 

485 against kinase domains of LIMK proteins in terms of binding free energy (ΔG) and inhibition 

486 constant (Ki) estimations at the best pose.

487
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488 (a)

# of points in x-y-z 
dimension

Spacing 
(angstrom)

x, y, z centers

LIMK1 rigid docking 60-60-40 0.375 14.878, 6.646, 34.402

LIMK1 flexible docking 80-80-60 0.375 14.878, 6.646, 34.402

LIMK2 rigid docking 60-60-40 0.375 25.016, -13.952, 17.984

LIMK2 flexible docking 80-80-60 0.375 25.016, -13.952, 17.984

489 (b)

ΔG (kcal/mol) Ki (nM)

LIMK1 LIMK2 LIMK1 LIMK2

Native ligands* -10.55 -12.38 18.47 0.837

LIMKi-1 -7.68 -9.9 2340 55.14

LIMKi-1a -7.47 -9.34 3330 142.42

LIMKi-2 -10.11 -12.07 38.73 1.43

LIMKi-2a -9.74 -11.32 72.38 5.01

LIMKi-2b -9.13 -11.01 203.95 8.52

LIMKi-2c -9.67 -11.92 82.22 1.83

LIMKi-2d -10.28 -12 28.94 1.61

LIMKi-3 -10.03 -11.92 44.34 1.82

490 *Native ligands correspond to small molecule compounds staurosporine and 9D8 for LIMK1 and 

491 LIMK2, respectively.

492 Figure 3. Visualization of the docked complex structures of (a) LIMK1 kinase domain in 

493 complex with the reference molecule staurosporine (green), LIMKi-2 (violet), and LIMKi-3 

494 (red), and (b) LIMK2 kinase domain in complex with the reference molecule 9D8 (dark 

495 cyan), LIMKi-2 (violet), and LIMKi-3 (red) at the best poses. Hydrogen bonds are displayed 

496 with dark blue lines. Gold and pink colors represent LIMK1 and LIMK2 protein residues 

497 interacting with the corresponding compounds.
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498 2.4.2 In vitro Experimental Analysis of LIMK Inhibition

499 LIMKi Compounds have inhibitory effects on human cancer cells

500 To address whether predicted inhibitors have cytotoxic effects on transformed normal 

501 human (HEK-238) and various epithelial cancer cell lines (e.g., MCF-7, HCT116, Huh7, and 

502 Mahlavu), cells were treated with LIMKi compounds with a concentration gradient of 40 M 

503 to 2.5 M for 72 hours. The resulting cytotoxic IC50 values are given in Table 4a. While there 

504 is no cytotoxicity observed on normal cells, LIMKi-2 and LIMKi-3 compounds display 

505 cytotoxic activities between 5.5-17.3 M on cancer cells.  Since LIMKi-2 showed the most 

506 potential bioactivity, we synthesized four novel derivatives of LIMKi-2 and assessed their 

507 bioactivities on Huh7 and Mahlavu liver cancer cells. LIMKi-2 derivatives; 2c, 2d displayed 

508 cytotoxic activities on Huh7 and Mahlavu cells (~8M and <20M, respectively), while 

509 LIMKi-2a had no effect (Table 4b).

510 Table 4. Cytotoxic bioactivities of LIMKi molecules on human cells: (a) LIMKi-1,3 

511 compounds (b) LIMKi-2 derivatives.

512 (a)

IC50 Values (µM)
LIMKi molecules

LIMKi-1 LIMKi-1a LIMKi-2 LIMKi-3

HEK-293 (Transformed Normal Human 

Embryonic Kidney Cell Line)
NI NI NI NI

MCF-7 (Breast Cancer Cell Line) NI NI 6.4 ± 1.0 5.5 ± 0.3

HCT116 (Colon Cancer Cell Line) NI NI 5.6 ± 1.3 6.8 ± 1.2

Huh7 (Liver Cancer Cell Line) NI NI 7.9 ± 0.7 9.4 ± 1.2

Mahlavu (Liver Cancer Cell Line) NI NI 13.8 ± 0.8 17.7 ± 0.3

513 (b)

LIMKi-2 derivatives IC50 Values (µM)
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LIMKi-2a LIMKi-2b LIMKi-2c LIMKi-2d

Huh7 (Liver Cancer Cell Line) NI 28.4 ± 2.5 8.2 ± 1.4  7.06 ± 0.8

Mahlavu (Liver Cancer Cell Line) NI 24.6 ± 1.0  15.9 ± 3.1 15.3 ± 1.3

514

515 As stated above, phosphorylated LIMK proteins are involved in actin cytoskeleton dynamics 

516 through cofilin phosphorylation, hence we performed experiments on the migration and 

517 invasion properties of liver cancer cells in the presence of LIMK inhibitors. We focused on 

518 Huh7 and Mahlavu liver cancer cells for the rest of the study, because primary liver cancer 

519 (hepatocellular cancer, HCC) usually presents with multiple tumors within the liver and 

520 intrahepatic metastatic spread is a major problem for this cancer [34].

521 LIMKi compounds are effective in vitro by reducing the level of cofilin phosphorylation

522 Cofilin is a downstream molecule and its function is regulated by LIMK. Hence, we assessed 

523 phospho-Cofilin protein levels in Huh7 and Mahlavu cells in the presence of LIMK inhibitors. 

524 Phosphorylation of cofilin by LIMKs is significantly reduced upon treatment with LIMK 

525 inhibitors in both Huh7 and Mahlavu cells except for LIMKi-1 and LIMKi-2d, respectively 

526 (Figure 4a, b). Mahlavu cells are reported to have a resistant phenotype due to PTEN tumor-

527 suppressive protein deficiency for migration [35]. Therefore, the differential response against 

528 LIMK inhibitors by well-differentiated Huh7 cells and poorly differentiated drug-resistant 

529 Mahlavu cells are as expected and allows us to better assess the dose-response of LIMK 

530 inhibitors. 

531 The ratio of phosphorylated to non-phosphorylated Cofilin protein levels, together with LIMK 

532 protein phosphorylation was previously reported as an indication of the metastatic potential 

533 of a cell [27]. Therefore, we also checked the ratio of phospho- to total Cofilin levels for both 

534 Huh7 and Mahlavu cells (Figure 4a, b) and found that LIMK inhibitors decreased the 

535 phospho-Cofilin ratio significantly. These results may lead to the discovery of novel 

536 therapeutic agents against the metastatic capacity of hepatocellular carcinoma cancer cells.
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537 Figure 4. Phospho-Cofilin protein expression.  (a) Huh7 and (b) Mahlavu cells were cultured 

538 with LIMK inhibitors (20 M) for 48 hours and expression of active p-Cofilin and total Cofilin 

539 levels were assessed with western blot analysis. The bar graph indicates the relative 

540 intensity of p-Cofilin levels compared to untreated DMSO controls. The equal loading control 

541 was analyzed based on the total protein staining normalization protocol. The ratio of 

542 phospho- and total Cofilin levels for both Mahlavu and Huh7 cell lines were calculated.

543 LIMK inhibitors significantly reduce migration and invasion of HCC cells in vitro 

544 LIMK/Cofilin/ADF cascade has been described as one of the major regulators for actin 

545 cytoskeleton dynamics and reorganization [36]. Bioactivities of LIMKi compounds were 

546 tested for their effects on the migration and invasion capacity of HCC cell lines by wound 

547 healing and real-time cell invasion Transwell assays, respectively. First, Huh7 cell migration 

548 was analyzed in the presence of predicted LIMK inhibitors 1, 1a, 2, and 3. Huh7 cells have 

549 less migration capability compared to Mahlavu cells, so Huh7 migration was only tested with 

550 the originally predicted molecules. LIMKi-2 and LIMKi-3 strongly reduced the migration (2% 

551 gap closure) of Huh7 cells when compared to DMSO controls (48% gap closure) within 10 

552 hours (Figure 5a).  Then LIMKi-1, LIMKi-1a, LIMKi-2, LIMKi-3 and LIMKi-2 derivatives were 

553 tested on the migration of Mahlavu cells. LIMKi-2 derivatives reduced the resistant Mahlavu 

554 cell migration by 2.6-3.7 folds when compared to DMSO controls (Figure 5b). 

555 We also tested the bioactivities of predicted compounds and their derivatives by real-time 

556 cell invasion for 48 hours on Huh7 and Mahlavu cells. Figure 6 indicates that LIMKi-2d was 

557 the most significant compound in terms of reducing the invasion capacity of both Mahlavu 

558 and Huh7 cell lines after 12 hours of treatment and throughout 48 hours. LIMKi-2c also 

559 significantly reduced Huh7 cell invasion.

560 Figure 5: Wound healing assay. In vitro “wound” was created by a straight-line scratch 

561 across the monolayer (a) Huh7, (b) Mahlavu cells. Then cells were treated with indicated 

562 concentrations of LIMKi compounds for 10 hours and % wound gap closures were 
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563 calculated. Bar graphs represent percent-based wound healing for Huh7 and Mahlavu cell 

564 lines.

565 Figure 6: Cell invasion assay. Average cell index values are normalized according to 

566 DMSO, which is represented by the horizontal dashed line for; (a) Huh7, and (b) Mahlavu 

567 cell lines, in the presence of LIMK inhibitors. The serum-free media containing 20 M of 

568 each LIMKi compound were used and invasion progress of cells was monitored via 

569 xCelligence DP RTCA System (*: p-value < 0.05, ****: p-value < 0.0001).

570

571 3. Discussion

572 In this study, the main objective was to develop a computational method for predicting drug 

573 (or drug candidate compound) – target protein interactions with high confidence, for the 

574 purposes of improved drug discovery and repurposing. Here, we aimed to cover both 

575 physical and functional relationships between small molecule ligands and target proteins, to 

576 account for bio-interactions at higher levels, such as the inhibition of a cell with a drug/drug 

577 candidate compound. In DRUIDom, we assumed a data-driven approach and used 

578 experimentally validated interactions at large scale to build and optimize our model. For this, 

579 we utilized ChEMBL and PubChem databases and carefully filtered the bioactivity data 

580 points to construct our source dataset of compound – target protein interactions, which is 

581 one of the largest curated, high-quality experimental bioactivity datasets ever built, as far as 

582 we are aware (composed of 2,869,943 interaction data points between 3,644 target proteins 

583 and 1,033,581 compounds). This dataset is available in the data repository of the study and 

584 can be used by researchers working in the fields of drug discovery and repurposing, both as 

585 a training and benchmark dataset for the construction of new computational predictive 

586 models.
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587 The idea behind DRUIDom’s methodology is to identify the protein domains that are required 

588 for the interaction to occur (either physically or functionally), and propagating these 

589 associations to proteins that possess those domains. Thus, it was critical to successfully 

590 separate mappings that indicate a true relationship from the ones observed by chance. For 

591 this, we incorporated known/verified compound – target protein relations with undesired 

592 bioactivity levels (i.e., high xC50 values: > 20 M) as "inactives" even though they also are 

593 interactors, along with "actives" (compound – target protein pars with the desired levels of 

594 bioactivity: xC50 < 10 M), as two different datasets. This approach enabled us to score 

595 compound – domain mappings in terms of potential true-false positives and true-false 

596 negatives (as explained in the Methods section 4.2.1), and to identify pairs with a practical 

597 potential to ultimately become new treatment options.

598 One limitation of our data-centric methodological approach is penalizing a compound – 

599 domain mapping with a false negative count if one of the known active target proteins does 

600 not contain the mapped domain. It is known that a small molecule can be the ligand of 

601 different proteins and different domains, especially when the structural features of the 

602 corresponding binding sites are similar to each other. In cases like this, penalizing a 

603 mapping leads to the underestimation of its mapping score. In order to minimize this effect, 

604 we took the InterPro domain hierarchy into account while calculating the mapping scores. 

605 InterPro combines domains from the same functional family under distinct hierarchical trees. 

606 There are also significant similarities between the sequence profiles of domains from the 

607 same hierarchy. In DRUIDom, while scoring a mapping, we checked whether the known 

608 active and inactive target proteins of the intended compound possess domains from the 

609 same hierarchy. As such, we counted an active target protein containing a domain from the 

610 same hierarchy (but not the actual mapped domain) as a true positive (instead of false 

611 negative) and counted an inactive target protein containing a domain from the same 

612 hierarchy as a false positive (instead of true negative). In this way, domain similarity has 

613 been incorporated in DRUIDom. However, there are also cases where a single compound 
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614 binds to domains from completely different hierarchies. Our approach does not currently 

615 take these cases into account.

616 During the parameter optimization and performance analyses of DRUIDom, it was important 

617 to make sure that there was no data leak from the benchmark test dataset to our training set. 

618 This condition has been automatically satisfied since the source of the mappings in the 

619 InteracDome benchmark dataset (i.e., PDB co-complex structures) and the source of the 

620 mappings in our training dataset (i.e., assay-based biological activity measurements 

621 obtained from ChEMBL and PubChem databases) are completely independent from each 

622 other.

623 In our analysis, we observed that only a small portion of the InterPro domain entries appear 

624 in the finalized compound – domain mappings, with the total number of 250 domains, as 

625 opposed to 8,165 compounds, at the selected mapping score threshold. The main reason 

626 behind this observation may lie in the data distribution in the source bioactivity dataset, as 

627 members from the same protein families have been targeted in most of the experimental 

628 bioassays (e.g., kinases, GPCRs). The distribution of the number of compounds mapped to 

629 each domain reveals that the top 10 domains constitute 56.7% of 27,032 mappings in total 

630 (i.e. “IPR000719 - Protein kinase domain”, “IPR001245 - Serine-threonine/tyrosine-protein 

631 kinase, catalytic domain”, “IPR017452 - GPCR, rhodopsin-like, 7TM”, “IPR020635 - 

632 Tyrosine-protein kinase, catalytic domain”, “IPR028174 - Fibroblast growth factor receptor 1, 

633 catalytic domain”, “IPR030611 - Aurora kinase A”, “IPR034670 - Checkpoint kinase 1, 

634 catalytic domain”, “IPR035588 - Janus kinase 2, pseudokinase domain”, “IPR035589 - 

635 Janus kinase 2, catalytic domain”, “IPR039192 - Glycogen synthase kinase 3, catalytic 

636 domain”). Overall, eight out of ten of these domains belong to kinases.

637 We examined the difference in target proteins between our source bioactivity dataset and 

638 the resulting predicted DTIs dataset, to observe if it was possible to produce predictions for 

639 under-studied proteins through the approach outlined in this study. The unique number of 

640 target proteins in our source bioactivity dataset is 3,644, whereas, this number is 5,563 for 
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641 our finalized DTI prediction dataset, which indicates that there is a 52.7% increase in target 

642 proteins thanks to the domain-based association approach. We also checked the protein 

643 family distribution of the targets in the original and the predicted interaction datasets, 

644 considering 5 main classes of proteins as enzymes, membrane receptors, ion channels, 

645 transcription factors, and others (i.e., a combination of transporters, epigenetic regulators, 

646 secreted proteins, other cytosolic proteins, other nuclear proteins, and other categories), 

647 according to the first level (L1) of ChEMBL protein classification 

648 (https://www.ebi.ac.uk/chembl/g/#browse/targets). For this, we compared the target protein 

649 family distribution in the original bioactivity dataset (i.e., 64% enzymes, 11% membrane 

650 receptors, 5% ion channels, 4% transcription factors, and 16% others) with our DTI 

651 prediction dataset (i.e., 50% enzymes, 25% membrane receptors, 7% ion channels, 8% 

652 transcription factors, and 10% others). Although dominating families in the source bioactivity 

653 dataset prevail in the predicted DTIs dataset, we were able to produce interacting compound 

654 predictions for a critically higher number of proteins from membrane receptor, ion channel, 

655 and transcription factor families with a 248%, 114%, and 238% increase, respectively. These 

656 results, again, demonstrate the effectiveness of the domain-based approach in predicting 

657 new target proteins.

658 In this study, we aimed to validate our drug/compound – target protein interaction prediction 

659 method by targeting the PI3K/Akt/mTOR pathway by focusing on the predicted LIM kinase 

660 inhibitors. The importance of selecting LIMKs as targets come from their unique kinase 

661 domains which have longer activation loops compared to many kinases, allowing the design 

662 of specific inhibitors against cancer invasion and metastasis [31]. Furthermore, LIMK1 

663 knockout was not embryonically lethal in mice making this protein a good candidate for drug 

664 design [37]. Another study showed that LIMK activity is beneficial for cancer cells in terms of 

665 coping with chemotherapeutics and ionizing radiation, which renders cells resistant to these 

666 treatments [38-41]. Therefore, LIMKs are promising candidates due to their essential role in 

667 cytoskeletal remodeling leading to cell migration and invasion. Hence, the lack of cytotoxicity 
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668 of our predicted compounds on normal transformed HEK-238 cells is in parallel with the 

669 above-mentioned cellular LIMK activities, which is prominent in cancer cells. 

670 For the validation study, we initially examined the binding properties of 4 originally predicted 

671 compounds (i.e., LIMKi-1, 1a, 2, and 3) by computational docking and comparing with the 

672 crystal structures of multi-kinase inhibitor staurosporine and previously identified LIMK ligand 

673 9D8 in complex with LIMK1 and LIMK2 proteins, respectively. LIMKi-2, its derivatives, and 

674 LIMKi-3 had the most significant binding energies. During the in vitro validation stage of the 

675 study, we performed bioactivity experiments on liver cancer cells because intrahepatic 

676 metastatic migration/invasion is a major problem for patient survival and the specific 

677 selection of treatment is dependent on the number of distinct cancer nodules within the 

678 organ [42]. Our observations from the docking analysis were further supported by 

679 cytotoxicity and migration/invasion experiments where LIMKi-2 was the most significant 

680 compound regarding its action on cancer cells. Our promising results with LIMKi-2 directed 

681 us to synthesize 4 novel derivatives of this compound (i.e., LIMKi-2a, b, c, and d). Among 

682 these derivative compounds, LIMKi-2c and LIMKi-2d displayed highly significant anti-

683 migratory and anti-invasive properties on liver cancer cells, together with strong docking 

684 binding affinities. The increased activity for LIMKi-2c and 2d is interesting and seems to 

685 point to a favorable change in conformation due to the bromide substituent that twists the 

686 benzene ring against the thiadiazol and causes loss of coplanarity. Finally, our evaluation 

687 singled out the novel LIMKi-2d compound as a promising candidate therapeutic agent due to 

688 its action on mesenchymal Mahlavu cells which are highly aggressive in terms of drug 

689 resistance for cytotoxicity, motility, and migration [43]. 

690 As future work, we plan to further develop our predictive approach by identifying 

691 associations between ligands and experimentally characterized protein structures (from 

692 Protein Data Bank) and high-quality structure models generated by cutting-edge structure 

693 prediction methods [44]. Additionally, we plan to develop a web-based tool that contains the 

694 entire pipeline, where researchers from various fields can both browse pre-computed 
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695 associations/predictions, and generate interacting drug/compound predictions for their 

696 proteins of interest on the fly, using the provided interface. We also plan to extend the work 

697 on LIMK inhibition with additional in vitro experiments and in vivo studies, with the ultimate 

698 aim of contributing to the development of new cancer drugs.

699 The computational drug/compound – target protein interaction prediction approach proposed 

700 in this study led to the identification of novel interactions, a selected subset of which were 

701 then validated by both in silico and in vitro experiments. Results of the cell-based validation 

702 experiments indicate DRUIDom has the ability to generate generalized predictions that are 

703 well-translated into higher organizational levels such as the cell. Also based on these 

704 results, it is possible to state that the approach proposed here is producing biologically 

705 relevant results that can be utilized in drug discovery and repurposing studies beyond 

706 PI3K/Akt/mTOR pathway and cancer, especially for pathological conditions where specific 

707 domain-based targeting may be critical, such as metabolic disorders.

708

709 4. Methods

710 4.1 Dataset Construction

711 Bioactivity data points, each of which indicates the experimentally verified interaction 

712 between a compound and a target biomolecule (i.e., protein), were downloaded from open-

713 access bioassay databases and divided into 2 classes as active (i.e., interacting) and 

714 inactive (i.e., non-interacting, or more precisely: “non-interacting at the desired level”) pairs. 

715 For the selection of active data points, we used a bioactivity value threshold of < 10 M xC50 

716 (i.e., IC50 or equivalent). For inactives, we used a bioactivity value threshold of > 20 M xC50. 

717 The data points between 10 and 20 M were discarded, since their classification to either 

718 class was considered to be ambiguous.
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719 ChEMBL bioactivity database [17] and PubChem bioassay database [16] were used as the 

720 bioactivity data source. The bioactivity data was acquired from the ChEMBL database (v23) 

721 via SQL queries with specified parameters (i.e., assay type: binding, target type: single 

722 protein, taxon: metazoa, standard value:  < 10 M for active/interacting pairs and > 20 M 

723 for inactive/non-interacting pairs). We only selected the data points with a pChEMBL value, 

724 which corresponds to a calculated activity measure of half-maximal response 

725 concentration/potency/affinity (e.g., IC50, EC50, AC50, XC50, Ki, Kd, and potency) in the 

726 negative logarithmic scale. pChEMBL value of 5 is equal to an IC50 measurement of 10 µM. 

727 The presence of a pChEMBL value indicates that the data point has been checked by a 

728 curator. Following the elimination of duplicates, the final ChEMBL set contained 718,102 

729 bioactivity data points (627,353 actives and 90,749 inactives) between 3,533 target proteins 

730 and 467,658 compounds.

731 Due to the structural organization of the PubChem bioassay database, it was not 

732 straightforward to obtain a bioactivity dataset with desired properties. However, the 

733 developers of ExCAPE-DB solved this problem by extensively filtering and organizing 

734 PubChem bioactivity data (together with ChEMBL bioactivity data) and presented the results 

735 in a database [45]. ChEMBL v20 and the PubChem bioassay database (January 2016) are 

736 incorporated in ExCAPE. In our study, we incorporated PubChem bioactivities directly using 

737 the ExCAPE-DB. We discarded the PubChem data points where the actual bioactivity values 

738 were missing. These points could have been included using the assay outcome field, where 

739 each data point is already marked as either "active" or "inactive"; however, the test 

740 concentrations for these data points are not available, and it is probable that many of them 

741 do not obey the thresholds we determined. Following the elimination of data points with 

742 activity values between 10 and 20 M, the final ExCAPE bioactivity dataset contained 

743 2,514,439 bioactivity values between 1,648 target proteins and 856,216 compounds. The 

744 reason behind the low number of target proteins compared to the ChEMBL dataset was that, 

745 in ExCAPE, only three organisms (i.e., human, mouse and rat) were included. Finally, 
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746 ChEMBL v23 and ExCAPE datasets were merged to obtain the finalized bioactivity training 

747 dataset of the study. Since ExCAPE-DB incorporates ChEMBL data (from v20, which is an 

748 older version compared to the one we used) along with PubChem, many duplicates were 

749 added to our dataset following merging, which were eliminated by simply deleting repeat 

750 data points. Our finalized source bioactivity dataset contains 2,869,943 data points between 

751 3,644 target proteins and 1,033,581 compounds. 1,637,599 of these data points are in the 

752 actives class, and the remaining 1,232,344 are in the inactives class. The contradictions 

753 between active and inactive classes (i.e., compound – protein pairs that are listed both as 

754 active and inactive) are low, with only 1,574 cases (< 0.06%).

755 UniProt Knowledgebase -UniProtKB- v2019_01 [25] and InterPro v72 database [20] were 

756 employed as the source for target protein sequences and their domain annotations, 

757 respectively. InterPro integrates sequence signatures with functional significance from 13 

758 different manually curated and automated databases presenting functional and structural 

759 protein information. In InterPro, domain content, order and positions are pre-computed for 

760 each UniProtKB protein sequence using the InterProScan tool and the sequence 

761 profiles/HMMs and presented within a public dataset. We downloaded InterPro annotations 

762 for all of the target proteins in our dataset (i.e., 3,644) and eliminated the InterPro hits for 

763 non-domain type entries such as families and sites. A total of 3,118 target proteins had at 

764 least one InterPro domain hit, and thus, could be further used in our study. The average 

765 number of domains in these target proteins was 2.44. We also generated domain 

766 architectures, which can be defined as the linear arrangement of the domain hits on the 

767 protein sequence, for each multi-domain protein in our dataset. The domain architecture 

768 information is later used for mapping compounds to domain pairs, to account for the cases 

769 where multiple domains are required to be presented in the protein to have an interaction 

770 with the corresponding compound (the detailed procedure is described below).

771 Canonical SMILES notations were employed to represent the compounds. SMILES is a 

772 widely used system that defines the structures of chemical species as line notations [46]. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448307doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448307
http://creativecommons.org/licenses/by/4.0/


33

773 SMILES representations of all compounds in our dataset were directly downloaded from 

774 ChEMBL and PubChem databases. Extended-Connectivity Fingerprints (ECFP4) [47] were 

775 generated for all compounds in our bioactivity dataset (i.e., 1,033,581), using SMILES as the 

776 input. Pairwise molecular similarities were measured between all compound pair 

777 combinations using the Tanimoto coefficient. Python RDKit module [48] and ChemFP library 

778 [49] were employed to generate the fingerprints and to calculate the pairwise molecular 

779 similarities.

780 4.2 DTI Prediction System

781 The proposed prediction system contains two modules: compound – domain mapping 

782 (section 4.2.1) and the propagation of associations to other proteins and compounds 

783 (section 4.2.2). In the mapping module, small molecule drugs/compounds are 

784 probabilistically associated to single domains (or domain pairs) on target proteins, using 

785 experimentally verified compound – target interaction data in bioactivity data resources. In 

786 the second module, for each compound – domain pair, all proteins that contain the mapped 

787 domain and all compounds that are significantly similar to the mapped compound (in terms 

788 of molecular similarity) are crossed with each other to produce new drug/compound – target 

789 protein predictions. 

790 4.2.1 Compound – domain mapping

791 Figure 1a displays the overall methodology within a schematic representation. In this 

792 example, a compound (Ci) and its target protein (P1) is reported to be interacting/bioactive 

793 (i.e., according to our definition of active; xC50 < 10 M) in ChEMBL and/or PubChem. In this 

794 toy example, it has been identified from the InterPro database that P1 has one domain 

795 annotation (i.e., blue domain), on which the binding site/region of Ci (with the desired 

796 bioactivity) is assumed to reside. It may also be possible that there is a functional 

797 relationship between the blue domain and Ci. This makes other human proteins containing 

798 the blue domain (i.e., P2, P3, and P4) candidate targets for Ci and for other drug-like 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448307doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448307
http://creativecommons.org/licenses/by/4.0/


34

799 compounds that are significantly similar to Ci with Tanimoto similarity greater than or equal 

800 to 0.8 (i.e., Cx, Cy, and Cz).

801 To quantize the association between a compound and a domain, we calculated mapping 

802 scores for each compound – domain combination, using verified active and inactive 

803 compound – target protein data points in our source ChEMBL + PubChem bioactivity 

804 dataset. For this, precision, recall, accuracy, F1-score, and Matthew’s correlation coefficient 

805 (MCC) metrics are employed. MCC successfully measures the quality of binary 

806 classifications when there is a class imbalance [50], such as the case observed in our 

807 dataset. Here, binary classification is the decision for either the presence or absence of a 

808 bio-interaction between a compound and a domain. Definitions below are used to calculate 

809 mapping scores for an example compound (C1) and a domain (Dx):

810 • True positives (TP) represent the number of proteins that contain domain Dx, where 

811 the reported bioactivity against compound C1 is within the actives portion (i.e., xC50 < 

812 10 M),

813 • False positives (FP) represent the number of proteins that contain domain Dx, where 

814 the reported bioactivity against compound C1 is within the inactives portion (i.e., xC50 > 

815 20 M),

816 • False negatives (FN) represent the number of proteins that do not contain domain Dx, 

817 where the reported bioactivity against compound C1 is within the actives portion (i.e., 

818 xC50 < 10 M),

819 • True negatives (TN) represent the number of proteins that do not contain domain Dx, 

820 where the reported bioactivity against compound C1 is within the inactives portion (i.e., 

821 xC50 > 20 M).

822 Mapping score metrics are calculated using the above-defined TP, FP, FN, and TN; and 

823 their formulations are provided in Methods section 4.3. For all the compound – domain 
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824 mappings, high scores indicate reliable mappings and a high probability that the region of 

825 interaction lies on the mapped domain. In Figure 1b, the mapping procedure is shown for 2 

826 toy examples. Also, in Figure 1b, the number of TP, FP, FN, and TN for toy examples are 

827 given, together with the respective mapping scores (i.e., metrics). The first example 

828 corresponds to a case where there are 2 experimentally verified interacting (i.e., active) 

829 target proteins for compound C1. Both of these proteins contain the blue domain (i.e., a 

830 structural unit responsible for the interaction with C1.). C1 also has 3 inactive proteins (i.e., 

831 targets with insufficient bioactivity), 2 of which contain the red domain and 1 contains the 

832 light green domain. With the selection of the domain with the maximum score, the blue 

833 domain is mapped to C1. Another example mapping case is presented for compound C2, 

834 where most of the known targets are multi-domain proteins. For C2, many of the targets 

835 contain the green domain, red domain, or both of them. Association scores for single 

836 domains and domain pairs revealed that the best score is achieved when green and red 

837 domains exist together. It is observed that the real-world cases can be much more 

838 complicated compared to the toy examples provided in Figure 1b, as one protein can be the 

839 target of multiple compounds and one compound can target multiple proteins. To be able to 

840 separate reliable mappings from the non-reliable ones we determined and applied mapping 

841 score thresholds using the metrics provided in section 4.3. The test applied to determine 

842 these thresholds is described (together with its results) in the Results section 2.1.

843 With the purpose of increasing the reliability of the data in our verified bioactivity dataset, we 

844 directly eliminated the mappings to the compounds if the number of active and inactive 

845 targets is less than 3 (each). This filter was applied to eliminate the compounds with only a 

846 few data points, which could otherwise produce false high mapping scores. This application 

847 dramatically reduced the number of compounds in our source dataset from 1,033,581 to 

848 51,750. To be able to incorporate more data points, we generated a second dataset by 

849 combining the active and inactive targets of the compounds in clusters, which were 

850 significantly similar to each other in terms of molecular structure, and treated each cluster as 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448307doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448307
http://creativecommons.org/licenses/by/4.0/


36

851 an individual compound while calculating the mapping scores. To distribute the compounds 

852 in clusters we used pairwise molecular similarities via Tanimoto coefficient (over ECFP4 

853 fingerprints) with a threshold of 0.7, which was above the previously applied threshold to 

854 predict targets based on compound molecular similarities [51]. All compounds that were 

855 similar to each other with at least 0.7 Tanimoto similarity were placed in the same cluster. 

856 Clusters with less than 5 active and 5 inactive targets were directly eliminated to ensure 

857 reliability in terms of the number of data points. In this way, 202,238 clusters were generated 

858 with compound overlaps in-between. This procedure should not be confused with compound 

859 similarity-based propagation of target protein associations, which is explained in section 

860 4.2.2. The mapping score calculation was carried out for all of the 51,750 individual 

861 compounds in our first dataset (i.e., single-compound-based mappings) and for 202,238 

862 clusters in our second dataset (i.e., compound-cluster-based mappings) against domains of 

863 their respective target proteins. For the compound-cluster-based analysis, the score 

864 obtained for each domain mapping was propagated to all compounds in the corresponding 

865 cluster. This resulted in a total of 3,487,239 raw compound – domain mappings for the 

866 cluster-based bioactivity dataset (i.e., compound-cluster-based mappings) and 449,294 raw 

867 mappings for the individual compound-based dataset (i.e., single-compound-based 

868 mappings). Figure 7 displays the histograms composed of bins of the total number of 

869 targets, the number of active targets, and the number of inactive targets (X-axis), for 

870 individual compounds (Figure 7a, b, c) and for compound clusters (Figure 7d, e, f). Y-axis 

871 represents the number of compounds or compound clusters in the log scale. As observed, 

872 there was a steady decrease in the number of compounds/clusters when the number of 

873 targets per compound/cluster was increased. There was also a clear difference between 

874 active and inactive target bins, indeed no individual compound or cluster with higher than 80 

875 inactive targets were identified. The most probable reason for this was that, negative results 

876 (i.e., non-interactions) are not usually reported in the literature. The gain from using 

877 compound clusters was highlighted especially for active targets and for all targets (i.e., a vs. 

878 d and b vs. e) with the increase in the height of the bars for more than 50 targets (notice the 
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879 scaling difference in the X-axis between the individual compound histograms and the 

880 compound cluster histograms).

881 Figure 7. Log-scale histograms of the number of individual compounds and compound 

882 clusters (Y-axis) with the given number of target proteins (X-axis) in our source bioactivity 

883 dataset; for individual compounds: (a) all targets, (b) active targets, (c) inactive targets; and 

884 for compound clusters: (d) all targets, (e) active targets, (f) inactive targets.

885 A similar procedure was applied to map compounds to domain pairs. For this, all domain 

886 pair combinations were identified for each target protein in our source dataset, using the 

887 domain architecture information of the proteins extracted using the UniProt-DAAC method, 

888 which was described in our previous study [52]. All domain pairs were recorded as if they 

889 were single domains and the mapping procedure explained above was applied to obtain 

890 compound – domain pair mappings. This procedure yielded a total of 1,075,550 raw 

891 individual compound – domain pair mappings and 9,343,130 raw compound cluster – 

892 domain pair mappings. The high number (compared to single domain mappings) was due to 

893 the elevated number of domain pair combinations, especially for large proteins.

894 Once the mapping score threshold had been selected (as explained in Results section 2.1), 

895 all mappings below the threshold were discarded, and the remaining mappings constituted 

896 the finalized mapping dataset.

897 4.2.2 Propagation of associations

898 The second module starts with the detection of pairwise similarities between all compounds 

899 in our source dataset using molecular fingerprints. For this, Extended-Connectivity 

900 Fingerprints (ECFP4) [47] were generated for all compounds in our bioactivity dataset (i.e., 

901 1,033,581). The pairwise similarities were measured using the Tanimoto coefficient with a 

902 threshold of 0.8 to signify significant similarities, which was even above the previously 

903 applied Tanimoto thresholds to safely transfer target annotations between small molecule 

904 compounds [51]. Briefly, domain associations that were produced in the previous step were 
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905 transferred to new compounds that are similar to the mapped compound with a Tanimoto 

906 similarity value greater than equal to 0.8. The idea behind this application was that the 

907 structurally similar molecules tend to have similar interactions, as assumed in conventional 

908 ligand-based virtual screening [47].

909 Subsequently, all human protein records in the UniProtKB/Swiss-Prot database were 

910 searched for the mapped domains and domain pairs, using the InterPro domain annotation 

911 information. When a new protein was found to contain the domain in question, it was 

912 associated with the corresponding compound. In this way, new candidate ligands were 

913 predicted for both known targets and for new candidate target proteins that possess the 

914 mapped domains or domain pairs (Figure 1a).

915 4.3 Mapping Score and Performance Analysis Metrics

916 Precision, recall, accuracy, F1-score, and Matthew’s correlation coefficient (MCC) metrics 

917 are used for both the calculation of mappings scores (Methods section 4.2.1) and calculation 

918 of the overall system performance (Results section 2.1). The formulation of these metrics 

919 are as follows:

920

921 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃                                                                           (1)

922 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁                                                                             (2)

923 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁                                                                    (3)

924 𝐹1 ― 𝑆𝑐𝑜𝑟𝑒 =  2 ×  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙                                                               (4)

925 𝑀𝐶𝐶 =  
𝑇𝑃 ×  𝑇𝑁 ― 𝐹𝑃 ×  𝐹𝑁

(𝑇𝑃 + 𝐹𝑃) ×  (𝑇𝑃 + 𝐹𝑁) ×  (𝑇𝑁 + 𝐹𝑃) ×  (𝑇𝑁 + 𝐹𝑁)                                                  (5)
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926 Definitions for TP (i.e., true positives), FN (i.e., false negatives), FP (i.e., false positives) and 

927 TN (i.e., true negatives) are given in Method section 4.2.1.

928 4.4 Molecular Docking Experiments

929 For the molecular docking of predicted inhibitor compounds and their derivatives against 

930 kinase domains of LIMK1 and LIMK2 proteins, the crystal structure of LIMK1 kinase domain 

931 as a complex with staurosporine (PDB id: 3S95) and the crystal structure of LIMK2 kinase 

932 domain complex with bound 9D8 (PDB id: 5NXD) were retrieved from RCSB PDB database 

933 [53]. Then, the PDB files of both protein structures were loaded into AutoDockTools-1.5.6. 

934 For both proteins, which are in the form of 2-chain homodimer structures, only the A chain 

935 was kept for docking and preprocessed by deleting all heteroatoms, adding hydrogen atoms, 

936 computing Gasteiger charges, and merging non-polar hydrogens. The preprocessed protein 

937 structures were saved as pdbqt files. For flexible docking, contact residues of LIMK1 and 

938 LIMK2 proteins were selected and saved as flexible pdbqt files, while the remaining 

939 structures of the proteins were saved as rigid pdbqt files.

940 Full 3D structures of compounds were downloaded from ZINC (v15) database [54] in sdf file 

941 format and converted to PDB files by Open Babel file format converter [55]. Since the 

942 derivative compounds (i.e., LIMKi-2a, LIMKi-2b, LIMKi-2c, LIMKi-2d) could not be found in 

943 the ZINC database, compound 3D structures (in the form of PDB files) were generated from 

944 the SMILES representations of respective compounds using ChemAxon JChem software-

945 based online tool at: http://pasilla.health.unm.edu/tomcat/biocomp/convert. Then, Gasteiger 

946 charges were added, rotatable bonds and the root for the identification of a central atom 

947 were detected for compound PDB structures, and they were saved as pdbqt files in 

948 AutoDockTools.

949 Grid map files for both rigid and flexible dockings were generated by AutoGrid4 program 

950 (AutoDock-4.2.6) [56] using protein and compound pdbqt files as inputs, and the x-y-z 

951 coordinates for the grid search were defined by calculating the mean coordinates of the 
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952 reported interacting atoms of LIMK1 and LIMK2 proteins, which were retrieved from 

953 PDBsum [57]. Grid box parameters for grid search were set as shown in Table 3a. In the 

954 docking step, a genetic algorithm with default settings was used for parameter searching, 

955 and the docking analysis of each compound – protein pair was carried out by using 

956 AutoDock4 (v4.2.6) [56].

957 As a second docking validation, the same analysis was also performed by using 

958 MTiAutoDock [58] and SwissDock [59] web services. Protein pdb files were given as an 

959 input to the MTiAutoDock service together with the sdf formatted ligand structure files. List of 

960 residues mode was selected for grid calculation and the contact residues of each protein 

961 was given as input. MTiAutoDock service has automatically added the hydrogen atoms to 

962 the crystal structure and executed the docking procedure using AutoDock 4.2.6. For 

963 SwissDock, blind docking was implemented using protein PDB files and ligand mol2 files as 

964 input. For all docking analyses, different poses were evaluated via binding free energy 

965 calculations and the one with the lowest energy was selected as the finalized result (i.e., the 

966 best pose). UCSF Chimera software was used for the visualization of docking results.

967 4.5 Chemical Synthesis of the Predicted Inhibitors

968 DRUIDom predicted 4 compounds as inhibitors of LIMK1 and LIMK2 proteins, which have 

969 been selected as targets of the validation use-case study. Structures, database identifiers, 

970 and given names (by us) of these compounds (i.e., LIMKi-1, LIMKi-1a, LIMKi-2, LIMKi-3) are 

971 displayed in Figure 2. We synthesized these molecules to be used in the cell-based assays. 

972 Also, the structure of LIMKi-2 has been modified with the aim of building 4 new derivatives 

973 with a potentially higher biological activity (i.e., shown in Figure 2 as LIMKi-2a, LIMKi-2b, 

974 LIMKi-2c, LIMKi-2d), making a total of 8 molecules. Procedures used in the chemical 

975 synthesis of these molecules are given in the Supplementary Material document.

976 4.6 In vitro Experimental Assays 
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977 All LIMKi (LIM-Kinase Inhibitor) compounds were dissolved in DMSO and stored at -20 0C as 

978 20 mM stocks.  

979 4.6.1 Cell Culture 

980 Human hepatocellular carcinoma cell lines (Huh7, Mahlavu), colon carcinoma cell line 

981 (HCT116), breast cancer cell line (MCF-7) were maintained in Dulbecco’s Modified Eagle 

982 Media (DMEM) (Gibco, Cat:31885-023): together with 10% FBS (Gibco, Cat:10270), 1% 

983 Non-essential Amino Acid (MEM-NEAA) (Gibco, Cat:11140-050) and 1% Penicillin-

984 Streptomycin (Gibco, Cat:15140-122); whereas human embryonic kidney cell line (HEK-293) 

985 was maintained in same reagents described above together with 100 g/ml Hygromycin B 

986 (Invitrogen, Cat: 10687-010) at 370C under 5% CO4. All cells used in this study are STR 

987 authenticated and regularly tested for contamination with the mycoplasma test kit 

988 (MycoAlert™, Lonza, Cat:LT07-118). 

989 4.6.2 SRB (Sulforhodamine B) Assay

990 Cells were collected with trypsinization after washed with PBS once. Collected cells seeded 

991 in 96-well cell culture plate, adjusted with 150 ul/well as followed; Huh-7 (2500 cells/well), 

992 Mahlavu (1500 cells/well), HCT-116 (2000 cells/well), MCF-7 (2000 cells/well) and Hek-293 

993 (3000 cells/well). LIMKi compounds were administered in the range of concentration from 40 

994 M to 2,5 M, 24 hours later from the initial seeding step. After 72 hours of treatment, cells 

995 were fixed with 10% trichloroacetic acid (TCA;Sigma, Cat:27242) and proteins were stained 

996 with 0,4% sulforhodamine B sodium salt (SRB; Sigma, Cat: S1402) solution, dissolved in 1% 

997 acetic acid (Sigma, Cat: 27225) [60]. Plates were read on BMG SpectroStar Nano 

998 Spectrophotometer at 515nm. IC50 values were calculated based on the normalization 

999 according to DMSO-treated (Sigma, Cat: D2650) groups. 

1000 4.6.3 Western Blotting

1001 500.000 cells of Huh7 and 250.000 cells of Mahlavu were seeded in 150 mm cell culture 

1002 dishes (Sarstedt, Cat: 83.3903). After 24 hours, the old media was removed and fresh media 
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1003 containing 20 M of each LIMK inhibitor were added. All treatments were performed as 

1004 duplicates for 48 hours. At the end of the treatment, cells were scraped and protein 

1005 extraction was performed. Protein Electrophoresis (Bio-Rad, Mini-PROTEAN® Tetra Cell 

1006 Systems and TGX precast gels) and transfer system (Bio-Rad, Trans-Blot Turbo Transfer 

1007 System) were used according to the manufacturer's protocol. Proteins were transferred to a 

1008 PVDF-LF membrane (Bio-Rad, Cat:1620260) Following antibodies were used as described 

1009 within western blotting protocol. phospho-Cofilin (CST, Cat: 3313) (1:200 v/v), Total Cofilin 

1010 (CST, Cat:5175) (1:200 v/v), and IRDye® 800CW Goat-anti-Rabbit IgG Secondary Antibody 

1011 (LI-COR, Cat:926-32211) (1:20000 v/v). For normalization, REVERTTM 700 Total Protein 

1012 Stain Kit (LI-COR, Cat:926-11016) was used according to the manufacturer's protocol. 

1013 Images were taken with LI-COR Odyssey Clx Imaging Device. Signal normalization was 

1014 performed based on the REVERTTM Total Protein Stain Normalization protocol by LI-COR 

1015 Biosciences and imaging analysis was performed by LI-COR, Image Studio Lite software. 

1016 For efficiency testing for LIMKi compounds with IC100 dosages; anti-rabbit IgG (Sigma, Cat: 

1017 A6154) was used as a secondary antibody (1:5000 v/v), and for imaging; SuperSignal West 

1018 Femto (Thermo Scientific; Cat: 34095) was used. Imaging was acquired by using LI-COR C-

1019 DiGit ® Blot Scanner. Signal intensity analysis was performed by LI-COR, Image Studio Lite 

1020 software. 

1021 4.6.4 Scratch Assay 

1022 Huh7 (150.000 cells) and Mahlavu (100.000 cells) cells were seeded to 35 mm cell culture 

1023 dishes (Corning, Cat:430165) and incubated for at least 24h until cells attached and became 

1024 confluent. The wound was created in confluent (nearly 100%) monolayer cells by using p30 

1025 pipet tip followed by washing with PBS (Gibco, Cat: 14190-169) three times before adding 

1026 the serum-free medium (1% FBS) that includes LIMK inhibitors or vehicle DMSO. The 

1027 migration rate of LIMK inhibitor-treated cells was analyzed by comparing samples with the 

1028 migration of control cells treated with DMSO controls. Gap closure was analyzed by 

1029 capturing images with time-lapse Nikon ECLIPSE Ti-S inverted microscopy for 10 min 
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1030 intervals for 10 hours (high-quality images of the treated cells are given in the data 

1031 repository of the study). Upon 10 hours the distance of the same reference point measured 

1032 at the first and last frame were compared by using NIS-Elements software. 

1033 4.6.5 Real-Time Cell invasion Analysis 

1034 Cells were seeded on CIM-Plate 16TM (ACEA, Cat: 05 665 817 001), (20.000 cells/well for 

1035 Mahlavu and 50.000 cells/well for Huh7 as triplicates) and monitored their invasion capacity 

1036 on xCELLigence DP RTCA System, in the presence of 20 M LIMKi compounds. The lower 

1037 chamber of CIM-Plate was filled with 160 l DMEM containing 10% FBS. Cells were 

1038 resuspended with LIMKi compounds in serum-free DMEM (1% FBS, 1% NEAA, and 1% 

1039 Penicillin / Streptomycin) and inoculated into the upper chamber in 150 ul as final volume. 

1040 After the inoculation, CIM-Plate was incubated at room temperature for 30 min to allow the 

1041 cells to settle; then the system was initiated to record CI data for 48 hours with 15-minute 

1042 intervals. CI values were used to represent time-dependent invasion patterns of cells. 

1043 4.6.6 Statistical Analysis

1044 All SRB and migration data in this study were obtained from three independent experiments 

1045 with n ≥ 3 biological replicates. Western Blot experiments were performed as duplicates with 

1046 3 independent experiments. The statistical analysis for Western Blot was performed using 

1047 Welch’s t-test (Prism, GraphPad) and for the migration assay, Two-way ANOVA (Prism, 

1048 GraphPad) was performed. Standard deviations of IC50 results from SRB Assay and from 

1049 real-time cell proliferation data were calculated on Microsoft Excel. Statistically significant 

1050 results were represented as follows: *: p-value <0.05; **: p-value <0.01; ***: p-value <0.001; 

1051 and ****: p-value <0.0001.

1052
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1215 Figures

1216 (a)

1217
1218 (b)

1219
1220 Figure 1. (a) The overall representation of the drug/compound – target protein interaction 
1221 prediction approach used in DRUIDom (the diagram only depicts the relationship in terms of 
1222 physical binding; however, DRUIDom also covers functional relationships between domains 
1223 and compounds); (b) drug/compound – domain mapping procedure and its scoring over two 
1224 representative (c1, c2) toy examples.
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1225

1226 Figure 2. Structures, database identifiers, and 2-D representations of predicted LIMK 
1227 inhibitory compounds (LIMKi-1, 1a, 2, and 3) and derivatives (LIMKi-2a, b, c, and d).
1228
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1229 (a)

1230

1231 (b)

1232

1233 Figure 3. Visualization of the docked complex structures of (a) LIMK1 kinase domain in 
1234 complex with the reference molecule staurosporine (green), LIMKi-2 (violet), and LIMKi-3 
1235 (red), and (b) LIMK2 kinase domain in complex with the reference molecule 9D8 (dark 
1236 cyan), LIMKi-2 (violet), and LIMKi-3 (red) at the best poses. Hydrogen bonds are displayed 
1237 with dark blue lines. Gold and pink colors represent LIMK1 and LIMK2 protein residues 
1238 interacting with the corresponding compounds.
1239

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448307doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448307
http://creativecommons.org/licenses/by/4.0/


53

1240 (a)

1241
1242
1243

1244

1245 (b)

1246
1247
1248

1249

1250 Figure 4. Phospho-Cofilin protein expression.  (a) Huh7 and (b) Mahlavu cells were cultured 
1251 with LIMK inhibitors (20 M) for 48 hours and expression of active p-Cofilin and total Cofilin 
1252 levels were assessed with western blot analysis.  Bar graph indicates the relative intensity of 
1253 p-Cofilin levels compared to untreated DMSO controls. The equal loading control was 
1254 analyzed based on the total protein staining normalization protocol. The ratio of phospho- 
1255 and total Cofilin levels for both Mahlavu and Huh7 cell lines were calculated.
1256
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1257 (a)                                                       (b)
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290 Figure 5: Wound healing assay. In vitro “wound” was created by a straight-line scratch 
1291 across the monolayer (a) Huh7, (b) Mahlavu cells. Then cells were treated with indicated 
1292 concentrations of LIMKi compounds for 10 hours and percent-based wound gap closures 
1293 were calculated. Bar graphs represent percent-based wound healing for Huh7 and Mahlavu 
1294 cell lines. 
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1295 (a)        (b)

1296

1297 Figure 6: Cell invasion assay. Average cell index values are normalized according to 
1298 DMSO, which is represented by the horizontal gray dashed line; (a) Huh7, and (b) Mahlavu 
1299 cell lines, in the presence of LIMK inhibitors. The serum-free media containing 20 M of 
1300 each LIMKi compound were used and invasion progress of cells was monitored via 
1301 xCelligence DP RTCA System (*: p-value < 0.05, ****: p-value < 0.0001, p-values were 
1302 calculated in comparison to DMSO before the normalization).
1303

**
***

**
**
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1304

1305

1306

1307 Figure 7. Log-scale histograms of the number of individual compounds and compound 
1308 clusters (Y-axis) with the given number of target proteins (X-axis) in our source bioactivity 
1309 dataset; for individual compounds: (a) all targets, (b) active targets, (c) inactive targets; for 
1310 compound clusters: (d) all targets, (e) active targets, (f) inactive targets.
1311

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448307doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448307
http://creativecommons.org/licenses/by/4.0/


57

1312 Supplementary Material

1313 1. Chemical Synthesis of Inhibitor Molecules

1314 1.1. Synthesis of pyrimidine-based structures 1 and 2 (LIMKi-1 and LIMKi-1a)

1315 Procedure A: 

1316 To a solution of 2-chloropyrimidine (10 mmol) and ethyl isonipecotate (10 mmol) in MeCN (5 

1317 mL) was added solid potassium carbonate (11 mmol). The resulting reaction mixture was 

1318 heated at 80 °C for 16 hours. After cooling to ambient temperature and evaporation of 

1319 acetonitrile the residue was redissolved in ethyl acetate (25 mL) and extracted with water (3 

1320 x 10 mL). The organic extract was dried over anhydrous sodium sulfate, filtered and 

1321 evaporated to dryness to yield the crude ester product as brown liquid (quantitative yield). 

1322 The ester intermediate was dissolved in a mixture of water and methanol (50 mL, 1:1 ratio 

1323 by volume) and treated with solid sodium hydroxide (1.0 g). After heating this mixture at 60 

1324 °C for 3 hours, the reaction mixture was allowed to cool to room temperature. The mixture 

1325 was extracted twice with dichloromethane (2 x 10 mL), the aqueous layer was acidified (1 M 

1326 HCl) and extracted with dichloromethane (2 x 10 mL). The combined layers of this last 

1327 extraction were dried over anhydrous sodium sulfate, filtered and evaporated to dryness 

1328 yielding the corresponding carboxylic acid as colorless oil (92% yield – two steps).

1329 A sample of the carboxylic acid (4 mmol) was dissolved in dry MeCN (1 M solution) and 1,1'-

1330 carbonyldiimidazole (5 mmol) was added. After heating for 2 hours at 50 °C the mixture was 

1331 split into two equal volumes and treated separately with either 3-methylaniline (2.2 mmol) or 

1332 3-fluoro-4-methylaniline (2.2 mmol). Each sample was heated at 50 °C for a further 3 hours 

1333 and the mixtures then allowed to cool to room temperature leading to precipitation of the 

1334 desired products. Filtration of these solids followed by recrystallization from dichloromethane 

1335 furnished the desired products (LIMKi-1 and LIMKi-1a) in high yield and purity as white 

1336 solids.

1337 N-(3-Fluoro-4-methylphenyl)-1-(pyrimidin-2-yl)piperidine-4-carboxylate, 1 (LIMKi-1):

1338 White solid, 83% yield. 1H NMR (400 MHz, Chloroform-d) δ 

1339 8.28 (d, J = 4.7 Hz, 2H), 7.66 (s, 1H), 7.43 – 7.35 (m, 1H), 7.10 

1340 – 7.00 (m, 2H), 6.46 (t, J = 4.7, 4.7 Hz, 1H), 4.85 – 4.75 (m, 

1341 2H), 2.89 (ddd, J = 13.4, 12.1, 2.8 Hz, 2H), 2.48 (tt, J = 11.6, 

1342 3.8 Hz, 1H), 2.19 (d, J = 2.0 Hz, 3H), 1.99 – 1.90 (m, 2H), 1.85 

1343 – 1.68 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 173.1 (C), 161.5 (C), 161.0 (CF, d, J = 

1344 245 Hz), 157.7 (2CH), 136.9 (C, d, J = 11 Hz), 131.3 (CH, d, J = 6 Hz), 120.6 (C, d, J = 18 

N

N N
N
H

O

F
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1345 Hz), 115.1 (CH, d, J = 3 Hz), 109.8 (CH), 107.4 (CH, d, J = 27 Hz), 44.6 (CH), 43.3 (2 x CH2), 

1346 28.5 (2 x CH2), 14.1 (CH3, d, J = 3 Hz). 19F NMR (376 MHz, Chloroform-d) δ -115.4. HRMS 

1347 (TOF ES+) calculated for C17H20N4OF 315.1621, found 315.1625 (Δ = 1.3 ppm).

1348 1-(Pyrimidin-2-yl)-N-(m-tolyl)piperidine-4-carboxamide, 2 (LIMKi-1a):

1349 White solid, 79% yield. 1H NMR (400 MHz, Chloroform-d) δ 

1350 8.28 (d, J = 4.7 Hz, 2H), 7.68 (s, 1H), 7.38 (s, 1H), 7.27 (d, J = 

1351 7.8 Hz, 1H), 7.15 (t, J = 7.8 Hz, 1H),  6.94 – 6.84 (m, 1H), 6.45 

1352 (t, J = 4.8 Hz, 1H), 4.80 (dt, J = 13.4, 2.7 Hz, 2H), 2.88 (ddd, J 

1353 = 13.4, 12.1, 2.8 Hz, 2H), 2.48 (tt, J = 11.5, 3.8 Hz, 1H), 2.27 

1354 (s, 3H), 1.98 – 1.88 (m, 2H), 1.86 – 1.70 (m, 2H). 13C NMR (101 MHz, Chloroform-d) δ 173.1 

1355 (C), 161.5 (C), 157.7 (2CH), 138.9 (C), 137.8 (C), 128.8 (CH), 125.2 (CH), 120.7 (CH), 117.1 

1356 (CH), 109.8 (CH), 44.6 (CH), 43.3 (2 x CH2), 28.5 (2 x CH2), 21.5 (CH3). HRMS (TOF ES+) 

1357 calculated for C17H21N4O 297.1715, found 297.1720 (Δ = 1.7 ppm).

1358 1.2. Synthesis of thiadiazole-based structures 3 and 4 (LIMKi-2 and LIMKi-3)

1359 Procedure B: 

1360 To a suspension of the desired benzamidine hydrochloride hydrate (9 mmol) in 

1361 dichloromethane (15 mL, 0 °C) was added trichloromethyl sulfenylchloride (10 mmol) and 

1362 aqueous sodium hydroxide solution (9 mL, 6 N). After stirring this mixture for 1 hour at 0 °C 

1363 the aqueous layer was separated and piperazine (20 mmol) was added to the organic layer. 

1364 The resulting mixture was stirred at ambient temperature for 12 hours after which water (20 

1365 mL) was added. Extraction of the mixture was performed with dichloromethane (3 x 10 mL) 

1366 and the combined organic layers were dried over anhydrous sodium sulfate, filtered and 

1367 evaporated to yield the desired piperazine adduct as an off-white solid (75% yield).

1368 Solutions of the above piperazine adduct were prepared in two separate vials (2 mmol each) 

1369 in dichloromethane (3 mL each). To each vial was added the corresponding isocyanate 

1370 (e.g., 3-methylphenylisocyanate or 3-methoxyphenylisocyanate; 2.2 mmol). After stirring this 

1371 mixture for 5 hours at ambient temperature a white precipitate formed that was isolated by 

1372 filtration. Recrystallisation from dichloromethane/hexane (1:1) furnished the desired adducts 

1373 (LIMKi-2 and LIMKi-3) as white solids.

1374 Further members of this small library (e.g. LIMKi-2a-d) were prepared in an analogous 

1375 fashion and used after appropriate purifications.

1376

N

N N
N
H
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1377 4-(3-Phenyl-1,2,4-thiadiazol-5-yl)-N-(m-tolyl)piperazine-1-carboxamide, 3 (LIMKi-2):

1378 White solid, 60% yield. 1H NMR (700 MHz, DMSO-d6) 

1379 δ 8.63 (s, 1H), 8.13 – 8.07 (m, 2H), 7.45 (m, 3H), 7.28 

1380 (d, J = 2.0 Hz, 1H), 7.25 (dd, J = 8.1, 2.2 Hz, 1H), 7.10 

1381 (t, J = 7.8 Hz, 1H), 6.76 – 6.72 (m, 1H), 3.65 – 3.55 (m, 

1382 8H), 2.23 (s, 3H). 13C NMR (176 MHz, DMSO-d6) δ 

1383 185.2 (C), 169.5 (C), 155.3 (C), 140.7 (C), 137.8 (C), 133.3 (C), 130.5 (CH), 129.1 (2 x CH), 

1384 128.6 (CH), 128.0 (2 x CH), 123.1 (CH), 120.7 (CH), 117.3 (CH), 48.8 (2 x CH2), 43.4 (2 x 

1385 CH2), 21.6 (CH3). HRMS (TOF ES+) calculated for C20H22N5OS 380.1545, found 380.1532 (Δ 

1386 = 3.4 ppm).

1387 N-(3-Methoxyphenyl)-4-(3-phenyl)-1,2,4-thiadiazol-5-yl)piperazine-1-carboxamide, 4 
1388 (LIMKi-3):

1389 White solid, 66% yield. 1H NMR (700 MHz, 

1390 Chloroform-d) δ 8.20 – 8.15 (m, 2H), 7.46 – 7.38 

1391 (m, 3H), 7.18 (t, J = 8.1 Hz, 1H), 7.07 (t, J = 2.3 Hz, 

1392 1H), 6.87 (ddd, J = 8.0, 2.1, 0.9 Hz, 1H), 6.78 (d, J 

1393 = 3.5 Hz, 1H), 6.61 (ddd, J = 8.3, 2.5, 0.9 Hz, 1H), 

1394 3.76 (s, 3H), 3.63 (dd, J = 7.2, 3.8 Hz, 4H), 3.62 – 3.58 (m, 4H). 13C NMR (176 MHz, 

1395 Chloroform-d) δ 185.1 (C), 170.4 (C), 160.2 (C), 154.9 (C), 139.9 (C), 133.2 (C), 130.0 (CH), 

1396 129.6 (CH), 128.5 (2 x CH), 128.0 (2 x CH), 112.5 (CH), 109.2 (CH), 106.3 (CH), 55.3 (CH3), 

1397 48.3 (2 x CH2), 43.3 (2 x CH2). HRMS (TOF ES+) calculated for C20H22N5O2S 396.1494, found 

1398 396.1490 (Δ = 1.0 ppm).
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