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Abstract

Transposable elements (TEs) are self replicating genetic sequences and are often described as 

important “drivers of evolution”. This driving force is because TEs promote genomic novelty by 

enabling rearrangement, and through exaptation as coding and regulatory elements. However, 

most TE insertions will be neutral or harmful, therefore host genomes have evolved machinery to 

supress TE expansion. Through horizontal transposon transfer (HTT) TEs can colonise new 

genomes, and since new hosts may not be able to shut them down, these TEs may proliferate 

rapidly. Here we describe HTT of the Harbinger-Snek DNA transposon into sea kraits (Laticauda), 

and its subsequent explosive expansion within Laticauda genomes. This HTT occurred following 

the divergence of Laticauda from terrestrial Australian elapids ~15-25 Mya. This has resulted in 

numerous insertions into introns and regulatory regions, with some insertions into exons which 

appear to have altered UTRs or added sequence to coding exons. Harbinger-Snek has rapidly 

expanded to make up 8-12% of Laticauda spp. genomes; this is the fastest known expansion of 

TEs in amniotes following HTT. Genomic changes caused by this rapid expansion may have 

contributed to adaptation to the amphibious-marine habitat. 

Introduction

Transposable elements (TE) are selfish genetic elements that mobilize themselves across the 

genome. A substantial proportion of eukaryotic genomes is composed of TEs, with most reptilian 

and mammalian genomes comprising between 30 and 60%. As TEs proliferate within a genome, 

most insertions will be either neutral or deleterious [1]. However, over evolutionary timescales the 

movement of TEs can enable major adaptive change; being exapted as coding and regulatory 

sequences, and by promoting both inter- and intra-chromosomal rearrangements such as 

segmental duplications, inversions and deletions through non-allelic homologous recombination 

[2,3].

TE expansion can also be harmful, driving eukaryotes to evolve various defence and regulatory 

mechanisms. Genomic shocks can disrupt this regulation, allowing TEs to expand [4]. One 

example of a shock is horizontal transposon transfer (HTT), in which a TE jumps from one species 

to another. While the exact mechanisms of HTT are unknown, many instances across eukaryotes 
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have been reported [5–9]. Following HTT the expansion of new TEs is quickly slowed or halted due

to the potentially deleterious effects they can cause [1,10], and any continued expansion will likely 

be slow. For example, following ancient HTT events the BovB retrotransposon has taken 32-39 My

and 79-94 My for these elements to colonise between 6 and 18% of ruminant and Afrotheria 

genomes, respectively [6,11,12]. However rapid expansion of TEs following HT has previously 

been noted in Myotis bats, where hAT transposons expanded to cover 3.3% of the genome over 

the space of 15 Mya [13–15].

Here we report the HT of a Harbinger DNA transposon, Harbinger-Snek, into Laticauda, a genus of

marine snakes which diverged from terrestrial Australian snakes 15-25 Mya [16–18]. Surprisingly, 

none of the available terrestrial animal genomes contained any trace of Harbinger-Snek, with 

highly similar sequences instead identified in sea urchins. Since diverging from terrestrial snakes 

Laticauda transitioned to amphibious-marine habits, foraging on coral reefs and returning to land 

only to digest prey, mate and lay eggs [19]. Due to the absence of Harbinger-Snek-like sequences 

from terrestrial species and highly similar sequences present in marine species, we propose 

Harbinger-Snek was horizontally transferred to Laticauda from a marine donor genome by habitat 

transition. Furthermore, since this initial HTT event, Harbinger-Snek has expanded rapidly within 

the genomes of Laticauda and now accounts for 8% of the L. laticaudata assembly and 12% of the 

L. colubrina assembly.

Methods

All scripts/code used at: https://github.com/jamesdgalbraith/Laticauda_HT 

Ab initio repeat annotation of elapids

Using RepeatModeler2 [20] we performed ab initio annotation of the four Austro-Melanisian elapid 

genomes: Laticauda colubrina [21], Notechis scutatus, Pseudonaja textilis, and Aipysurus laevis 

[22]. To improve the RepeatModeler2 libraries we manually classified consensus sequences over 

200 bp using a BLAST, extend, align and trim method, described by Galbraith et al. [23].

Identification of horizontal transfer and potential source/vectors

To identify any TEs restricted to a single lineage of elapid, we searched for all TEs identified by 
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RepeatModeler2 using BLASTN (-task dc-megablast) [24] in the three other assemblies, as well 

assemblies of the Asian elapids Naja naja [25] and Ophiophagus hannah [26]. TEs present in high 

numbers in a species, but not present in the other elapids, were considered potential HTT. This 

yielded a high copy number of Harbinger elements in L. colubrina. To rule out contamination, we 

searched for this element in a L. laticaudata genome assembly from GenBank. Using RPSBLAST 

[27] and the Pfam database [28] we identified Harbinger copies with intact protein-coding domains.

To identify potential source or vector species, we searched all metazoan RefSeq genomes with a 

contig N50 of at least 10 kbp with BLASTN (-penalty -5 -reward 4 -out -word_size 11 -gapopen 12 -

gapextend 8) . In species containing similar elements, we created consensus sequences using the 

aforementioned BLAST, extend, align and trim method. As we had identified similar Harbinger 

elements in fish, bivalves and echinoderms from RefSeq, we repeated this process for all GenBank

assemblies of other species from these clades with a contig N50 of at least 10 kbp.

We identified transposase domains present in curated Harbinger sequences and all autonomous 

Harbinger elements available from Repbase [29] using RPSBLAST [27] and the Pfam database 

[28] . Using MAFFT (--localpair) [30] we created a protein multiple sequence alignment (MSA) of 

identified transposase domains. After trimming the MSA with Gblocks [31] we constructed a 

phylogenetic tree using FastTree [32] and from this tree chose an appropriate outgroup to use with 

curated elements. We subsequently constructed a protein MSA of the curated transposases using 

MAFFT, trimmed the MSA with Gblocks and created a phylogeny using IQ-TREE 2 (-m MFP -B 

1000), which selected TVMe+I+G4 as the best model [33–35]. For comparison we also created 

phylogenies using the same MSA with MrBayes and RAxML [36,37]. To compare the repeat and 

species phylogenies, we created a species tree of major sampled animal taxa using TimeTree [38].

Potential interaction of Harbinger-Snek with genes

Using the improved RepeatModeler2 libraries and the Repbase (-lepidosaur) library, we used 

RepeatMasker [39] to annotate the two species of Laticauda. Using Liftoff [40] we transferred the 

No. scutatus gene annotation from RefSeq [41] to the L. colubrina and L. laticaudata genome 

assemblies. To identify Harbingers in genes, exons and regulatory regions we intersected the 

RepeatMasker intervals and transferred gene intervals using plyranges [42]. To test for potential 
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effects of these insertions on biological processes and molecular functions in Laticauda we ran 

PANTHER overrepresentation tests [43] of each using Anolis carolinensis as reference with genes 

annotated in Laticauda as a filter.

Continued expression of Harbinger-Snek

To test if Harbinger-Snek is expressed in L. laticaudata we aligned raw RNA-seq reads from four 

tissues to the L. laticaudata genome from Kishida et al. [21] (BioProject PRJDB7257) using STAR 

[44] and examined the location of intact Harbinger-Snek TEs in IGV [45]and exons in which we had

identified Harbinger insertions.

Results and discussion

Harbinger-Snek is unlike transposons seen in terrestrial elapid snakes

Our ab initio repeat annotation revealed a novel Harbinger DNA transposon in L. colubrina, 

Harbinger-Snek. Using BLASTN we found Harbinger-Snek present in both L. colubrina and L. 

laticaudata, but failed to identify any similar sequences in terrestrial relatives. Harbingers are a 

superfamily of transposons encoding two proteins, a transposase and a Myb-like DNA-binding 

protein [46]. While both are necessary for transposition [47], we identified multi-copy variants of 

Harbinger-Snek which encoded only one of the two proteins. These variants likely result from large

deletions, and may be non-autonomous. In addition, we identified many short non-autonomous 

variants which retain the same TSDs and terminal motifs, yet encode no proteins.

Harbinger-Snek was horizontally transferred to Laticauda

Harbingers have previously been reported in a wide variety of aquatic vertebrates including fish, 

crocodilians and testudines, but not in terrestrial vertebrates [29]. Our repeat annotation of the 

Laticauda, Aipysurus, Naja, Notechis and Pseudonaja assemblies confirmed Harbinger-Snek is 

unique to the two Laticauda species examined and is the dominant transposable element in both 

species (Table 1). This absence from relatives suggested Harbinger-Snek was horizontally 

transferred into the ancestral Laticauda genome and our search of over 600 metazoan genome 

assemblies identified similar sequences only in echinoderms, bivalves and teleosts.
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The nucleotide sequences most similar to Harbinger-Snek were identified in the purple sea urchin, 

Strongylocentrotus purpuratus, and were  ~90% identical to the transposase coding region and 

~88% identical to the DNA-binding protein. Based on a) high numbers of Harbinger-Snek in both 

species of Laticauda sampled and b) similar sequences only present in in marine species, we 

conclude that Harbinger-Snek was likely horizontally transferred to Laticauda following their 

divergence from terrestrial snakes 15-25 Mya, and prior to the crown group divergence of the eight 

recognised species in Laticauda (spanned by L. colubrina and L. laticaudata) ~15 Mya [16]. 

Our phylogenetic analysis (Figure 1) of similar Harbinger transposase sequences placed 

Harbinger-Snek in a strongly supported cluster with Harbingers found in two sea urchins, S. 

purpuratus and Hemicentrotus pulcherrimus (order Echinoida). Interestingly, neither Echinoida 

assembly contained more than 10 Harbinger-Snek-like transposons, none of which encode both 

proteins. H. pulcherrimus Harbinger-Snek-like transposons only contained the transposase, while 

the S. purpuratus assembly contained Harbinger-Snek-like transposons encoding either the 

transposase or the DNA binding protein. In addition, the species that cluster together elsewhere on

the tree are not closely related, for example, the sister cluster to the Laticauda-Echinoidea cluster 

contains a variety of fish and bivalve species. The mismatch of the species tree and the 

transposase tree suggests horizontal transfer of Harbinger-Snek-like transposons may be 

widespread among these marine organisms.

Harbinger-Snek expanded rapidly in Laticauda and is now much less active

Both the RepeatMasker annotation and BLASTN searches reveal a massive expansion in both 

Laticauda species, making up 8% of the L. laticaudata assembly and 12% of the larger L. colubrina

assembly (Table 1, Figure 2). To become established within a host genome following horizontal 

transfer, TEs must rapidly proliferate, or be lost due to genetic drift or negative selection [48]. To 

our knowledge the largest previously described expansion of DNA transposons in amniotes 

following HT is that of hATs in the bat Myotis lucifugus [13–15]. Following HT ~30 Mya, hAT 

transposons quickly expanded over 15 My at an estimated rate of ~0.7 Mbp/My and currently make

up ~3.3% of the M. lucifugus genome. Using the upper bound of Harbinger-Snek’s transfer of 25 
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My (directly after their divergence from terrestrial Australian snakes), we calculate Harbinger-Snek 

to have expanded in L. colubrina at a rate of 11.3 Mbp/My and in L. laticauda a rate of 8.12 

Mby/My. Therefore, our finding is the largest described expansion of a TE in an amniote following 

HTT.

Mass expansion of existing TEs during speciation has previously been seen in many groups 

including primates [49], woodpeckers [50] and salmonids [51]. By making the genome more 

dynamic these expansions fostered rapid adaptations. The sharp peak in the divergence profile 

(Figure 2)  indicates Harbinger-Snek’s expansion was rapid, and the small number of near-identical

copies suggests expansion has slowed massively, especially in L. laticaudata. Many more copies 

of Harbinger-Snek able to transpose are present in the L. colubrina assembly than the L. 

laticaudata assembly, with only 1 fully intact copy in L. laticaudata, but 269 in L. colubrina. Our 

alignment of L. laticaudata RNA-seq data from four tissues (vomeronasal organ, nasal cavity, 

tongue and liver) to the L. laticaudata genome revealed reads mapping across both coding regions

of the intact copy of Harbinger-Snek. Therefore, Harbinger-Snek and its non-autonomous 

derivatives may still be transposing in L. laticaudata.

In addition to containing many more intact copies of the full element, Laticauda colubrina also 

contains a higher number of the aforementioned “solo-ORF” variants than L. laticaudata, with 2263

intact transposase only variants compared to 35, and 452 intact DNA binding protein only variants 

compared to 6. Based on this stark contrast, since divergence ~15 Mya [16] either L. colubrina has

maintained a higher rate of Harbinger-Snek expansion or L. laticaudata has had a higher rate of 

Harbinger-Snek loss; or more likely, a combination of these two effects.

The accordion model - the expansion of Harbinger-Snek has been balanced by loss in L. 

laticaudata

The peak in Harbinger-Snek expansion in L. colubrina is both higher and more recent than L. 

laticaudata (Figure 2). In addition L. laticaudata has a much lower overall Harbinger-Snek content 

and genome size (Table 1). Past observations in birds, mammals and squamates found increases 

in genome size due to transposon expansion are balanced by loss due to deletions through non-

allelic homologous recombination (NAHR) [52,53]. We expect that the mass expansion of 
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Harbinger-Snek in Laticauda has generated many near identical sites in the genome, in turn 

promoting NAHR. In spite of the explosive expansion of Harbinger-Snek in L. laticaudata, the 

genome size and total TE content is very similar to that of the terrestrial Pseudonaja and Notechis 

(Table 1). This retention of a similar genome size is not seen in L. colubrina, the genome assembly

of which is 20% larger than the terrestrial species. However, the overall TE content of the L. 

colubrina genome remains similar to that of L. laticaudata and the terrestrial species, with the 

expansion of TEs only contributing half of the total increase in genome size. This is consistent with 

the aforementioned balancing of TE expansion by deletions.

Expansion of Harbinger-Snek has potentially impacted gene function

In both species of Laticauda many insertions of Harbinger-Snek overlap with or are contained 

within exons, regulatory regions and introns. Insertions overlapped with the exons of 56 genes in L.

colubrina and 31 in L. laticaudata, 17 of which are shared (SI Table 1). By manually inspecting 

transcripts mapped to the L. laticaudata genome we determined 8 3’ UTRs and 2 coding exons 

predicted by Liftoff now contain Harbinger-Snek insertions which contribute to mRNA (SI Table 1). 

These genes have a wide range of functions, many of which could be significant in the context of 

adaptation. We also identified insertions into 1685 and 888 potentially regulatory regions (within 5 

kbp of the 5’ UTR in genes) and into introns of 4141 and 1440 genes in L. colubrina and L. 

laticauda respectively.  PANTHER over/under-representation tests of these in gene and regulatory 

region insertions identified a number of pathways of potential adaptive significance (SI Tables 2-5).

Therefore, Harbinger-Snek is a prime candidate in the search for genomic changes responsible for 

Laticauda’s adaptation to a marine environment through altered gene expression.

Conclusion

In this report, we describe the rapid expansions of Harbinger-Snek TEs in Laticauda spp., to our 

knowledge, the fastest expansion of a DNA transposon in amniotes reported to date. The large 

number of insertions of Harbinger-Snek into exons and regulatory regions may have contributed to 

speciation and adaptation to a new habitat; this suggests a number of future lines of investigation. 

As the HTT was prior to the divergence of 8 Laticauda species, Harbinger-Snek presents a unique 
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opportunity to reconstruct subsequent molecular evolution and determine the impact of HTT on the

adaptation of Laticauda to the amphibious-marine habitat.
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Figures/Tables

Figure 1. The absence of Harbinger-Snek from terrestrial vertebrates and its highest 

similarity to Harbingers present in sea urchins support its horizontal transfer to Laticauda 

since transitioning to a marine habitat. Nodes without support values have support of 95% or 

higher. The distribution of species across this tree suggests Harbinger-Snek-like transposons were

horizontally transferred into a wide variety of species. This figure is an extract of a maximum 

likelihood phylogeny constructed from the aligned nucleotide sequences of the transposases 

present in curated elements using IQ-TREE 2 [33], for the full tree see SI Figure 1. We also 

reconstructed trees with similar topologies using RAxML and MrBayes (see methods). Species 

phylogeny constructed with TimeTree [38].
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Figure 2.  Rapid, recent expansion of Harbinger-Snek PIF-Harbinger transposons. Horizontal 

transfer of this transposon into the Laticauda ancestor has occurred within the past 15-25 My [16] . 

Due to expansions since then, these transposons have become the dominant DNA transposon in 

Laticauda genomes, in contrast to the genomes of their closest terrestrial relatives such as 

Notechis scutatus (diverged ~15-25 Mya). Repeat content calculated with RepeatMasker [39]. 
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Terrestrial L. colubrina L. laticaudata 

Retrotransposons Diff. Mbp (%) Diff. Mbp (%)

    SINEs (Mbp) 25.81 24.31 -1.27 (-0.06%) 24.57 -1.00 (-0.06%)

    Penelopes (Mbp) 33.19 42.34 +9.20 (0.45%) 45.28 +12.15 (0.78%)

    LINEs (Mbp) 277.65 262.89 -9.33 (-0.46%) 235.46 -36.76 (-2.36%)

    LTR elements  (Mbp) 175.52 202.06 +27 (1.33%) 131.33 -43.73 (-2.81%)

DNA transposons

    hATs  (Mbp) 88.63 79.33 -6.92 (-0.34%) 77.62 -8.63 (-0.55%)

    Tc1/Mariners  (Mbp) 61.56 57.80 -1.11 (-0.05%) 55.43 -3.48 (-0.22%)

   Harbinger  (Mbp) 0.44 229.84 +229.42 (11.33%) 126.84 +126.42 (8.11%)

Rolling-circles (Mbp) 3.24 3.09 -0.13 (-0.01%) 3.01 -0.20 (-0.01%)

Unclassified (Mbp) 165.40 140.72 -20.15 (-1.00%) 134.11 -26.77 (-1.72%)

Total TEs (Mbp) 798.05 999.63 +217.30 (10.73%) 788.05 5.72 (0.37%)

Assembly size (Mbp) 1,665.53 2,024.69 +396.91 (19.60%) 1,558.71 -69.01 (-4.43%)

Table 1: The expansion of Harbinger elements in Laticauda spp. This expansion, along with 

that of LTR elements, in L. colubrina has contributed to L. colubrina having a larger genome than 

terrestrial species. This gain in L. laticaudata appears to have been offset to some degree by loss 

from other TE families. Mbp or percentage difference in assembly repeat content between 

Laticauda and the average of the terrestrial Notechis scutatus and Pseudonaja textilis. Repeat 

content was annotated using RepeatMasker [39] using a combined Repbase [29] and curated 

RepeatModeler2 [20] library.

Supplementary Information

SI Table 1 - Laticauda colubrina and Laticauda laticaudata genes with Harbinger-Snek insertions 

into or overlapping open reading frames, and any noticeable effects on insertion noted from 

transcript data. Gene coordinates predicted with Liftoff [40] using the RefSeq Notechis scutatus 

assembly and gene annotation as reference. Repeat annotation performed with RepeatMasker [39]

using a custom repeat library (see Methods). Intersect performed using BEDTools [54]. Transcripts
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mapped to the genome assembly using STAR [44] and viewed in IGV [45].

SI Table 2 - Biological processes with an over/under-representation of Harbinger-Snek insertions 

into Laticauda colubrina genes. Representation test performed using PANTHER [43]. Gene 

coordinates predicted with Liftoff [40] using the RefSeq Notechis scutatus assembly and gene 

annotation as reference. Repeat annotation performed with RepeatMasker [39] using a custom 

repeat library (see Methods). Intersect performed using plyranges [42].

SI Table 3 - Molecular functions with an over/under-representation of Harbinger-Snek insertions 

into Laticauda colubrina genes. Representation test performed using PANTHER [43]. Gene 

coordinates predicted with Liftoff [40] using the RefSeq Notechis scutatus assembly and gene 

annotation as reference. Repeat annotation performed with RepeatMasker [39] using a custom 

repeat library (see Methods). Intersect performed using plyranges [42].

SI Table 4 - Biological processes with an over/under-representation of Harbinger-Snek insertions 

into potential regulatory regions of Laticauda colubrina genes. Representation test performed using

PANTHER [43]. Gene coordinates predicted with Liftoff [40] using the RefSeq Notechis scutatus 

assembly and gene annotation as reference. Repeat annotation performed with RepeatMasker [39]

using a custom repeat library (see Methods). Intersect performed using plyranges [42].

SI Table 5 - Molecular functions with an over/under-representation of Harbinger-Snek insertions 

into potential regulatory regions of Laticauda colubrina genes. Representation test performed using

PANTHER [43]. Gene coordinates predicted with Liftoff [40] using the RefSeq Notechis scutatus 

assembly and gene annotation as reference. Repeat annotation performed with RepeatMasker [39]

using a custom repeat library (see Methods). Intersect performed using plyranges [42].

SI Table 6 - Latin species names and versions of all public genomes used. All were downloaded 

from RefSeq [41] when available, else from GenBank [55].
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