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Abstract

Plasmids are extra-chromosomal genetic elements commonly found in bacterial cells
that support many functional aspects including environmental adaptations. The
identification of these genetic elements is vital for the further study of function and
behaviour of the organisms. However it is challenging to separate these small sequences
from longer chromosomes within a given species. Machine learning approaches have
been successfully developed to classify assembled contigs into two classes (plasmids and
chromosomes). However, such tools are not designed to directly perform classification
on long and error-prone reads which have been gaining popularity in genomics studies.
Assembling complete plasmids is still challenging for many long-read assemblers with a
mixed input of long and error-prone reads from plasmids and chromosomes. In this
paper, we present PlasLR, a tool that adapts existing plasmid detection approaches to
directly classify long and error-prone reads. PlasLR makes use of both the composition
and coverage information of long and error-prone reads. We evaluate PlasLR on
multiple simulated and real long-read datasets with varying compositions of plasmids
and chromosomes. Our experiments demonstrate that PlasLR substantially improves
the accuracy of plasmid detection on top of the state-of-the-art plasmid detection tools.
Moreover, we show that using PlasLR before long-read assembly helps to enhance the
assembly quality in terms of plasmid recovery and near complete chromosome assembly
from metagenomic datasets. The source code is freely available at
https://github.com/anuradhawick/PlasLR.

Introduction 1

Plasmids are extra-chromosomal genetic elements which allow their hosts to rapidly 2

adapt and survive under changing environmental conditions [1, 2]. These small and 3

widespread genetic elements can be commonly found in bacterial cells [3]. Plasmids are 4

responsible for a significant amount of genetic variation within populations which 5

ensures persistence towards changes in the environment and various selective pressures. 6

Plasmids also play an important role in horizontal gene transfer among unrelated 7

bacterial species to spread genes related to virulence, resistance to different classes of 8

antibiotics and heavy metal resistance [2, 4, 5]. Hence, it is important to identify and 9

study plasmids present in environmental samples [5]. 10
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High-throughput sequencing such as next-generation sequencing (NGS) and 11

third-generation sequencing (TGS) technologies have allowed us to sequence and 12

analyse bacterial genomes including both their chromosomes and plasmids [6, 7]. 13

However, when sequencing an entire sample, reads originating from chromosomes and 14

plasmids are mixed together. Although NGS produces highly accurate reads, direct 15

classification of NGS reads is not possible as their typical length (100-300bp) may not 16

be long enough to contain sufficient genomic signatures [8]. Many tools such as 17

plasmidSPAdes [9], Recycler [10], PLACNET [11] and PLACNETw [12] have been 18

developed to directly reconstruct plasmid sequences from raw NGS reads. For example, 19

plasmidSPAdes [9] makes use of the coverage information in the assembly graph to 20

recover contigs originating from plasmids. Recycler [10] reconstructs plasmids as cycles 21

in the assembly graph using coverage and length properties [10]. PLACNET [11] and 22

PLACNETw [12] (a web tool based on PLACNET) create a network of contig 23

interactions to reconstruct plasmids with the help of manual interaction. 24

Another interesting strategy to detect plasmids from NGS reads is to first assemble 25

the short reads into much longer sequences called contigs and then classify these contigs. 26

For example, cBar [13] and mlplasmids [14] both use k-mer profiles of sequences and 27

different classification models to classify chromosomal and plasmid contigs. 28

PlasmidFinder [15] is a web application that compares contigs with a database of 29

replicon sequences to identify plasmids. More recently, two supervised-learning 30

approaches, PlasFlow [16] and PlasClass [17], have achieved the best performance in 31

classifying plasmid contigs found in metagenomics samples. Table 1 denotes a 32

comparison of these tools to classify contigs (assembled from NGS reads) originating 33

from plasmids or chromosomes. 34

Table 1. Comparison of currently available plasmid detection tools which classify plasmid and chromosomal
contigs.

Tool
Inputs

provided
Uses

coverage
Uses sequence

features
Method of classification

cBar [13] Contigs 7 3 Decision tree, Bayes network, SVM, SMO, nearest neighbour
PlasmidFinder [15] Contigs 7 3 Similarity comparison with a database of replicon sequences
mlplasmids [14] Contigs 7 3 Logistic regression, Bayesian classifier, decision trees, RF, SVM
PlasFlow [16] Contigs 7 3 Neural networks
PlasClass [17] Contigs 7 3 Logistic regression

Third-generation sequencing (TGS) technologies such as Pacific Biosciences (PacBio) 35

and Oxford Nanopore Technologies (ONT) have become popular because TGS reads are 36

orders of magnitudes longer than NGS reads. As TGS reads are long enough to span 37

over many repetitive regions, plasmid sequences have been reconstructed by assembling 38

TGS reads [18–21]. However, recent benchmarks show that assembling complete 39

plasmids is still challenging for many long-read assemblers from a mixed input of TGS 40

reads from plasmids and chromosomes [22,23]. As TGS reads are as long as contigs 41

assembled from NGS reads, it becomes interesting to explore if it is possible to directly 42

classify TGS reads originating from plasmids or chromosomes before assembly. 43

Separating TGS reads before assembly has the potential to improve the assembly 44

quality because it allows long-read assemblers to assemble plasmids and chromosomes 45

independently (using different appropriate parameters). However, the above 46

contig-classification tools (in Table 1) are designed to be used directly with NGS 47

assemblies. Such contigs are usually accurate and have a higher base quality. However, 48

TGS reads are much more error-prone compared to contigs obtained from NGS reads. 49

Therefore, there remains a need to design and test plasmid classification tools directly 50

for TGS reads. 51
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In this paper, we propose PlasLR, a tool that adapts existing contig-classification 52

tools for plasmids to directly classify long and error-prone (TGS) reads. PlasLR makes 53

use of both the composition information and k-mer coverage information of long reads. 54

To the best of our knowledge, PlasLR is the first plasmid classification tool that is 55

designed to directly handle long reads. Our experiments demonstrate that PlasLR 56

achieves high accuracy of plasmid detection on top of state-of-the-art plasmid 57

classification tools. Moreover, we show that using PlasLR before long-read assembly 58

also helps to enhance the assembly quality. 59

Materials and methods 60

The contig-classification tools for plasmids (in Table 1) have been successfully applied 61

to classify contigs assembled from NGS reads. However, they are not robust on direct 62

classification of all TGS reads (by treating TGS reads as contigs) because TGS reads 63

are more error-prone than contigs assembled from NGS reads. However, these tools are 64

capable of producing a subset of confident classification at higher confident thresholds, 65

i.e. chromosomes closer to probability 0 and plasmids closer to probability 1. Hence, 66

there exists a significant compromise between precision and recall depending on the 67

chosen threshold. Therefore, PlasLR employs such high confident classifications as 68

initial results along with new features to make a semi-supervised classifier to classify 69

error prone long reads. 70

PlasLR takes raw TGS reads (either PacBio or ONT) as the input. The minimum 71

read length accepted by PlasLR is 1000bp. If we directly apply an existing 72

contig-classification tool to classify all the long reads, many long reads may receive 73

ambiguous or incorrect labels (plasmid or chromosome) as these long reads are not as 74

accurate as the default input (contigs assembled from NGS reads). The intuition is to 75

select and retain the most confident labels (plasmid or chromosome) from a subset of 76

long reads and propagate these labels to other long reads originating from the same 77

chromosome or plasmid. Previous studies have shown that plasmids and chromosomes 78

have different oligonucleotide compositions which have been used in plasmid 79

classification [13,24–26]. The oligonucleotide composition is thus a potential feature for 80

long reads because long reads from the same chromosome or plasmid tend to have 81

similar oligonucleotide composition. Plasmids may also have different coverages 82

compared to chromosomes and such coverage variations have been used in plasmid 83

reconstruction [9]. Although it is challenging to estimate the coverage of a chromosome 84

or plasmid that a long read belongs to, the k-mer coverage histogram of a long read has 85

been shown to approximate such coverage and has been used in clustering long 86

reads [27]. Therefore, PlasLR extracts both oligonucleotide composition and k-mer 87

coverage histogram as features of a long read and propagates reliable labels from a 88

subset of long reads to others based on these features. 89

More specifically, the complete workflow is presented in Figure 1. In Step 1, the 90

k-mer coverage histograms and the trinucleotide frequency vectors are computed 91

respectively and concatenated together for each read. In Step 2 the concatenated 92

vectors are subjected to dimension reduction using Principal Component Analysis 93

(PCA) [28], UAMP (default choice) [29] and OpenTSNE [30]. In Step 3, TGS reads are 94

classified using an existing tool and only the high-confident labels (plasmid or 95

chromosome) are retained. In Step 4, nearest neighbours in the UMAP plots are used to 96

detect and remove some ambiguous labels, and a K-Nearest Neighbour (KNN) 97

classifier [31] is initialised on the remaining labelled reads. Finally, in Step 5, all the 98

unlabelled reads are labelled using the KNN classifier. Details of each step are explained 99

in the following sections. 100
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Input: TGS reads

Step 1: Obtain a Feature Vector for Each
TGS Read

Step 2: Dimension Reduction

Step 4: Remove Ambiguous Labels and
Initialise a KNN Classifier

Step 5: Classifying all Reads using the
Initialised KNN Classifier

0.08, 0.01, ... 0.01, 0.01
0.02, 0.02, ... 0.05, 0.02
0.04, 0.02, ... 0.07, 0.01
0.02, 0.02, ... 0.01, 0.02

...

0.01, 0.02, ... 0.06, 0.02
0.05, 0.03, ... 0.01, 0.01
0.01, 0.02, ... 0.06, 0.05
0.07, 0.03, ... 0.01, 0.04

...

    1,     2,    ...   31,   32     1,     2,    ...   31,   32

Step 3: Classification Using an 
Existing Plasmid Classification Tool

Output: Labelled TGS reads

Plasmids Chromosomes

Composition Vectorsk-mer Coverage Histograms

1
2
3
4
...

Fig 1. The Workflow of PlasLR. Long reads are provided as inputs for PlasLR. In
Step 1, the k-mer coverage histograms and the trinucleotide frequency vectors are
computed respectively and concatenated together for each read. In Step 2 the
concatenated vectors are subjected to dimension reduction using UMAP. In Step 3,
TGS reads are classified using an existing tool and only the high-confident labels
(plasmid or chromosome) are retained. In Step 4, nearest neighbours in the UMAP plot
are used to detect and remove some ambiguous labels, and a KNN classifier is initialised
on the remaining labelled reads. Finally, in Step 5, all the unlabelled reads are labelled
using the KNN classifier.
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Step 1: Obtain a Feature Vector for Each TGS Read 101

In real-world genomic samples, the species (chromosomes and plasmids) are of varying 102

abundances but contigs from the same chromosome or plasmid are likely to have similar 103

coverages. In other words, the reads should overlap and stack on each other to reflect 104

the actual coverages. Intuitively, this can be achieved using an all-vs-all alignment 105

approach. However, such a naive approach would be computationally expensive as the 106

number of reads can be very large. Therefore, a k-mer based approach is used in 107

PlasLR for coverage estimation of long reads [27]. 108

For a k-mer in a long read, the coverage of this k-mer is defined as its number of 109

appearances in all the reads. Despite its high error rates, each long read may still 110

contain some (unknown) error-free k-mers and the coverages of such k-mers correlate 111

with the coverage of the chromosome or plasmid that the long read belongs to. As 112

erroneous k-mers typically have lower coverages compared to error-free k-mers, the 113

coverage histogram of all k-mers in a long read indicates the coverage of the 114

chromosome or plasmid that it belongs to. Similar to previous studies on long read 115

analysis [32–34], we chose k=15 in PlasLR such that there are enough error-free k-mers 116

in most long reads to provide accurate coverage information while reducing k-mer 117

collisions. The computation of k-mer coverage histograms starts with counting all the 118

k-mers in the whole set of TGS reads by DSK [35]. The k-mer counts are then stored in 119

a lookup table for efficient lookup. For each read, all its k-mers are converted to an 120

array of counts by using the above lookup table. By default, PlasLR focuses on k-mers 121

with coverage from 1 to 320 and a k-mer coverage histogram is generated by dividing 122

the coverage range 1X to 320X into 32 bins, with each bin having a size of 10 (i.e., 123

[1-10],[11-20],. . . ,[311-320]). The k-mers with counts more than 320 will be accumulated 124

to the last bin. The choice of these variables are provided in PlasLR. This histogram is 125

normalised by the total number of k-mers observed in the read. This 32-dimension 126

vector is chosen as the first half of the feature vector. 127

Microbial genomes carry signatures of oligonucleotide frequencies that are unique to 128

each species [36]. These signatures are preserved within a species across its genome and 129

varies between different species [37]. Moreover, previous studies have shown that 130

chromosomes and plasmids have different oligonucleotide compositions [24–26]. Given 131

the longer lengths of TGS reads, despite their error prone nature, the reads carry closely 132

similar oligonucleotide frequencies to that of their underlying chromosomes/plasmids. 133

While PlasFlow and PlasClass use the composition information from 3-mers to 7-mers 134

in contigs, PlasLR only uses 3-mers (trinucleotides or trimers) to compute frequency 135

vectors for the long reads because higher error rates in long reads affect more k-mers as 136

k increases. 3-mer frequency vectors have been successfully utilised in metagenomics 137

binning of long reads [27]. For each long read, we count the occurrences of all 64 3-mers 138

and then combine the counts of any 3-mer and its reverse complement. This results in a 139

vector of size 32, which is then normalised by the sum of elements in the vector. Now, 140

we concatenate the coverage histograms and trinucleotide frequency vectors to derive a 141

vector with 64 dimensions for each long read as shown in Figure 1 Step 1. 142

Step 2: Dimension Reduction 143

UMAP (Uniform Manifold Approximation and Projection) [29] is used to project the 144

concatenated vectors of Step 1 into the two-dimensional space. UMAP is a technique 145

that is used to reduce the dimensionality of the data while preserving most of the 146

variation among data points in the dataset. UMAP tries to embed data in lower 147

dimensions such that the fuzzy topological structure is conserved [29]. Hence, PlasLR 148

uses two UMAP components to visualise (refer to Step 2 of Figure 1) and classify long 149

reads into the two classes. 150
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Figure 2 denotes the UMAP plots of 64-dimension vectors of simulated PacBio reads 151

originating from the Aquifex aeolicus chromosome (NCBI accession number NC 000918, 152

20x coverage) and the Lactococcus lactis plasmid (NCBI accession number NC 000906, 153

200x coverage) and Sim-2C5P dataset. We include the ground-truth information as 154

coloured points in Figure 2 to demonstrate a locality of the chromosomal and plasmid 155

sequences in the UMAP plot. Note that PlasLR provides users with the ability to select 156

dimensionality reduction algorithm (PCA, UMAP, OpenTSNE [30]). 157
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Fig 2. Example UMAP decomposition plots of concatenated coverage
histograms and composition vectors. (a) single species with 1 chromosome
and 1 plamid, (b) Sim-2C5P dataset. The UMAP decomposition plot of
concatenated coverage histograms and 3-mer frequency vectors of a set of simulated
PacBio reads originating from one Aquifex aeolicus chromosome (20X coverage) and one
Lactococcus lactis plasmid (200X coverage) is shown on left. In the right, a Sim-2C5P
dataset which is more complicated is demonstrated.

Step 3: Classification Using an Existing Plasmid Classification 158

Tool 159

As discussed above, PlasLR makes use of plasmid classification results from existing 160

contig-classifcation tools. In this paper, we have selected two of the latest plasmid 161

detection tools, PlasFlow [16] and PlasClass [17] to obtain the initial classifications. 162

PlasFlow and PlasClass are shown to outperform earlier tools in recent 163

benchmarks [16,17] and provide confidence levels for the output labels predicted. This 164

facilitates PlasLR to perform downstream tasks by filtering classifications based these 165

confidence levels. 166

Note that the initial classification results of either PlasFlow or PlasClass consist of 3 167

classes, plasmid, chromosome and unclassified. Most (>50%) TGS reads will be in the 168

unclassified class as only high-confident assignments of plasmids and chromosomes are 169

selected. Refer to Section ”Tools Used for Initial Classification” for more details on 170

selecting high-confident assignments in both PlasFlow and PlasClass. The Step 3 of 171

Figure 1 demonstrates the labels of plasmids and chromosomes incorporated into the 172

two dimensional UMAP plot, and will be used in subsequent refinement and 173

propagation. 174
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Step 4: Remove Ambiguous Labels and Initialise a KNN 175

Classifier 176

Using the set of labelled reads from Step 3, nearest neighbours (50 neighbours by 177

default) are computed for each read using the lower dimensional representation. The 178

label of a read (plasmid or chromosome) is defined to be ambiguous if more than 20% of 179

its labelled nearest neighbours have a different label. PlasLR removes those ambiguous 180

labels and set them to be unclassified. Then, a K-Nearest Neighbour (KNN) 181

classifier [31] is initialised on the remaining labelled points (refer to Step 4 of Figure 1). 182

In this step, the KNN indexes the labelled points thus enabling predictions on unseen 183

points using the K (K=50) closest labelled data points. 184

Step 5: Classifying all Reads using the Initialised KNN 185

Classifier 186

The initialised KNN classifier is used to predict the probability that a read is a plasmid. 187

We label the reads exceeding 0.5 probability threshold as plasmids and vice versa. Step 188

5 of Figure 1 demonstrates the visualisation of assigning unclassified reads to the two 189

classes using the KNN classifier. PlasLR finally classifies all the input TGS reads into 190

two classes (plasmid and chromosome). 191

Experimental Setup 192

Datasets 193

We used the following TGS datasets in our experiments. 194

1. We simulated several datasets with genomic abundances obtained from a log 195

normal distribution following the model in [17]. The plasmid copy numbers were 196

taken from a geometric distribution where the probability of success is 197

min(1, log(L)/10) and L is the length of the plasmid. This was performed to 198

amplify the abundance of short plasmids [17]. The following three datasets are 199

simulated using SimLoRD [38]. The error rate was set to 10% and the minimum 200

read length was set to 1000bp. The detailed information about species 201

(chromosomes and plasmids) is available in Section 1 of the Supplementary 202

Material. 203

• Sim-2C5P: Contains 1 species with a total of 2 chromosomes and 5 204

plasmids. 205

• Sim-4C11P: Contains 2 species with a total of 4 chromosomes and 11 206

plasmids. 207

• Sim-10C16P: Contains 5 species with a total of 10 chromosomes and 16 208

plasmids. 209

2. Zymo GridION dataset (Zymo-GridION-EVEN-BB-SN ) from the ZymoBIOMICS 210

Microbial Community Standards [39] was used, which consists of real Oxford 211

Nanopore (ONT) reads. In order to obtain datasets with a considerable portion of 212

plasmid content, we subsample reads from each of the three species Escherichia 213

coli, Staphylococcus aureus and Salmonella enterica. We refer to the three datasets 214

as Zymo-EC, Zymo-SA and Zymo-SE respectively. We randomly subsampled 215

upto 10,000 reads from each plasmid and chromosome class. 216
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Table 2. Information about the datasets in the experiments.

Dataset Read type
Total number

of reads
Average read
length (bp)

Number of
plasmid reads

Number of
chromosomal reads

Sim-2C5P PacBio 20250 8246 6720 13530
Sim-4C11P PacBio 119957 8200 35110 84847
Sim-10C16P PacBio 199983 8200 32223 168760
Zymo-EC ONT 207442 6836 6437 10000
Zymo-SA ONT 375654 4058 10000 10000
Zymo-SE ONT 199974 6785 2850 10000

Tools Used for Initial Classification 217

We choose PlasFlow and PlasClass as initial classifiers for plasmids and chromosomes 218

since they have outperformed other tools in recent evaluations [16,17]. 219

PlasFlow outputs probabilities for 26 different classes under the phylum of each 220

chromosome and plasmid. Furthermore, the results contain a single field labelling the 221

classification in the form Class.phylum. Please refer to Section 2 of the Supplementary 222

Material for more details. 223

PlasClass outputs single-valued probabilities to indicate how probable a sequence 224

belongs to a plasmid. PlasLR chooses the thresholds such that 5% of reads are plasmids 225

if such an amount of reads exists above 70% confidence. Similarly up to 20% reads are 226

chosen to be plasmids below 50% confidence. The selection of probability thresholds is 227

further discussed in Section 3 of the Supplementary Material. 228

Evaluation Criteria 229

Different classification tools (PlasFlow, PlasClass and PlasLR) are evaluated based on 230

the precision, recall and F1 score of plasmid and chromosome classifications separately. 231

For this purpose, we define the following terms. 232

• TPp: the number of actual plasmid sequences that were classified as plasmid (true 233

positives for plasmids) 234

• TPc: the number of actual chromosomal sequences that were classified as 235

chromosomal (true positives for chromosomes) 236

• FPp: the number of non-plasmid sequences that were classified as plasmid (false 237

positives for plasmids) 238

• FPc: the number of non-chromosomal sequences that were classified as 239

chromosomal (false positives for chromosomes) 240

• FNp: the number of plasmid sequences that were not classified as plasmid (false 241

negatives for plasmids) 242

• FNc: the number of chromosomal sequences that were not classified as 243

chromosomal (false negatives for chromosomes) 244

The micro-averaged precision, recall and F1 score are calculated as follows. Note 245

that FNp and FNc include the number of unclassified chromosomal and plasmid 246

sequences, respectively. We use the following equations to evaluate the classification of 247

chromosomes. 248

Chromosome Precision (%) =
TPc

TPc + FPc
(1)
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Chromosome Recall (%) =
TPc

TPc + FNc
(2)

For the evaluation of plasmids the following equations were used; 249

Plasmid Precision (%) =
TPp

TPp + FPp
(3)

Plasmid Recall (%) =
TPp

TPp + FNp
(4)

For both the classes we compute the F1-score using the following equation; 250

F1 score (%) = 2 × Precision×Recall

Precision + Recall
(5)

For the reads in the real dataset (with unknown ground truth), the reads are 251

mapped to the known reference genomes using Minimap 2 [40] and the chromosome or 252

plasmid that results in the best alignment is considered as the origin of the read. 253

Results 254

Classification Results on Long Reads 255

We executed PlasFlow [16] and PlasClass [17] and plotted precision-vs-recall curves to 256

examine the performance of each tool as the decision boundary changes. The resulting 257

trade-offs between precision and recall are demonstrated in Figure 3 for the Zymo-SA 258

dataset (details about this dataset can be found in Section 3.1). As expected, the higher 259

the recall PlasFlow and PlasClass achieve (i.e., classify more TGS reads), the lower the 260

precision their classification results have. Hence, it is evident that mere parameter 261

setting of a decision threshold is insufficient to improve the overall classification of 262

results (Note that both PlasFlow and PlassClass provide a probability to assign each 263

input sequence to either plasmids or chromosomes). When we select higher thresholds 264

on such probabilities, both PlasFlow and PlassClass are able to generate relatively 265

accurate classification results for a small subset of input sequences. In Figure 3, we 266

demonstrates the PlasLR precision-vs-recall curves which demonstrate a significant shift 267

of precision and recall from the initial results. 268

We present the results of PlasLR on classification of long reads into two classes 269

(plasmid and chromosome). Table 3 denotes the comparison of results of PlasFlow [16], 270

PlasClass [17] and PlasLR (on top of PlasFlow and PlasClass) respectively. Note that 271

the probabilites given by PlasClass, PlasFlow and PlasLR are converted into respective 272

classes by considering the decision boundary of 0.5. 273

According to the F1-scores highlighted in Table 3, we can see that PlasLR has 274

improved the classification results based on the initial results obtained from PlasFlow 275

and PlasClass. Similar to Figure 3, PlasLR has shown significant improvements over the 276

recall while maintaining a high precision (similar to or even better than the precision of 277

the high-confident subset of reads initially classified by PlasFlow or PlasClass). For 278

initial classification results used in PlasLR, please refer to Section 4 of the 279

Supplementary Material. The improvement on precision in PlasLR is gained by 280

removing ambiguous labels while the improvement on recall of PlasLR is achieved by 281
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Fig 3. The trade-off between precision and recall for (a) PlasFlow results
and for (b) PlasClass results on the Zymo-SA dataset. The precision-recall
curve is generated by varying the probability threshold in PlasFlow and PlasClass,
respectively. The classification results of PlasLR on top of PlasFlow and PlasClass
achieve high precision and recall. Precision and recall are computed separately for
plasmid and chromosomal sequences using TP/(TP + FP ) and TP/(TP + FN)
respectively. Unclassified reads are considered under FN for recall.

Table 3. Comparison of classification results of PlasFlow [16], PlasClass [17] and PlasLR (on top of
PlasFlow and PlasClass). Please refer to Section 4 of the Supplementary Material for raw results presented in read counts
used by PlasLR as input.

Dataset
Evaluation
Criteria

PlasFlow
PlasLR with

PlasFlow result
PlasClass

PlasLR with
PlasClass result

Chromosome Plasmid Chromosome Plasmid Chromosome Plasmid Chromosome Plasmid

Sim-2C5P
Precision 87.75% 73.50% 94.25% 75.28% 82.40% 56.76% 90.93% 61.30%
Recall 26.84% 47.31% 85.40% 89.51% 24.75% 45.34% 73.25% 85.30%
F1-Score 41.10% 57.56% 89.61% 81.78% 38.06% 50.41% 81.14% 71.33%

Sim-4C11P
Precision 93.94% 65.81% 94.62% 63.16% 94.66% 50.91% 94.17% 43.51%
Recall 27.27% 54.71% 78.45% 89.22% 26.80% 61.58% 50.27% 92.48%
F1-Score 42.28% 59.75% 85.78% 73.97% 41.77% 55.74% 65.55% 59.18%

Sim-10C16P
Precision 96.64% 24.45% 94.42% 33.73% 96.62% 31.49% 97.25% 24.77%
Recall 23.28% 30.22% 72.01% 77.01% 23.66% 53.73% 47.91% 92.68%
F1-Score 37.52% 27.03% 81.71% 46.92% 38.02% 39.71% 64.20% 39.09%

Zymo-EC
Precision 95.15% 80.79% 93.68% 81.22% 98.29% 89.26% 92.35% 91.30%
Recall 32.95% 33.65% 86.46% 90.94% 34.59% 11.50% 94.61% 87.82%
F1-Score 48.95% 47.51% 89.93% 85.80% 51.17% 20.37% 93.47% 89.52%

Zymo-SA
Precision 72.59% 79.82% 73.04% 88.50% 89.74% 94.96% 76.43% 98.96%
Recall 31.23% 24.29% 90.25% 69.25% 39.38% 14.28% 99.18% 71.77%
F1-Score 43.67% 37.25% 80.74% 77.70% 54.74% 24.82% 86.33% 83.20%

Zymo-SE
Precision 98.67% 70.80% 98.03% 69.71% 99.80% 94.78% 95.71% 91.72%
Recall 26.79% 42.46% 88.39% 93.75% 29.21% 22.95% 97.59% 85.90%
F1-Score 42.14% 53.08% 92.96% 79.96% 45.19% 36.95% 96.64% 88.72%
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applying the initialised KNN classifier to unclassified reads on the UMAP plot. 282

Although the precision drops in a few cases, PlasLR improves on the recall, F1 score 283

and percentage of plasmid reads recovered on the datesets. Note that in dataset 284

Sim-10C5P PlasLR has compromised a bit of plasmid F1-score in improving that of 285

chromosomes. The initial results of dataset are relatively poor due to the mere 286

complexity of the composition. However, the improvements on the Zymo datasets are 287

significant due to the relative simplicity of the datasets. 288

Improved Assemblies on Long Reads 289

After classification of TGS reads into the two classes, we assembled the classified 290

chromosomal and plasmid reads separately using metaFlye [41] (available in Flye [32]). 291

metaFlye is a popular metagenomic long-read assembler which has shown best 292

performance in assembling plasmids in a recent benchmark [22]. Moreover, we also 293

assemble the complete set of TGS reads (without classification) using metaFlye as the 294

baseline for comparison. 295

Table 4 demonstrates the assembly results for metaFlye, for all possible assembly 296

approaches along with PlasLR results on top of both PlasFlow and PlasClass. The 297

results show that PlasLR classification can improve the genome fraction (computed by 298

MetaQUAST [42]) and the number of plasmids recovered by metaFlye. The 299

chromosomal assemblies are significantly improved over the non-PlasLR approaches. 300

Note that assembly performance gain is significant wherever there is a higher number of 301

plasmids. Furthermore, poor chromosomal assembly in non-PlasLR approaches 302

indicates the classification of chromosomal reads into plasmid class. This may result in 303

plasmid assemblies whose contig set contain partial chromosomal assemblies. PlasLR 304

mitigate this situation by pushing chromosomal and plasmid reads into appropriate bins 305

facilitating proper assembly. This is evident in dataset Sim-10C5P where PlasLR with 306

PlasFlow demonstrates the most number of sequences assembled (5 chromosomes and 307

13 plasmids). Note that, although genome fractions are comparable in some PlasLR 308

results (especially in Zymo-EC, Zymo-SA and Zymo-SE datasets), each assembled 309

class may contain multiple contigs that corresponds to the opposite class which might 310

result in misleading downstream analysis. PlasLR supports the mitigation of such false 311

positive plasmid/chromosome assemblies by accurate classification of long reads as 312

indicated in Table 3 (refer to Zymo-EC, Zymo-SA and Zymo-SE datasets). 313

These improvements were achieved by classifying TGS reads before assembly, where 314

metaFlye can assemble plasmids and chromosomes independently. The independent 315

assembly of chromosomes and plasmids allows metaFlye to estimate more appropriate 316

assembly parameters for plasmids and chromosomes, respectively. 317

Implementation 318

The source code for the experiments was implemented using Python 3.6.10 and C++ 319

9.3.0 (standard 17) and run on a Darwin system with macOS Catalina 10.15.3, 16G 320

memory and Quad-Core Intel Core i7 CPU @ 2.5GHz with 4 CPU cores. 321

In order to reduce the memory consumption by the k-mers, each k-mer is encoded 322

into its binary form using the encoding A=00, C=01, T=10 and G=11. During the 323

computation of the k-mer coverage histograms, numeric values of the k-mers are stored 324

as a lookup table with the number of times each k-mer occurs in the data set as the 325

value for the k-mer. 326

PlasLR has the peak memory consumption during Step 1. The lookup table used in 327

Step 1 utilises 415 indices holding 64-bit (4-byte) double precision values. This results in 328

a memory occupation of 8GB. All the other steps have a space complexity of 2 ×N × 4 329

bytes where N is the total number of reads. All steps of PlasLR are performed using 330
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Table 4. Comparison of metaFlye assembly results with and without using PlasLR to classify TGS reads.
The genome fractions are computed using MetaQUAST [42] while the number of plasmids recovered is the number of plasmids
which have a genome fraction greater than 85%. Genome fractions are computed separately on the assemblies of plasmid and
chromosome classes. Where genome fraction is defined as the total number of aligned bases as a percentage of genome size.

Dataset Classification before assembly
metaFlye assembly

Genome fraction Sequences recovered
Chromosome Plasmid Chromosome Plasmid

Sim-2C5P

Raw reads 82.19% 96.21% 0 4
PlasFlow 88.30% 97.81% 2 5
PlasClass 65.64% 99.46% 0 5
PlasLR with PlasFlow result 95.99% 99.63% 2 5
PlasLR with PlasClass result 94.13% 99.40% 2 5

Sim-4C11P
Raw reads 99.10% 88.34% 4 8
PlasFlow 73.83% 85.91% 1 9
PlasClass 79.26% 85.56% 2 8
PlasLR with PlasFlow result 93.20% 91.00% 3 10
PlasLR with PlasClass result 96.19% 92.08% 4 9

Sim-10C16P
Raw reads 47.47% 39.63% 4 3
PlasFlow 57.30% 96.00% 3 13
PlasClass 64.04% 95.70% 3 13
PlasLR with PlasFlow result 68.35% 95.88% 5 13
PlasLR with PlasClass result 86.41% 75.50% 6 10

Zymo-EC
Raw reads 89.95% 100.00% 1 1
PlasFlow 94.57% 100.00% 1 1
PlasClass 98.82% 100.00% 1 1
PlasLR with PlasFlow result 94.46% 100.00% 1 1
PlasLR with PlasClass result 99.00% 100.00% 1 1

Zymo-SA
Raw reads 95.66% 66.63% 1 2
PlasFlow 95.49% 99.96% 1 3
PlasClass 97.51% 99.99% 1 3
PlasLR with PlasFlow result 98.52% 100.00% 1 3
PlasLR with PlasClass result 98.39% 99.93% 1 3

Zymo-SE
Raw reads 96.60% 100.00% 1 1
PlasFlow 94.93% 100.00% 1 1
PlasClass 99.58% 100.00% 1 1
PlasLR with PlasFlow result 97.23% 100.00% 1 1
PlasLR with PlasClass result 99.70% 100.00% 1 1

multi threading (8 threads by default). Our PlasLR implementation uses the python 331

scikit-learn library implementation of the KNN classifier (known as 332

KNeighborsClassifier) and PCA [43]. Furthermore, UMAP-learn [29] (used as the 333

default dimensionality reducer) and OpenTSNE [30] were obtained from the repositories 334

of respective authors of work. 335

Discussion and Conclusion 336

In this paper, we designed and evaluated PlasLR, a tool that adapts contig-classification 337

tools for plasmids to TGS long reads. While existing contig-classification tools are able 338

to accurately classify a subset of TGS long reads (by treating them as contigs), the use 339

of PlasLR refines existing labels and extends them to all TGS reads. Moreover, we 340

showed that the classification of long reads (into chromosomal and plasmid classes) 341
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before assembly improves the recovery of plasmids from both simulated and real 342

metagenomic datasets. 343

The classification improvements are prevailing due to the combination of coverage 344

and composition information, along with a set of initial classifications in a 345

semi-supervised manner. Coverage information facilitates the discrimination of plasmids 346

and chromosomes based on the copy number. Composition information predominantly 347

enables the discrimination of sequences based on their origin species. The lower 348

dimensional projection provides a spacial representation where the sequences with 349

similar coverage and composition are closer, enabling the expansion of initial 350

classification labels. Inevitably, the final results are influenced by the quality of the 351

initial classifications. Therefore, the selection of high confident initial classification is 352

vital for PlasLR to perform accurately. Similar to contig-based classifiers, PlasLR also 353

faces challenges when classifying long reads from shared regions from plasmids and 354

chromosomes. In such situations, the coverage information estimated by PlasLR may be 355

misleading and thus result in possible mis-classifications. 356

As a matter of fact, PlasLR, like other tools evaluated, performs binary classification 357

(i.e., plasmids v.s. chromosomes). A fine-grained classification is needed to provide 358

distinctions between different plasmids and chromosomes and has the potential to be 359

incorporated in the assembly process. Therefore, efforts will be made towards 360

expanding the capability to detect individual plasmids and chromosomes by combining 361

PlasLR with metagenomic binning methodologies. Furthermore, data-driven approaches 362

will be investigated to replace empirically determined cutoffs used in ambiguous label 363

removal. We also intend to benchmark PlasLR using different dimension-reduction 364

techniques, initial classification tools and to extend PlasLR to perform standalone 365

classification of plasmid sequences directly. We further consider the possibility of 366

overlapped classification of long reads to improve its accuracy and scalability on more 367

challenging metagenomic datasets with common sequences across different origins. 368
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