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ABSTRACT 

The kidneys constantly filter enormous amounts of fluid, with almost complete retention of 

albumin and other macromolecules in the plasma. Diseases of podocytes at the kidney 

filtration barrier reduce the glomerular capillary surface area available for filtration and alter 

the intrinsic permeability of the capillary wall resulting in albuminuria, however, direct 

quantitative assessment of the underlying morphological changes has not been possible so far. 

Here we developed a deep learning-based approach for segmentation of foot processes in 

images acquired with super-resolved stimulated emission depletion (STED) microscopy or 

confocal microscopy. Our method – Automatic Morphological Analysis of Podocytes 

(AMAP) – detected 87-95% manually-annotated foot processes and additionally recognized 

1.3 - 2.17-fold more. It also robustly determined morphometric parameters, at a Pearson 

correlation of r  >  0.71 with a previously published semi-automated approach, across a large 

set of mouse tissue samples. The artificial intelligence algorithm was applied to a set of 

human kidney disease conditions allowing comprehensive quantifications of various 

underlying morphometric parameters. These data confirmed that when podocytes are injured, 

they take on a more simplified architecture and the slit-diaphragm length is much reduced, 

resulting in a reduction in the filtration slit area and a loss of the buttress force of podocytes 

which increases the permeability of the GBM to albumin.  
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INTRODUCTION 

The capacity of the mammalian kidney to filter vast amounts of fluid (180 L/day in humans) 

and to almost completely restrict the passage of macromolecules (e.g. albumin) relies on the 

intricate glomerular filtration barrier. This barrier consists of a fenestrated endothelium, the 

glomerular basement membrane (GBM) and specialized post-mitotic epithelial cells, called 

podocytes1. Damage to any of the three layers upon glomerular injury results in a 

pathologically increased filter permeability, with albuminuria being the most prominent 

clinical symptom of a compromised filtration barrier2. Due to the nanoscale dimensions of the 

filter, electron microscopy is widely used in clinical pathology and research to qualitatively, 

and in some instances semi-quantitatively, assess morphological alterations that are associated 

with glomerular injury3. Pathological alterations of podocytes, particularly affecting their so-

called foot processes (FPs) and the slit diaphragm (SD) as their only cell junction, are 

frequently seen in virtually all types of glomerular diseases. These alterations are summarized 

in the term foot process effacement, which includes widening and ultimately loss of foot 

processes together with a progressive shortening of total SD length4,5. The advent of super-

resolution light microscopy techniques allowed the visualization and subsequent 

quantification of morphological alterations upon FP effacement6–11. Recently, our group has 

used this approach in the podocinR231Q/A286V mouse model of hereditary focal and segmental 

glomerulosclerosis (FSGS) to provide a model of kidney ultrafiltration in which the size 

selectivity of the filtration barrier is dependent on the compression of the GBM12. In that 

study, morphological alterations of FPs, particularly the decrease in SD length, correlated 

robustly with levels of albuminuria in podocinR231Q/A286V mice. Integrating the morphological 

data into biophysical models of ultrafiltration, it was proposed that injured podocytes lack the 

ability to adequately counteract the filtration pressure, which leads to a relaxation of the fiber 

matrix within the GBM resulting in an increased permeability to albumin. Until now, the 
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morphological analyses underlying this model had to be carried out manually or semi-

automatically. They required annotation of regions of interest (ROIs) and manual assignment 

of individual FPs, which is not only time consuming but also investigator-dependent, 

currently impeding the broad use of FP morphometrics in research and diagnostics.  

In this study, we combined the previously established morphological analyses of podocytes 

with a machine-learning algorithm in order to enable the first completely automated 

segmentation and quantification of podocyte ultrastructure. New machine learning methods 

automate bioimage analysis at a human-level accuracy with cancer histopathology as one of 

its most prominent applications13,14. In nephrology, deep learning methods have been 

proposed for the segmentation of entire renal structures or entire podocytes15–17. These 

methods can facilitate expert kidney biopsy assessment by automatically marking the 

important morphological elements. However, none of the existing segmentation methods 

allows the recognition of the subcellular structure of podocytes. 

Here we propose Automatic Morphological Analysis of Podocytes (AMAP) – a fully 

automated method for detection of FPs and the overall SD pattern from high- and super-

resolution optical microscopy images of podocytes. Our method is based on deep learning 

instance segmentation that has been trained and tested on a broad range of disease and 

imaging conditions, correctly detecting 87-95% of FPs across our datasets and allowing to 

reproduce the morphometric parameters originally extracted using the ImageJ macro – 

referred to as macro throughout the manuscript. Importantly, it successfully generalizes to 

human tissue samples as well as to images acquired using a diffraction-limited confocal 

microscope, a system commonly available in clinical pathology labs. Our approach opens the 

way towards systematic study of pathologies occurring at these nanoscale structures in kidney 

disease.  
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RESULTS AND DISCUSSION 

Method accuracy 

Using a previously published STED imaging protocol6, we generated a set of 209 images 

representing healthy and diseased mouse tissue at various ages and degrees of podocyte 

effacement. The images represent FP shapes by staining the SD protein nephrin (see Fig. 1a 

for an overview). Annotation of these images, including both SD and FP areas 

(Supplementary Fig. 1), was generated with a network pre-trained on a small set of macro-

labeled images. These annotations were then further manually corrected in order to obtain a 

possibly complete annotation of each image. For improved accuracy, each file was annotated 

by at least two individuals. Test images were manually selected to reflect the variability of FP 

effacement present in the training set. 

We next trained a segmentation convolutional neural network (CNN) on the training set. The 

segmentation approach incorporates both semantic and instance segmentation (Fig. 1b-d)18. 

Semantic segmentation classifies pixels into three classes: background, FP, and SD (Fig. 1c). 

Instance segmentation additionally assigns FP pixels into separate FP instances (Fig. 1d). 

Briefly, the instance assignment is based on the clustering of CNN-derived numeric pixel 

representations. These representations are constructed so that pixels belonging to the same 

instance lie close together in the representation space while a predefined margin separates 

different instances. Clustering of such pixel representations results in the separation of 

individual FPs in an image (Supplementary Fig. 2).  

We trained the network and inspected its performance on the test-set images assessing both 

the semantic and instance segmentation accuracy. On average, AMAP assigned the correct 

class to 73% and 76% FP and SD pixels, respectively. Relative to the number of pixels in the 

FP and SD class, 23-27% of pixels were misclassified, i.e., incorrectly assigned either to 
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background, FP, or SD. Based on visual inspection of the results, we noted that these errors 

were sometimes due to the incomplete annotation and uncertainty in the exact FP and SD 

boundaries (Fig. 1e-f).  

The FP pixels were additionally split into separate instances, and we matched the predicted 

instances with the labels. Predicted instances that overlapped with a labeled FP were counted 

as true positives, and we quantified their area of overlap with the matched label. In the test 

images, we detected 87% of all labeled FPs (Fig. 1g). Matched FP instances overlapped on 

average at 0.74 quantified as Intersection over Union (IoU) of the labeled and predicted 

instances. Relative to the number of labeled FPs, 28% more FPs were predicted with our 

method, while 13% were not detected (Fig. 1g). Notably, some of the potential false positive 

detections were due to missing labels and should not be considered errors.  

Morphometric parameter estimation 

As further validation of this approach, we asked if such segmentation performance allows to 

accurately reproduce the morphometric parameters extracted using a previously published 

macro-based analysis of the podocinR231Q/A286V FSGS mouse model and their control 

littermates12. PodocinR231Q/A286V mice showed quantifiable morphological alterations of 

individual FPs as well as the overall SD pattern that correlated with disease progression. We 

ran the segmentation method on the set of 174 nephrin-stained images used in the original 

publication (Fig. 2a). The imaged samples include control and mutant mice from 0 to 20 

weeks of age. Out of the 19,676 labeled FPs in the published dataset, we correctly detected 

18,673 (95%, Fig. 2b) with an area overlap of 0.81 IoU on average. However, we detected an 

additional 25,193 FPs that did not overlap with any of the labeled ones in the published 

dataset. Visual inspection of these predictions suggests that they predominantly represent FPs 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448284
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

that were overlooked in the macro analysis rather than errors. Our method failed to detect 

1,003 labeled FPs, which represents 5% of all annotated FPs. 

Instead of manually verifying the over 40,000 FPs segmented by AMAP, we inspected to 

what extent the FPs inferred by our method reproduce the morphometric parameters of the 

labeled FPs in each age and disease stage (see Supplementary Fig. 3 for an overview of 

quantified FP parameters). Even though the numbers of FPs detected with AMAP vs. macro 

differed, we found an overall high agreement of the morphometric parameters (r > 0.71, p < 

0.0001, permutation) in area, perimeter and circularity values (Fig. 2c-e). The absolute values 

for area and perimeter inferred by AMAP were overall lower compared to the ones derived 

from the macro (Fig. 2f-g). However, comparing the morphological parameters of FPs 

detected both by AMAP and macro shows a high agreement in absolute values 

(Supplementary Fig. 4), suggesting that the additional FPs not marked using the macro but 

detected by AMAP tend to be smaller. Consistent with the findings in the original dataset, 

quantification of perimeter and circularity by the automated approach allowed the distinction 

between control and mutant mice, whereas the FP area alone is not sufficient to make this 

distinction (Fig. 2f-h). These results illustrate that the segmentation accuracy of our method is 

sufficient to robustly reflect the alterations in FP morphology characteristic of the progression 

of FSGS.  

It has been shown before that FP effacement affects not only the morphology of individual 

FPs but also the overall SD length6,12,19. Additionally, SD length has been mechanistically 

linked to the occurrence of albuminuria12. Therefore, we developed a method to automatically 

assign regions of interest (ROIs) based on the SD staining pattern and quantify the SD length 

within the boundaries of the ROIs (Fig. 3a, Supplementary Fig. 3). Overall, AMAP resulted in 

20 % lower absolute values for SD length per area compared to the macro (Supplementary 

Fig. 5a), which is due to the 25 % on average larger ROIs assigned by AMAP (Fig. 3 b, 
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Supplementary Fig. 5b), whereas the total SD length quantified by AMAP was only 5 % 

larger (Fig. 3c). Even though there was a difference in absolute values of ROI area and total 

SD length detected, the respective values correlated robustly between the macro and AMAP 

(Fig. 3d-e). Consequently, the previously observed decrease of SD length per area in mutant 

as compared to control mice was reliably detected by our approach (Fig. 3f-g). Notably, the 

AMAP-derived values also allow us to delineate the decrease in SD length per area with 

aging (Supplementary Fig. 5c).  Taken together, our deep learning approach shows the 

potential to detect pathological alterations in individual FP morphology as well as in global 

SD abundance. Furthermore, plotting the mean values of AMAP-derived SD length per area 

against the levels of albuminuria reveals a similarly robust correlation between SD length and 

albuminuria as was already shown for the macro-based SD length values (Fig. 3 h).  

Performance on human tissue samples 

The imaging protocol we have utilized in the above analyses is both lengthy (3-4 days) and 

requires the use of super-resolved STED microscopy. We have recently published a protocol 

for fast and straightforward confocal microscopy-based imaging of FPs (referred to as fast 

protocol throughout the manuscript), which reduces the time needed for sample preparation 

and imaging to only 5 h9. We here investigated the applicability of AMAP to images acquired 

using this fast protocol. To adapt the method to the lower optical resolution of this protocol 

we generated an additional set of 15 and 40 annotated images of human and mouse tissue, 

respectively, obtained with the fast protocol. To facilitate the annotation of mouse tissue, we 

also generated matched images using STED microscopy. We inferred FP and SD 

segmentations using the network described above, corrected them manually, and used the 

results as labels of the confocal images (Supplemental Fig. 6a). Images of human tissue were 

annotated manually (Supplementary Fig. 6b). We added the 55 images to the existing training 

set and ran another training procedure on the network initially trained on the STED 
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microscopy images. As evaluated by visual inspection, this network retraining resulted in 

improved segmentation results also for images of lower quality and resolution 

(Supplementary Fig. 6c). 

We tested the adapted segmentation network and the subsequent analysis of morphometric 

parameters on a set of 43 confocal microscopy images of human tissue. Most of the images, 

except for the FSGS patient, are part of a previously published set of images9. The samples 

included healthy individuals and a range of patients, including congenital nephrotic syndrome 

with mutations in the TRPC6/NPHS2 genes, minimal change disease (MCD), FSGS, and IgA 

nephropathy.  

Based on visual inspection, the adapted segmentation approach offers good accuracy in the 

spatial resolution-wise more challenging images of human tissue imaged using the fast 

protocol (Fig. 4a). Moreover, the morphometric parameters of the segmented FPs reflected 

different degrees of effacement and morphological changes in each patient in agreement with 

what has been previously published9 (Fig. 4b-c). In the FSGS mouse model (see Figures 2 and 

3), a decrease in SD length is always accompanied by an increase in FP circularity. 

Interestingly, this correlation was not always observed in the patient samples. For example, 

the FSGS patient showed a relatively high SD length and a high circularity as compared to the 

other diagnoses, whereas the opposite was observed for the TRPC6/NPHS2 patient. This 

suggests that effacement patterns are complex and that multiple morphometric parameters 

might be needed to characterize each type of disease comprehensively. We therefore 

visualized several morphometric parameters (SD length, SD grid index, FP area, FP 

perimeter, FP circularity (Supplementary Fig. 3)) using umap20 (Fig. 4d), which illustrates the 

morphometry-based grouping among the different diagnoses. For example, the FSGS and the 

MCD patients appear away from one another in the plot. Both of these patients show similar 

SD lengths (Fig. 4b) but a significantly different circularity (Fig. 4c). Based on visual 
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inspection of the images in Fig. 4a, the general SD density is similar while the morphology of 

individual FPs differs with the FSGS patient displaying shorter and wider FPs than the MCD 

patient. The TRPC6/NPHS2 patient is positioned away from control samples and shows a 

more extensive spread of data points. This reflects the more focally heterogeneous effacement 

pattern in this patient as compared to the others. To show the throughput capacity of AMAP 

we also imaged large field-of-views of 155*155 µm2, which take around 2-6 minutes to 

acquire with any high-end confocal microscope. AMAP segmented 6,452 and 176 FPs from 

the control and TRPC6/NPHS2 patients, respectively, in < 1 h (Fig. 4 e-f). By comparison, it 

would take ~ 7 h of hands-on work for a trained user to carry out this analysis with the macro. 

Moreover, while AMAP detects all recognizable FPs, even very experienced users will only 

be able to annotate a fraction of all FPs within a reasonable amount of time and effort with the 

semi-automated macro. While based on a limited number of tissue samples, these results 

suggest that our fully automated approach for segmentation and morphometric parameter 

quantification opens up possibilities for a comprehensive, large-scale description of FP 

effacement across kidney pathologies.  

Discussion 

In recent years, light microscopy-based imaging of podocyte ultrastructure has gained an 

enormous momentum. Not only does this technique complement electron microscopy 

imaging, but also the possibility of efficiently imaging much larger tissue areas enabled the 

quantitative analysis of morphological changes, especially in FP morphology in disease and 

disease progression9,12,19. Combining quantitative analyses with biophysical modelling of 

ultrafiltration, our group has previously proposed a model, which mechanistically linked the 

well-known features of FP effacement with the occurrence of albuminuria12. Although 

powerful, these quantitative analyses still rely on manual assignment of ROIs and a manual 
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step in the segmentation of individual FPs. This is not only time-consuming but also 

potentially prone to bias.  

By taking advantage of the advances in deep learning, we here present a fully automatic 

segmentation of FPs and the SD. We demonstrate the accuracy of this approach by 

successfully reproducing previously published results in a mouse model for FSGS12. Even 

though absolute values for each extracted parameter in some cases differ slightly, as 

compared to our previous analysis using the macro, we show that differences between groups 

(age, genotype) are highly conserved. Thus, our fully automated approach can readily be 

applied to quantitatively describe alterations to FP morphology with the same accuracy and 

substantially higher throughput as our previous approach, while eliminating any potential user 

bias. Importantly, AMAP confirmed the correlation of SD length and levels of albuminuria, 

thereby supporting the previously proposed mechanism of albuminuria upon podocyte 

injury12.  

We further validate that the deep learning network can be adapted to successfully segment the 

SD and FPs in human patient samples. These images were acquired using a recently 

published, pathology-optimized, fast, and simple protocol, which utilizes confocal 

microscopy9. Interestingly, we show that multiparameter analysis of FP morphometrics in 

these patients shows particular groupings of different disease types. This finding indicates that 

the view of FP effacement as a uniform process might have to be revised and that effacement 

patterns could differ depending on the underlying disease. We are aware that the presented 

dataset is limited and that more data points are needed to establish these findings in the future. 

Still, we suggest that the comprehensive quantitative analysis proposed above, which we 

named AMAP (Automatic Morphological Analysis of Podocytes) could lead to a better 

understanding of the FP morphology and its change throughout the disease progression. 

Depending on the size of the data, the method can be deployed on a local machine or any 
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more advanced computer station equipped with a graphics processing unit (GPU) which 

substantially speeds up the CNN processing. At this point, the software needs specific coding 

knowledge in order to run the processing scripts. As the interest in AMAP grows, we will 

implement it as a user-friendly tool.  Apart from saving working hours, incorporating 

automatically derived morphometric parameters in clinical renal pathology routines could 

potentially allow for more precise diagnostics due to the additional morphometric data it 

provides.  

In summary, we present AMAP, the first imaging and analysis strategy allowing for non-

biased, fully automated quantification of FP morphology at the nanoscale. This investigator 

bias-free analysis confirms our previous finding that the SD length correlates robustly with 

levels of albuminuria in a mouse model of hereditary FSGS, thereby supporting the 

mechanistic link between a simplified podocytes ultrastructure and the occurrence of 

albuminuria. Importantly, we demonstrate that AMAP is readily applicable to human samples 

processed with our recently published fast protocol, which no longer requires sophisticated 

super-resolution microscopy. The combination of AMAP and the fast protocol might in the 

future allow for multi-scale three-dimensional and quantitative kidney diagnostics using only 

one sample preparation, imaging, and analysis workflow15–17.  
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MATERIALS AND METHODS 

All methods can be found in the supplement. 
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Figure 1. Overview of the imaging and analysis workflow and segmentation. (a) Schematic 

overview of AMAP. Previously published sample preparation and imaging protocols are used 

for visualization of FPs. Convolutional neural network is applied to extract FP and SD regions 

allowing for fully automatized segmentation of FPs in kidney samples from mice and humans. 

(b) Raw nephrin-stained STED image from the test set. Scale bar 2 µm. (c) Outcome of 

semantic segmentation. FP pixels are marked in red, SD pixels in green. (d) Outcome of 

instance segmentation. Separate FP instances are marked with different colors. (e) Accuracy 

of SD semantic segmentation. Pixels correctly predicted as SD are marked in green, those 
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labeled but not predicted as SD (false negatives) are marked in red, those predicted but not 

labeled as SD (false positives) are marked in blue. (f) Same as (e) for FP pixels. (g) FP 

instance prediction accuracy in the entire test set of 209 pictures. True positive rate (TPR), 

false-positive rate (FPR), false-negative rate (FNR) are quantified relative to the number of 

manually determined FPs in a given image. Area overlap is quantified as intersection over 

union (IoU). FPR includes a large proportion of not labeled FPs and does not accurately 

reflect the actual errors in prediction. 
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Figure 2. Comparison of FP and SD morphology in podocinR231Q/A286V (“mutant”) and control 

mice from a published macro-based dataset with AMAP. (a) Illustration of the macro and 

AMAP FP segmentation in images of a control and a mutant mouse. Differences and overlap 

of detection are color-coded as indicated. (b) Venn diagram showing the overlap and 

differences in FP detection. AMAP detected 18,673 of the total number of 19,676 FPs that 

were assigned using the macro. 25,193 FPs were additionally assigned by AMAP. (c)-(e) 

Correlation of FP area (c), FP perimeter (d) and FP circularity (e) between the macro- and 

AMAP-assigned FPs. Measurements of all three parameters correlate significantly between 

the approaches. Each dot represents the values originating from one image (n = 174 images). r 

= Pearson correlation coefficient, p = p-value. (f)-(h) Comparison of the values for FP area 

(f), FP perimeter (g) and FP circularity (h) in macro-assigned (red) or AMAP-assigned (blue) 

FPs in control and age-matched mutant mice. With the exception of FP area at 8 weeks and 

FP perimeter at 0 weeks, the detection of significant differences is comparable between the 

approaches. Each dot/triangle represents one mouse. Data are presented as mean ± SEM. 

Sidak’s multiple comparison test was performed to determine statistical significance. * p < 

0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.  

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448284
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

 

Figure 3. Comparison of SD length in podocinR231Q/A286V (“mutant”) and control mice 

calculated with the macro and AMAP. (a) Illustration of the quantification of the SD length 

and ROIs with the two approaches in images of a control and a mutant mouse. (b) Area of 
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manually assigned (red) and AMAP-assigned (blue) ROIs. Each dot represents the ROI area 

of one image (n = 174 images). Horizontal bars represent the median. (c) Total SD length 

quantified with the macro (red) and AMAP (blue) ROIs. Each dot represents the ROI area of 

one image (n = 174 images). Horizontal bars represent the median. (d)-(f) Correlation of ROI 

area (d), total SD length (e) and SD length per area (f) of macro- and AMAP-assigned ROIs. 

Each dot represents the ROI area of one image (n = 174 images). r = Pearson correlation 

coefficient, p = p-value. (g) Comparison of the SD per area values in macro- (red) or AMAP-

assigned (blue) ROIs in control and age-matched mutant mice. Differences between 

genotypes are equally detected between the two approaches. Each dot/triangle represents one 

mouse. Data are presented as mean ± SEM. Sidak’s multiple comparison test was performed 

to determine statistical significance. **** p < 0.0001. (h) Scatter plots of the mean SD length 

per area (macro in red, AMAP in blue) against the urinary albumin creatinine ratio (ACR). 

Two-tailed Spearman’s rank correlation was used to determine statistical significance. r, 

Spearman’s rank coefficient.  
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Figure 4. AMAP-based FP morphometry in human patients in images acquired with a 

confocal microscope using a new 5-hour-sample preparation protocol. (a) Each row represents 

one patient as indicated with raw images overlaid with the results of instance (left) and 

semantic (right) segmentation. All samples were stained for nephrin with Alexa-405 or Alexa-

488 except for the NPHS1 patient’s sample, which was stained for podocin with Alexa-555. 

Scale bar 5 µm. (b) SD length per area for all patients shows a significant decrease for all 

patients except for the patient with IgAN. Each dot represents one image (one patient per 

diagnosis). The black line represents the mean. Tukey’s multiple comparison test was 

performed to determine statistical significance. *** p < 0.001, **** p < 0.0001. (c) 

Circularity score of FPs from all patients. Each data point represents one FP. Interestingly, 

only the FSGS and the TRPC6/NPHS2 patients show significant increases compared to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.14.448284doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448284
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

control, indicating different morphometric fingerprints for different diagnoses. The red line 

represents the mean. Dunnet’s multiple comparison test was performed to determine statistical 

significance. ** p < 0.01, *** p < 0.001, **** p < 0.0001. (d) Multiparameter projection 

(umap) of all patients. (e-f) 155 um field-of views maximum intensity projections of z-stacks 

of a control patient (a) and a sclerosed glomerulus of the TRPC6/NPHS2 patient. Insets show 

zoomed views of the indicated areas. 6,452 FPs are segmented from the image in (e), showing 

the data throughput capacity of AMAP. Scale bars 20 µm and 2 µm (inset). 
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