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Abstract

Deep learning models like convolutional neural networks (CNN) and recur-
rent neural networks (RNN) have been frequently used to identify splice sites
from genome sequences. Most of the deep learning applications identify splice
sites from a single species. Furthermore, the models generally identify and
interpret only the canonical splice sites. However, a model capable of iden-
tifying both canonical and non-canonical splice sites from multiple species
with comparable accuracy is more generalizable and robust. We choose some
state-of-the-art CNN and RNN models and compare their performances in
identifying novel canonical and non-canonical splice sites in homo sapiens,
mus musculus, and drosophila melanogaster.

The RNN-based model named SpliceViNCI outperforms its counterparts
in identifying splice sites from multiple species as well as on unseen species.
SpliceViNCI maintains its performance when trained with imbalanced data
making it more robust. We observe that all the models perform better when
trained with more than one species. SpliceViNCI outperforms the counter-
parts when trained with such an augmented dataset. We further extract and
compare the features learned by SpliceViNCI when trained with single and
multiple species. We validate the extracted features with knowledge from
the literature.

Keywords: Deep learning models, Convolutional neural network, Recurrent
neural network, Integrated gradients, Visualization.

∗Corresponding author
Email address: anand.ashish@iitg.ac.in (Ashish Anand )
URL: d.aparajita@iitg.ac.in (Aparajita Dutta), kusumsingh@iitg.ac.in

(Kusum Kumari Singh)

Preprint submitted to Anonymous June 13, 2021

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.13.448260doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.13.448260
http://creativecommons.org/licenses/by-nd/4.0/


1. Introduction

The availability of a plethora of sequenced genomic data has led to the
need for structural and functional annotation of the genome. Identification of
splice sites or splice junctions is a crucial step for genome annotation. Splice
sites are present at the boundaries of alternating genomic regions called ex-
ons and introns where splicing occurs [1]. During splicing, the exons and
introns in the pre-mRNA clip and ligate in different combinations to form
different mature mRNA and eventually form various proteins during trans-
lation. The exon-intron junction is called the donor site and the intron-exon
junction is called the acceptor site. Usually, the donor and acceptor sites
are characterized by the consensus GT and AG, respectively. Such junctions
are called canonical splice junctions. The splice sites that lack the consensus
dimers are called non-canonical splice junctions [2].

Machine learning models like support vector machine (SVM), random for-
est (RF), decision trees (DT), and näıve Bayes (NB) have been applied in the
task of splice junction identification [3, 4, 5, 6, 7]. Such models characterize
splice junctions in the form of surrounding mono/di/trinucleotide distribu-
tion and other positional and density information. However, such manually
engineered feature sets are not optimal or exhaustive. This leads to deploy-
ing models that can extract relevant features from the genome sequences de
novo. With this intention, several deep learning models [8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18] have been applied to this task in the recent times.
Such models can learn and capture the splicing features from the genome
sequences by itself.

Among the deep learning models applied, convolutional neural networks
(CNN) [8, 9, 11, 16, 17] and recurrent neural networks (RNN) [10, 12, 18]
have been applied most frequently to the prediction of splice sites. How-
ever, most of the CNN based models and all the RNN based models identify
splice sites in a single species. Some of the CNN based models study mul-
tiple species like homo sapiens, arabidopsis thaliana, oryza sativa japonica,
drosophila melanogaster, and caenorhabditis elegans [9, 16, 17]. However,
most of the existing studies do not test the generalizability of the models
by training and testing them on novel splice junctions from different species.
Furthermore, several existing studies do not contribute towards extraction
and interpretation of the non-canonical splicing features learned by the mod-
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els.
Zuallaert et al. [9] do not discuss the generalization capability of their

proposed model by training and testing it on different species. Albaradeia et
al. proposed a model named Splice2Deep [17] which trains and tests on dif-
ferent species and still identifies the splice sites with high accuracy. However,
they do not extract or discuss any biological features learned by the model.
Wang et al. [16] proposed SpliceFinder, which trains a CNN model to iden-
tify acceptor, donor, and false splice sites. Although SpliceFinder trains and
tests the model on both canonical and non-canonical splice sites of various
species, it extracts and visualizes features from canonical sites only. However,
a deeper understanding of the non-canonical splicing is equally important as
non-canonical splice sites are sometimes vital in regulating important bio-
logical events like immunoglobulin gene expression [19]. Furthermore, these
CNN based models do not focus on identification of novel splice sites. The
ability to identify novel splice sites indicates that a model is generalizable
and robust.

To alleviate the limitations of the current research works discussed above,
we apply neural network models to identify novel canonical and non-canonical
splice sites from various species. In particular, we ask the following questions
in this work:

Question 1: Whether various neural models perform equally well on iden-
tifying splice sites from multiple species? Does any particular model
outperform the rest?

Question 2: Can the neural models be used to annotate a poorly studied
species using data from an extensively annotated species?

Question 3: What are the splicing features extracted by the best perform-
ing model from the different species?

To answer the above questions, we consider the state-of-the-art RNN and
CNN models that have already been applied to identify splice sites. The
models are assessed in both the conditions when the training and the testing
dataset may be from the same species or different species. We compare the
performance of the models to evaluate whether any particular model per-
forms better than the rest in this task. We also augment the dataset by
combining training data from more than one species to observe the improve-
ment of the model’s performance in the task of canonical and non-canonical
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splice site identification. The improvement in a model’s performance on
augmenting training data from another species suggests that the model can
identify splice sites from poorly annotated species using data from another
extensively annotated species. Moreover, all the models are tested on novel
splice sites such that the training and testing samples are extracted from two
different versions of the dataset.

The state-of-the-art RNN model, called SpliceViNCI, uses a BLSTM net-
work to identify and visualize splice sites within a single species [18]. How-
ever, the generalizability of a BLSTM model has not been exploited so far
in identifying splice junctions from multiple species. On the other hand,
the state-of-the-art CNN models, named SpliceRover and SpliceFinder, have
been applied to identify and visualize splice sites from single species [9] as
well as across different species [16]. We consider these three neural network
models and compare their performances in identifying splice sites across var-
ious species.

The contributions of this research can be summarized as:

• We compare CNN and RNN based state-of-the-art models in identifying
splice sites from homo sapiens (human), mus musculus (mouse), and
drosophila melanogaster (drosophila).

• We evaluate the performance of the models in identifying canonical
and non-canonical splice junctions from species on which the models
are not trained.

• We evaluate the performance of the models on imbalanced data. Su-
perior performance on imbalanced data indicates that a model is more
robust and applicable in the annotation of multiple species.

• We observe that augmenting the training dataset of one species with
that of another species improves the performance of all the models,
especially in identifying non-canonical splice sites. This indicates that
the models can be used to annotate poorly studied species using data
from extensively annotated species.

• We extract the splicing features learned from different species by the
best performing model and validate them with the existing literature.
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2. Methods

This section discusses the input representation, network architectures and
hyperparameters of the various models used in the study. The visualization
technique used for extraction of the biologically relevant features is also dis-
cussed. Figure 1 depicts a graphical representation of the workflow common
to all the models implemented and the application of visualization.
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Figure 1: Graphical representation of the workflow.

2.1. Input representation

We extract all introns from the protein-coding genes of a given species.
The donor and acceptor junction pair corresponding to an intron is an input
to the models. Each splice junction is extracted with a flanking upstream
and downstream region of 40 nucleotides (nt). The donor and acceptor site
sequences corresponding to an intron are concatenated before feeding into
the model. These sequences comprise the four nucleotides: A (Adenine), C
(Cytosine), G (Guanine), T (Thymine) and N (denoting any one of the four
nucleotides). Each input sequence comprises 40 nt upstream and downstream
regions at both donor and acceptor sites along with the junction dimers. The
donor and acceptor site sequences are concatenated to form an input sequence
of length 164 nt. This input is fed into each of the model described below.
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2.2. Models

The following subsections describes the model architectures along with
the hyperparameters used for training and testing the models. We partition
the training dataset into 90% train and 10% validation data for tuning the
hyperparameters.

2.2.1. SpliceRover

This is a CNN model comprising several convolutional layers followed by
max-pooling, fully connected, and softmax layers. This model is proposed
by Zuallaert et al.[9]. SpliceRover identifies the donor and acceptor splice
sites in homo sapiens and arabidopsis thaliana. Additionally, Zuallaert et
al. extract the biologically relevant features learned by the model using the
DeepLIFT [20] visualization technique.

Zuallaert et al. trained SpliceRover with different numbers of convolu-
tional layers for various datasets of variable sequence length. We trained the
model with two convolutional layers followed by a max-pooling, fully con-
nected layer, and softmax layer based on the optimal performance on our
dataset. Stochastic gradient descent is chosen as the optimizer with learning
rate, decay rate, Nesterov momentum, and the number of steps per learning
rate decay set to 0.05, 0.5, 0.9, and 5, respectively. Other hyperparameters
like epochs and batch size are set to 30 and 64, respectively.

2.2.2. SpliceFinder

This is a CNN-based model proposed by Wang et al. [16]. The model is
trained with the human dataset and identifies donor and acceptor splice sites
in several species, namely drosophila melanogaster, mus musculus, rattus,
and danio rerio, without retraining. They also extract the relevant splicing
features using the DeepLIFT visualization technique.

The model comprises one convolutional layer with 50 kernels of length
nine followed by a fully connected layer of size 100. A dropout layer is
subsequently added with a dropout rate of 0.3. Finally, there is a softmax
layer of 2 nodes to classify true and false splice sites. Adam is used as an
optimizer with a learning rate of 10−4. Other hyperparameters like epochs
and batch size are both set to 50.

2.2.3. SpliceViNCI

This is an RNN-based model comprising an embedding layer, BLSTM
layer, fully connected layer, and softmax layer. The model architecture is
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proposed by Dutta et al. [18]. SpliceViNCI identifies splice junction pairs
from the human dataset and visualizes the splicing features by applying vi-
sualization techniques like occlusion [21] and integrated gradients [22].

The embedding layer converts each nucleotide into a 4-dimensional dense
vector. The subsequent BLSTM, fully connected and softmax layer comprises
100, 1024, and 2 units, respectively. They use binary cross-entropy and
Adam [23] as the loss function and the optimizer, respectively. Other tuned
hyperparameters are epochs, batch size, dropout, and recurrent dropout, set
to 10, 128, 0.5, and 0.2, respectively.

2.3. Feature interpretation

We apply Integrated gradients [22] for extracting and interpreting the fea-
tures learned by the neural model. Integrated gradients is a back-propagation
based visualization technique proposed by Sundararajan et al. This tech-
nique is based on the computation of gradients along a straightline path
from a baseline to the input. The baseline can be a zero embedding vector
for text input.

The integrated gradient of an input sequence is given by cumulating the
gradients along the straightline path. This cumulative gradient value at each
sequence position signifies the importance of that position in the predicted
decision of an input. We call the cumulative gradient the deviation value.
We consider 50 gradients along the linear path from baseline to input.

The strength of this visualization technique lies in its ability to satisfy two
desirable properties of attribution methods: sensitivity and implementation
invariance. Intuitively, lack of sensitivity may lead to the attribution method
focusing on irrelevant features. Likewise, if an attribution method is not
implementation invariant, it may be sensitive to the unimportant biases of
the implementation model [22]. Other visualization techniques like DeepLift,
Layer-wise relevance propagation (LRP) [24], and gradients lack either of
these properties.

3. Data

We consider three species, namely homo sapiens (human), mus muscu-
lus (mouse), and drosophila melanogaster (drosophila).We choose mouse and
drosophila species in order to have a wide range of comparison because mouse
is closer to human in the phylogenetic tree, whereas drosophila is further [25].
Mouse and human species have 99% homologous protein-coding genes [26]. In
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contrast, drosophila and human have 60% homologous protein-coding genes
[27]. The procedures of generating the positive and negative data are de-
scribed in the next section.

3.1. Positive data

The genome sequence data (FASTA files) and the corresponding an-
notations (GTF files) are downloaded from the GENCODE database [28]
for human and mouse species. The FASTA and GTF files for Drosophila
melanogaster were downloaded from the Ensembl database [29].

We test the various models on the identification of novel splice sites.
Therefore, the training and testing samples are extracted from two different
versions of the database. The training data is extracted from an earlier
released version. The testing data is generated from a later release such that
the testing samples are not present in the training version of the database.
This ensures that the model can identify splice sites that were not annotated
in the training version of the dataset, thus making the model more robust.

The number of introns present in the training and testing data of the
different species is mentioned in Table 1 along with their corresponding ref-
erence genome and release versions. We observe that the number of introns
in drosophila is much less than in human and mouse. This is because the
drosophila genome comprises only four pairs of chromosomes compared to 23
and 20 pairs in human and mouse species, respectively.

Table 1: Distribution of positive dataset in mouse, human and drosophila.

Species (reference genome)
Training data
# of introns (version)

Testing data
# of introns (version)

Mus musculus (GRCm38) 225616 (V:M2) 26030 (V:M24)
Homo sapiens (GRCh38) 290502 (V:20) 5612 (V:26)
Drosophila melanogaster (BDGP6) 58522 (V:95) 118 (V:103)

3.2. Negative data

The negative dataset is generated by randomly extracting genome se-
quences from the genome sequence data. We randomly search for the donor
site dimer and a subsequent acceptor site dimer. Both the donor and accep-
tor site dimers are present in the same chromosome and are not annotated as
splice sites in the positive dataset. The donor-acceptor dimer pairs consid-
ered in the generation of negative dataset are GT-AG, GC-AG, and AT-AC.
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The GT − AG consensus rule applies to all the three species considered
here [30, 31]. GC−AG and AT −AC are the most frequently occurring non-
canonical dimer pairs in mouse species of our positive data. This corroborates
the most frequently occurring non-canonical splice junctions in the human
species known from literature [32]. The most frequent non-canonical dimer
pair in our drosophila positive data is GC − AG and GT − TG, closely
followed by AT − AC. However, for the uniformity of comparison, we use
GC − AG and AT − AC as non-canonical negative dimer pairs across all
species. The non-canonical data comprises 1% GC − AG and 1% AT − AC
splice junctions. This proportion is chosen based on a study by Stephen M
Mount [32]. We extract the splice sites along with a flanking upstream and
downstream region equal to that of the positive samples.

A major challenge in identifying splice sites lies in the fact that although
GT-AG is the most frequently occurring splice junction dimer pair, there
are also instances of splice sites that lack this dimer pair at the junctions.
This suggests the presence of additional splicing signals in the vicinity of
the sites which govern the splicing phenomenon. We add the non-canonical
dimer pairs in the negative dataset to make the model capable of recognizing
such splicing signals present near the non-canonical splice junctions, which
differentiate the true and decoy splice sites.

4. Results

The results obtained from various analysis and comparison of the models
are discussed in the following subsections.

4.1. SpliceViNCI outperforms other models in identifying splice sites of mul-
tiple species

We intend to evaluate the performance of various neural network mod-
els on the task of identifying canonical and non-canonical splice sites from
multiple species. We use accuracy, precision, recall, and F1-scores as the eval-
uation metrics. We train and test SpliceViNCI, SpliceRover and SpliceFinder
prediction models with data from human, mouse and drosophila.

Figure 2 displays the performances of SpliceViNCI, SpliceFinder, and
SpliceRover in the identification of canonical and non-canonical splice sites
where each model is trained and tested with the data from the same species.
We observe that SpliceViNCI outperforms both the CNN models in most of
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Figure 2: Performance (in percentage) obtained by SpliceViNCI,
SpliceRover and SpliceFinder in the identification of canonical (can) and non-
canonical (ncan) splice junctions when trained and tested with data from the
same species.
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the metrics for all three species. This analysis is done to test the consistency
of the models in the identification of splice sites in various species.

We observe in Figure 2 that SpliceViNCI obtains an F1-score approxi-
mately 1% to 2.5% more than SpliceFinder in the identification of canonical
splice junctions across the three different species. Furthermore, The F1-score
of SpliceViNCI is 1% to 12% more than SpliceFinder in identifying non-
canonical splice sites. The F1-score of SpliceViNCI is 7% (13% to 26%) more
than SpliceRover in the identification of canonical (non-canonical) splice
junctions. Similarly, SpliceViNCI outperforms SpliceFinder and SpliceRover
in the other three performance metrics: accuracy, precision, and recall.

Additionally, we observe a relatively poor performance of all the three
models in identification of non-canonical splice sites in drosophila. This can
be attributed to the selection of GC − AG and AT − AC as non-canonical
negative dimer pairs in the training dataset. Whereas, in the real scenario,
the most frequent non-canonical dimer pair in our drosophila positive data
is GC − AG and GT − TG. This difference of non-canonical dimer pairs in
the positive and negative data of drosophila may lead to the model missing
out the subtle splicing signals present in the vicinity of the most frequently
occurring non-canonical dimer pairs.

4.2. SpliceViNCI outperforms other models in identifying splice sites of un-
seen species

Next we were curious to test the generalizability of the models in recog-
nizing splice sites across different species. For this objective, we trained and
validated each model with only human data and tested them on mouse and
drosophila. In other words, this analysis tests the performance of the models
on unseen species.

Figure 3 shows the performance of SpliceViNCI, SpliceFinder, and SpliceRover
trained with human data in identifying canonical and non-canonical splice
junctions from mouse and drosophila test data. SpliceViNCI obtains an
F1-score up to 4% and 12% more than SpliceFinder in the identification of
canonical (Figure 3(a)) and non-canonical (Figure 3(b)) splice junctions, re-
spectively. On the other hand, F1-score obtained by SpliceViNCI is up to
10% and 12% more than SpliceRover in the identification of canonical (Figure
3(c)) and non-canonical (Figure 3(d)) splice junctions, respectively. This test
further affirms the robustness of SpliceViNCI compared to the counterparts.
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(c) human train, drosophila test (can)
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Figure 3: Performance (in percentage) obtained by SpliceViNCI,
SpliceRover and SpliceFinder trained with human data in the identification
of canonical (can) and non-canonical (ncan) splice junctions from mouse and
drosophila test data.

4.3. SpliceViNCI is more robust with imbalanced training data

We test the robustness of the neural network models by training the
models on an imbalanced dataset. An imbalanced dataset is generated by
increasing the ratio of negative to positive samples. This ratio of negative to
positive samples is called the decoy rate. We increase the decoy rate from 3
to 9 in an interval of 2. Since accuracy, precision and recall are not appropri-
ate performance metrics in an imbalanced dataset; we display only F1-score
in this analysis.

We train the models on the human dataset and test them on the human,
mouse, and drosophila datasets. The positive and negative training samples
are extracted from chromosome 1 (chr1) of the human dataset. We chose
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Figure 4: F1-score (in percentage) obtained by SpliceViNCI, SpliceFinder
and SpliceRover in the identification of splice junctions with imbalanced
training data.
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chromosome 1 since it is the largest chromosome in the human genome.
Figure 4 displays the F1-scores obtained by SpliceViNCI, SpliceFinder, and
SpliceRover when trained on an imbalanced human dataset and tested on
canonical and non-canonical splice sites from different species.

We observe that both SpliceViNCI and SpliceFinder maintain its per-
formance with increasing decoy rate whereas the performance of SpliceRover
significantly reduces by 80% as the decoy rate increases from 3 to 9. However,
SpliceViNCI consistently outperforms SpliceFinder and SpliceRover across
different species even when the decoy rate increases. In particular, the per-
formance of SpliceRover reduces to less than 50% when the decoy rate in-
creases beyond 5. On the contrary, the performance of SpliceFinder and
SpliceViNCI reduces up to 10% and 6%, respectively. Therefore, we can
conclude that SpliceViNCI is the most robust model across several species
to identify canonical and non-canonical splice sites.

4.4. SpliceViNCI outperforms other models in identifying splice sites of par-
tially annotated species

We investigate whether the performance of the models can improve on
augmenting the training data from one species with training data from an-
other. If a model performs better with such an augmented dataset, it can
then be applicable to annotate partially studied species using data from ex-
tensively annotated species. With this purpose, we extract training samples
from chromosome 1 for the human and mouse training data. The train-
ing samples for drosophila were extracted from chromosome 3R. We choose
these chromosomes since they are the largest chromosomes in their respective
genome sequence data.

Figure 5(a) (Figure 5(b)) shows the performance of SpliceViNCI, SpliceFinder,
and SpliceRover in the identification of canonical and non-canonical splice
sites when trained with only mouse (drosophila) data and mouse (drosophila)
data combined with human data. We observe that all three models display
improvement in the F1-score when trained using data from two species. This
improvement is observed in the case of both canonical and non-canonical
splice site identification.

Hence, we can infer that combining the training data of one species with
samples from another extensively annotated species can improve the model’s
performance. This performance improvement can be attributed to the in-
crease in the number and variation of training data when multiple species
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Figure 5: F1-score (in percentage) obtained by SpliceViNCI, SpliceFinder
and SpliceRover in the identification of splice junctions with single species
and multi-species training data.

are used. This analogy can also motivate annotating poorly studied or newly
annotated species by training a model with data from another extensively
annotated species.

In canonical splice sites, all three models show an improvement of approx-
imately 1% when human data is added for training the model instead of using
only mouse or drosophila data. However, in non-canonical splice sites, the im-
provement is up to 28% when human data is added to the training dataset.
The more significant improvement in identifying non-canonical splice sites
can be attributed to the fact that canonical splice site motifs are primarily
similar across all eukaryotes [16, 30]. On the other hand, non-canonical splice
sites show a wider range of variations and frequencies of occurrence. There-
fore higher variation in the training data assists the models to recognize more
unseen non-canonical splice sites.

Furthermore, we observe that SpliceViNCI performs better than SpliceFinder
and SpliceRover in both the scenario when one or two species are used to
train the model. SpliceViNCI shows an improvement of up to 7% compared
to SpliceFinder when only mouse or drosophila data is used for training the
models. The performance of SpliceViNCI improves up to 5% compared to
SpliceFinder when human data is also used for training. The improvement
of SpliceViNCI compared to SpliceRover goes up to 10%.
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Figure 6: The importance of sequence positions. The average devi-
ation value per position obtained by integrated gradients for non-canonical
(a) donor junction and (b) acceptor junction in mouse+human model; non-
canonical (c) donor junction and (d) acceptor junction in mouse model.

4.5. SpliceViNCI captures significant sequence positions

As observed in Figure 5, combining data from two species for training
the models significantly improves the performance in non-canonical splice
sites. Furthermore, SpliceViNCI shows the highest improvement when such
an augmented data is used. Therefore, we extract the features captured by
SpliceViNCI from the non-canonical mouse and drosophila test data with and
without augmentation and compare the findings from both. We represent the
augmented dataset from two different species S1 and S2 in the form of S1+S2.

4.5.1. Significant sequence positions captured in mouse

Figure 6(a) and Figure 6(c) display the importance of sequence posi-
tions captured for non-canonical donor sites by SpliceViNCI when trained
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Figure 7: The importance of sequence positions. The average devi-
ation value per position obtained by integrated gradients for non-canonical
(a) donor junction and (b) acceptor junction in drosophila+human model;
non-canonical (c) donor junction and (d) acceptor junction in drosophila
model.

by mouse+human and mouse data, respectively. We observe that the mouse
model captures only the splice site and its downstream region as significant.
In contrast, the mouse+human model captures the upstream region of the
donor site as significant as well. Since the mouse and human splice site
consensus at donor and acceptor sites are conserved [30, 31], we can derive
that the mouse+human model captures the extended upstream region of the
donor site consensus 9-mer [AC]AGGTRAGT whereas the mouse model does
not.

The significant positions captured by both the models for the acceptor
junction (Figure 6(b) and Figure 6(d)) seem to be identical. However, the
importance of sequence positions beyond -15 nt upstream of the acceptor site
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Figure 8: Sequence motifs at splice junctions. The average deviation
value per position per nucleotide is shown by integrated gradients for non-
canonical (a) donor junctions and (b) acceptor junctions in mouse+human
model; non-canonical (c) donor junctions and (d) acceptor junctions in mouse
model.

appears smoother when mouse+human data (Figure 6(b)) is used. Beyond
-15 nt upstream of the acceptor junction is the position where the polypyrim-
idine tract ends.

4.5.2. Significant sequence positions captured in drosophila

The importance of sequence positions at the donor sites of drosophila is
depicted in Figure 7(a) and Figure 7(c) for drosophila+human and drosophila
model, respectively. We observe that the drosophila+human model gives
maximum importance to position [0] at the donor junction compared to the
extended upstream and downstream region. On the contrary, the drosophila
model gives more importance to the upstream region than the donor junction.

As known from the literature, the consensus dimer at the junctions dif-
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Figure 9: The importance of nucleotides per sequence position. The
average deviation value per nucleotide per position is shown by integrated
gradients for non-canonical (a) donor junction and (b) acceptor junction in
drosophila+human model; non-canonical (c) donor junction and (d) acceptor
junction in drosophila model.

ferentiate non-canonical splice sites from their canonical counterparts. Intu-
itively, the importance given by the drosophila+human model (Figure 7(a))
abides by this rule thus making more sense than the drosophila (Figure
7(c)) model. In the case of acceptor junctions, drosophila+human (Figure
7(b)) model captures downstream region of the junction which the drosophila
((Figure 7(d))) model does not. Furthermore, the region captured beyond
the PY-tract appears smoother in the drosophila+human model.

4.6. SpliceViNCI captures splice junction consensus

We observe that SpliceViNCI captures donor and acceptor splice site
motifs in the case of both mouse+human (Figure 8(a) and Figure 8(a)) and
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mouse (Figure 8(c) and Figure 8(d)) training data. However, on a closer
observation, we see that the donor site motif obtained from mouse+human
training data (Figure 8(a)) covers more extended consensus compared to that
of the mouse training data (Figure 8(c)).

Additionally, The mouse+human model gives highest importance to posi-
tion [0] which corresponds to the most common non-canonical donor site con-
sensus [GC]. The PY-tract captured by mouse+human model (Figure 8(b))
is less noisy compared to that of the mouse model (Figure 8(d)). Smoothen-
ing of the PY-tract is also seen in the drosophila+human model (Figure 9(d))
compared to drosophila model (Figure 9(b)).

5. Conclusion

CNN and RNN models have been frequently applied to identify splice
sites. However, most of the applications do not evaluate the performance of
the models across multiple species or unseen species. We select some state-of-
the-art CNN (SpliceRover and SpliceFinder) and RNN models (SpliceViNCI)
that have already been applied to identify splice sites. We compare the
performances of the models in identifying novel canonical and non-canonical
splice sites in human, mouse, and drosophila species.

SpliceViNCI outperforms other state-of-the-art models in identifying the
splice junctions in all the three species. SpliceViNCI also outperforms its
counterparts in identifying splice sites from species on which it is not trained.
Furthermore, SpliceViNCI attains the highest F1-score when trained with
an imbalanced dataset. The above analysis suggest SpliceViNCI as a more
robust and generalizable model than its counterparts.

We observe an improvement in the performance of all the models when
data from multiple species are used for training. SpliceViNCI performs better
than the counterparts with such augmented training data as well. Therefore,
SpliceViNCI proves to be a preferable choice for annotating species that
are either newly or poorly annotated using training data from extensively
annotated species.

We further extract the splicing features learnt by SpliceViNCI through the
application of integrated gradients. The knowledge thus obtained is validated
with the existing literature. We also compare the features extracted when
the model is trained with single-species and multiple-species training data.
We observe that SpliceViNCI extracts more specific features when trained
using data from more than one species.
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