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ARTICLE INFO ABSTRACT

Keywords: Simultaneous recording of activity across brain regions can contain additional information
fMRI compared to regional recordings done in isolation. In particular, multivariate pattern analysis
Univariate Response (MVPA) across voxels has been interpreted as evidence for distributed coding of cognitive or
Multivariate Response sensorimotor processes beyond what can be gleaned from a collection of univariate responses
Multivariate Pattern Analysis (UVR) using functional magnetic resonance imaging (fMRI). Here, we argue that regardless
Second-order Statistics of patterns revealed, conventional MVPA is merely a decoding tool with increased sensitivity
Geodesic Distance arising from considering a large number of ‘weak classifiers’ (i.e. single voxels) in higher di-
Crossnobis Distance mensions. We propose instead that ‘real” multivoxel coding should result in changes in higher-

order statistics across voxels between conditions such as second-order multivariate responses
(sMVR). Surprisingly, analysis of conditions with robust multivariate responses (MVR) revealed
by MVPA failed to show significant sMVR in two species (humans and macaques). Further anal-
ysis showed that while both MVR and sMVR can be readily observed in the spiking activity of
neuronal populations, the slow and nonlinear hemodynamic coupling and low spatial resolution
of fMRI activations make the observation of higher-order statistics between voxels highly un-
likely. These results reveal inherent limitations of fMRI signals for studying coordinated coding
across voxels. Together, these findings suggest that care should be taken in interpreting signifi-
cant MVPA results as representing anything beyond a collection of univariate effects.

1. Introduction

Multivariate pattern analysis (MVPA) has received much attention as a popular decoding tool for fMRI studies
[1]. In classical fMRI analysis methods, individual voxel responses to task events are analyzed independent of other
voxels (univariate analysis or UVA) using generalized regression [2, 3]. However, in a typical MVPA study, the goal
is to investigate whether it is possible to decode task conditions or states from fMRI signals of a collection of voxels
in a given brain area [4, 5, 6, 7]. Local MVPA aims to assess the task-related population code by analyzing the fMRI
signals extracted from a local neighborhood (searchlight) surrounding each voxel [6, 8, 9].

A key reason for the wide adoption of MVPA is its success in identifying multivoxel neural representations of task
conditions[10]. Indeed, by combining information across voxels, MVPA increases the dimensionality for the optimal
criterion thereby improving the decoding performance with higher sensitivity and specificity [11, 12]. In some cases
regions that do not show significant UVR are found to have significant task-related information when MVPA is used.
In such a scheme, each voxel may have a weak bias across task conditions due to weak neural activation or biased
sampling of neurons with different tuning properties concerning task conditions [13]. Such weak biases which may be
missed by UVA as being sub-threshold can nevertheless be pooled across voxels for successful decoding in MVPA in
higher dimensions determined by the number of voxels considered[14, 15, 16].

However, beyond improved decoding performance compared to UVA, there is an ambiguity as to how much of the
observed multivariate patterns differences across conditions is the trivial reflection of univariate response differences.
The concern for univariate response removal is valid because in many cases it is not clear whether multidimensional
representations in the brain can be explained by a collection of ’simple’ unidimensional activations or not [17]. To
address this issue, various approaches for removal of UVR components have been suggested including removal of
mean response across voxels in each condition [18, 19, 20, 21] or removal of common pattern across conditions [22].
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Multivoxel coding not observable in fMRI

Here we argue that none of these approaches can help determine whether there is joint multivoxel coding beyond
univariate effects. This is because MVPA cannot capture the information contained in voxels beyond changes in the
mean across conditions. Thus there are no fundamental differences between the precise nature of decoded informa-
tion using single-voxel activations in UVA and multi-voxels activations in MVPA (both relying on changes in mean
responses across conditions). To find joint multivoxel coding beyond univariate effects one should look for significant
changes in higher-order statistics of voxel activations. To address this issue, fMRI datasets in both human and non-
human primates with significant multivoxel responses using MVPA were analyzed for the presence of such higher-order
statistics ( here second order). Surprisingly, results showed a lack of significant modulation of second-order statistics
by task conditions despite significant univariate and multivariate coding based on mean activity and despite the fact
that such second-order effects were readily observable in population neuronal spike data consistent with previous re-
ports [23, 24, 25]. Further analysis suggested that the difficulty of detecting higher-order effects might be inherent to
fMRI and thus unavoidable due to nonlinear hemodynamic coupling and low spatial resolutions of fMRI signals.

2. Results

3. Univoxel versus multivoxel responses

Better classification performance using MVPA can be a trivial consequence of the fact that classification is always a
monotonically non-decreasing function of the number of voxels in a searchlight (Fig 1A). As can be seen increasing the
number of voxels results in larger Crossnobis distance [18] across two conditions and thereby improving classification
accuracy for any classifier such as linear discriminant analysis (LDA) [21] (see section 8) (Fig 1B). It can be argued that
almost all previously reported MVPA results could arise from a mere increase in sensitivity which is expected when
combining a large number of ‘weak classifiers’(i.e. single voxels) within searchlights and solving the classification in
a higher-dimensional space [14, 15, 26]. While such results maybe used as evidence for the spatial spread of coding
beyond a single voxel, they hardly address whether there is coordinated activity between voxels that are different across
conditions. Note that the spatial spread of coding are also often readily observed using simple univariate GLMs unless
voxels in the searchlight show mostly subthreshold activations that can only reach significance when MVPA is used
(again via increasing sensitivity by using a large number of ‘weak classifiers’)

As a result in many studies, it has been a challenge to determine to what degree the results of MVPA are simply a
byproduct of UVR as opposed to representing a real MVR code [19, 1]. Several studies have assumed that in general
if voxels show similar activation across conditions (e.g. increased or decreased activation in all voxels between two
conditions), MVPA is simply a byproduct of multiple UVRs [1, 19] and on the other hand, when there is differential
activity across voxels across task conditions, the activation pattern is assumed to represent a real MVR code. Fig
1C shows a graphical representation of UVR and MVR according to the aforementioned interpretation for two voxels
across two conditions. MVPA activations are interpreted as UVR when activation changes are largely similar for both
voxels across the two conditions (i.e. activation falling on the unity line which represents equal sensitivity, UVR axis).
In this scenario, MVR is a component that is added to the UVR in the direction perpendicular to the UVR axis. In
reality, the actual activation of our two example voxels can show a mixture of both UVR and MVR (Fig 1C right).
A conventional method employed to remove UVR from MVR is then to remove the part of the response that has the
same sign and amplitude across all voxels [1, 18] (Fig 1D). This procedure is separately performed for each condition.
In the geometric sense, MVR is extracted by shifting all samples in each condition such that the sum of voxel values
for each sample becomes zero [1].

Unfortunately, such interpretation of MVPA can be erroneous for at least two reasons: 1) Current UVR interpre-
tation implicitly assumes equal sensitivity to conditions across voxels. However, it is well-known that a given voxel’s
sensitivity to task conditions can be affected by a variety of factors not related to neural activity per se, including imag-
ing sequence used, RF coil function and positioning, subject motion as well as other artifacts and dropouts common
in an imaging session. In the interpretation proffered in Fig 1 such differential sensitivity across voxels can be taken
as evidence for MVR in the absence of a meaningful neural correlate. 2) More importantly from a computational
standpoint and as far as informational content or decoding is concerned, conditions with pure UVR and pure MVR
(current formulations as shown in Fig 1C) are not qualitatively different. In our two voxel examples, pure UVR can be
transformed to pure MVR by an affine transformation of voxel activities (Figs. 1E). Importantly and as expected such
linear transformations do not change the informational content or decoding accuracy regardless of which name (UVR
or MVR) one chooses for describing the observed pattern.
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Figure 1: UVR and MVR components and sensitivity to the number of voxels. (A) MVPA accuracy in condition
discrimination (sensitivity) increases by aggregating information across larger number of voxels (B) As the number of
voxels increases, the Crossnobis distance (see section 8) among conditions increases and so is classification accuracy
by linear discriminant analysis (LDA) for any given structure of noise. (C) The classical view of UVR and MVR
components when doing MVPA: UVR is the component along the unity line of equal sensitivity across voxels (left)
and MVR is the component perpendicular to this line (middle). Voxels can show a mixture of UVR and MVR in this
scheme (right). (D) The conventional approach in removing MVR from UVR by projecting the data onto the hyper-
diagonal of voxel space for each condition separately. (E) Equivalence of classical definition of UVR and MVR by
affine transformation and in terms of informational content for discriminating two conditions.

On the other hand, we argue that a true coordinated and joint multi-voxel code which posits functional cross-
voxel interactions across conditions entails changes in higher-order cross-voxel statistics. Such cross-voxel interaction
entangles response fluctuations across voxels within trials. This alternative formulation is consistent with a more
precise definition which suggests that a ’true’ population code should be represented in coordinated activity between
members within a given trial and not just their mean across trials [27].
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4. MVR vs sSMVR

In theory, arbitrary interactions between any number of voxels can be considered resulting in higher-order in-
teraction (between 2 to N’ voxels) however correct estimate of such higher-order terms suffers from the curse of
dimensionality and requires increasingly larger amounts of data. The least amount of complexity that still goes beyond
mean responses is to consider pairwise covariance of voxel activations (sMVR).

Thus, for a condition indicator x and two voxels v; and v,, formulating the decoding as a simple additive model
with a pairwise interaction term can be written as:

X = av + ay Uy +b(U1XU2)+C+€. (1)
UVR UVR sMVR
N e’
MVR

where ¢ and e are constant and residuals, respectively.

Note that the classical MVPA follows basically the same model but without the interaction term d(v, X v,). Each
term f or f, in Eq. (1) can be considered UVR while the sum (av;+bv,) can be considered MVR which is examined by
MVPA and nevertheless has the same nature of information as the UVR terms. On the other hand, the term d(v; X v,)
which represents the second-order interaction effect can be considered as the simplest form in which coordinated
activity across voxels may be used for discrimination of two conditions. This is the term that we refer to as second-
order MVR (sMVR). The expected value of this second-order interaction is the covariance matrix of voxels in the
searchlight provided that the activations are all mean subtracted. Significant changes in the covariance matrix can
reveal additional information in the voxels about the different conditions beyond their mean activation. Thus, in sSMVR,
the discrimination of conditions depends on how well the covariance structure of the data varies across conditions.

There are different ways to measure MVR including examining the accuracy of classifications [5] or the contin-
uous distance measures such [28]. In this study, squared cross-validated Mahalanobis distance that is also known as
Crossnobis distance is used to extract the strength of MVR [28, 18] (Fig S1). Notably, while classification accuracy is
a discrete measure and saturates at 100%, the Crossnobis distance is a continuous and non-saturating measure and thus
allows for better differentiation of cases with very high classification accuracies [1, 28]. To extract sSMVR, Geodesic
distance that is a geometry-aware approach to compare covariance matrices is applied [29] (Fig S2) (see section 8 for
more details).

Fig 2A illustrates a simplified view of MVR and sSsMVR for two voxels in four different scenarios using simulated
data. If the covariance matrices of two conditions are different (scenarios 2 and 3), then there is SMVR and if the mean
activities are different, then there is MVR (scenarios 1 and 2). Fig 2B shows one sample in two contexts (say A and
B) across matrix of voxels with 4 sub-patches (each consisting of 9 voxels) coding the conditions A and B with MVR
only (subpatch #1), SMVR only (subpatch #3), MVR+sMVR (subpatch #2) or no coding (subpatch #4) same as the
scenarios considered in Fig 2A. As can be seen in this proof of concept simulation, Crossnobis and Geodesic distances
showed differential sensitivity to subpatches with MVR and sMVR coding, respectively (Fig 2C).

5. No sMVR in fMRI data for conditions with significant MVR in two species

Previously published fMRI datasets across human and non-human primates (macaques) were analyzed in this study
[30, 31, 16]. In the macaque dataset, two adult rhesus monkeys (D and U) participated in the recording sessions. In
one experiment, each monkey had 12 face-patch localizer runs with each run consisting of trials in which the monkey
passively viewed centrally presented images of conspecific monkey faces or ordinary objects. In another experiment,
computer-generated fractals were presented in the left or right visual hemifields in a pseudorandom order. In the human
fMRI dataset, 17 subjects were recruited each with two face/scene localizer runs [16].

Fig 3A illustrates MVR results (Crossnobis distance) for two monkeys across two different task conditions (face vs
object or left vs right hemifield fractal presentation) using a searchlight with 15 voxels. The face vs object Crossnobis
distance nicely marked the well-known face patches in the ventral stream including areas PL, ML/MF, and AL/AF
[32]. The left vs right hemifield conditions mainly marked posterior visual areas including V1-V4 and TEO which
are known to have strong laterality in their responses [33]. Notably, both results are in good agreement with previous
general linear model (GLM) analysis [30] of face vs object and left vs right using the same data set (Fig S3).

Fig 3B shows the group analysis results across 17 human subjects for face vs object contrast which shows robust
MVR in the fusiform area again in agreement with previous literature using univariate approaches ([34]). In both
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Figure 2: Crossnobis and Geodesic distance are differentially sensitive to changes in population mean and covariance
matrix, respectively. (A) Double dissociation of MVR and sMVR responses: Scenario 1, has MVR but no sMVR,
scenario 2 has both MVR and sMVR, scenario 3 has SMVR but no MVR, and scenario 4 has neither MVR nor sMVR.
(B) A sample matrix of voxels in conditions A and B with patches corresponding to the four different scenarios in A.
(C) Crossnobis distance correctly detects scenarios 1 and 2 which have MVR effects regardless of sSMVR. On the other
hand, Geodesic distance correctly detects scenarios 2 and 3 with sMVR regardless of MVR. (for this simulation the
number of whole voxels was 140 with 500 samples.

human and monkey datasets the MVR results tended to show wider activation compared to univariate analysis as
expected due to the higher sensitivity of the multivariate analysis (Fig 3, Fig S3 and Fig S4).

Fig 4 shows the Geodesic distance of different brain regions for two monkeys with the same two task conditions
face/object and left/right considered previously (Fig 4A) and the average Geodesic distance of 17 subjects in face/object
conditions (Fig 4B). Notably, we did not find any cluster of voxels with significant changes in the second-order statis-
tics across conditions in either species. To make sure that meaningful clusters with sub-threshold activations were
not missed, voxels with the top 5% sMVR values for monkeys data and 20% sMVR values for human data were
marked. Examination of activated regions showed a dispersed pattern across the cortex for the two monkeys Fig 4A
and for group-level human data Fig 4A-B. Furthermore, the fact that the areas with larger SsMVR values did not show
a systematic difference between two tasks (face/object and left/right) in the two monkeys further casts doubt on their
functional significance (4A). In addition, in comparison to highly consistent effects of MVR (Crossnobis distance)
across subjects,the areas with high SMVR was much less consistent across human subjects (Fig S5).

To further examine whether regions with significant MVR coding of face/object or left/right showed any significant
second-order changes (i.e. sMVR), distribution of pairwise voxel values across two conditions were plotted in two face
patches (MD and AL) and two regions with strong laterality coding (Fig 5). Fig 5A shows this pairwise distribution in
both monkeys in areas MD and AL. As expected given significant Crossnobis values, the mean of the two distributions
was different in these regions in both monkeys (shift in the center of covariance ellipses). However, there was minimal
change in the shape or orientation of the covariance ellipse. Fig 5B shows the same analysis for areas V1 and V4
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Figure 3: MVR for face/object and left/right hemifield across cortical areas (A) Crossnobis distance (with 15 voxels
in each searchlight) for two monkeys for face/object and left/right discrimination tasks. The highlighted regions show
significant cluster of voxels (P,,;,, < 0.01, minimum cluster size 30) including areas PL, ML/MF and AL/AF for
face/object and left/right in V1-4 and TEO areas for left/right contrasts. (B) The average of Crossnobis distance of 17
subjects for face/scene discrimination task. The highlighted regions are significant cluster of voxels (P,,,, < 0.01,
minimum cluster size 30) situated in Fusiform Gyrus.

which showed significant MVR for left/right conditions but no significant sMVR. Fig S6 visualizes the changes in the
covariance of voxels across left versus right conditions by removing the mean of each condition showing the largely
similar covariance matrices across conditions. The distribution of pairwise voxel values across two conditions in the
human dataset is also presented in Fig S7.

Thus the examined contrasts failed to show evidence for modulation of coordinated voxel activity by task conditions
in either species even in cases where both conditions evoked significant MVR across the cerebral cortex.

6. Can sMVR be observed when there is second-order population response at the neural level?

We previously showed that Geodesic distance can successfully detect SMVR in simulated data (Fig 2B-C). How-
ever, our analysis did not find evidence for sMVR in the examined fMRI datasets. To make sure that Geodesic distance
can detect second-order effects in real neuronal data, the same approach was applied to recorded neuronal populations
in primary and secondary visual cortices (area V2) in response to gratings with various orientations. Here, results
showed significant coding in both the mean responses (Crossnobis distance) as well as in the second-order effects
(Geodesic distance) in the neural population (Fig 6). Interestingly, both Crossnobis and Geodesic distances varied in
a similar fashion as a function of the angle between the two gratings shown reaching their maximum at the 90-degree
difference. This fact can be verified by looking at the difference in the mean response and the covariance visualized
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Figure 4: sSMVR for face/object and left/right hemifield across cortical areas (A) Geodesic distance (with 15 voxels
in each searchlight) for two monkeys for face/object and left/right discrimination tasks. (B) The average of Geodesic
distance for 17 subjects for face/scene discrimination task. The highlighted regions show top 5% and 20% regions
with highest SMVR (minimum cluster size=30) in monkeys and human dataset, respectively . Note that none of these
clusters were significant (P,,;,, > 0.01).

for an example set of neurons (Fig S8).

However, the presence of SMVR in the neuronal population does not guaranty its detectability in the associated
fMRI signals. Indeed a reasonable expectation is that due to temporal averaging and distortions caused by nonlinear
hemodynamic coupling and the spatial integration of neural responses across large populations with possibly hetero-
geneous responses across each condition within each voxel, the effects of first-order and second-order modulations
(i.e. MVR and sMVR) could be smeared to a large extent. To examine such effects, predicted fMRI activations arising
from V2 populations were simulated using forward hemodynamic model with spatial smoothing (Fig 7A) (see section
8 for more details).

Fig 7B presents Crossnobis and Geodesic distance of simulated BOLD signal assuming a high signal-to-noise
(SNR: 30 d B) with additive noise added to the actual V2 neural data. As it can be seen, information transfer from
spikes to BOLD is concomitant with a significant reduction of discriminability in both MVR and sMVR but with a more
deleterious effect on the second-order effects. In this case only MVR were significantly detectable in the simulated
BOLD data with dependence on A# reaching a maximum at A8 = 90 (P,,;,, < 0.01). Notably, neither region showed
significant sSMVR despite robust second-order effects in the neural spiking data (Fig S9). As expected the detectability
of both MVR and sMVR was an increasing function of SNR (Figs. 7C-D). However, while MVR could be detected at
moderate SNRs (10-20 d B) in both regions, sMVR was hard to detect even at very high SNRs ( 30 d B). Examination
of joint-distribution of pairwise voxel activations using this simulated data also visually confirms this lack of sMVR
even at a high SNR and even for large differences in conditions (A8 = 90) (Fig S9). The difficulty in finding significant
effects especially for low SNRs readily explains the lack of sMVR modulation in real fMRI data (Fig 4) which have
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Figure 5: Visualization of changes in mean vs covariance of voxels across conditions. (A) Joint-distribution of pairwise
voxel activations in monkey D (lower triangle) and monkey D (upper triangle) in face vs object blocks for two different
searchlights in area MD (left) and area AL (right) with significant Crossnobis distance and non-significant Geodesic
distance. (B) same format as A but for left vs right blocks in area V1 (left) and area V4 (right). Plots in panels A and
B are represented in Fig S6 without mean differences between conditions.

typically low SNRs < 10d B (Fig S10) despite significant MVR coding (Fig 3). Note that the macaque fMRI data
presented were obtained with MION which has slower dynamics than BOLD but slightly better spatial specificity.
Nevertheless, the intuitions from the hemodynamic model used should more or less be applicable to the MION signal
as well [35].

It is worth mentioning that the synthesized BOLD signal depends on the model’s parameters, which generally have
some useful interpretations. Changing various hemodynamic parameters had not any significant effect on the Geodesic
distance of synthesized fMRI data.
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Figure 6: Detected UVR and MVR in recorded neuronal populations in primary and secondary visual cortices. (A)
The left two plots: average of Crossnobis distance between pairs of 8, and 6 in visual area V2. (64 and 05 are grating
degree of stimulus for conditions A and B, respectively and the the plots are the average of 5 recorded sessions). The
right two plots: Crossnobis distance versus Af = 0, — 6y for all sessions. (B) same format as A but for Geodesic
distance. Note that the maximum absolute value of A# is 90. The results of original data are significantly higher than
shuffled data for all AG (P, < 0.01).

value

7. Discussion

MVPA has found widespread applications in fMRI data analysis but it has critical limitations for parsing multi-
variate coding arising from correlated voxel activations beyond what can be gleaned from a collection of activations
in individual voxels. Here, we first presented a methodology for double dissociation of first and second-order effects
of conditions on voxel activations (Crossnobis and Geodesic distances for quantifying MVR vs sMVR respectively).
Surprisingly, analysis of conditions eliciting robust UVR and MVR coding in the brain (face/object and left/right
hemifield) failed to show significant sSMVR using whole-brain fMRI in two species (humans and macaques). Further
analysis showed that while both MVR and sMVR can be readily present in the spiking activity of neural popula-
tion, the slow and nonlinear hemodynamic coupling and low spatial resolution of fMRI activation can obfuscate the
second-order effects to a large degree.

In MVPA studies, the meaning of "removal of UVR" and what remains after this removal is not exactly clear
[19, 17, 36]. Here, we argued that conventional MVPA which is based on the comparison of multivoxel means across
conditions is inherently incapable of finding ’true’ joint multivoxel coding that should be reflected in changes in the
coordinated activity of voxels across conditions. Some of the previous suggestions for separating UVR and MVR are
only parsing uniform and non-uniform mean response differences to conditions [1]. Here, we suggest that any decoding
done with more than one voxel should be considered MVR and that there is no inherent difference in decoding of
conditions for mean responses falling on the unity line or orthogonal to it in the high dimensional voxel space 1C).
While conventional MVPA is affected by noise correlations across voxels [16], it does not explicitly track changes in
noise correlation structure across conditions. Instead, we argue that changes in higher-order statistics such as in the
covariance structure of data have to be manifest in the data before any conclusion about coordinated coding across
voxels can be made.

In this study, Geodesic distance that reflects the underlying non-Euclidean geometry of covariance matrices [37] is
used for measuring SMVR. This metric considers both rotation and scale differences between covariance matrices and
outperforms other alternatives such as S-statistic which is the sum of orientation statistic and shape statistic [38] and
Box’s M test [39]. S-statistic is very sensitive to outliers, because it works based on variance. M test is very sensitive
to departures from normality, and requires data to be multivariate normally distributed.

For measuring MVR, Crossnobis distance that is a bias-free, reliable, and interpretable measure of dissimilarity
was used [2, 40]. Alternatively, one may use ross-validated multivariate analysis of variance (CV-MANOVA) [41]
that is a powerful method for comparing multivariate sample means. Although both CV-MANOVA and Crossnobis
distances take into account the covariance matrices, none of them track changes in the covariance matrix across two
conditions. On the other hand, the mean differences play a more important role in these methods. The Geodesic
distance on the other hand considers covariance matrices explicitly without considering mean differences to evaluate
the role of covariance matrices in decoding of task conditions.

Notably, analysis of real fMRI data in two species failed to show a significant SMVR coding within regions that
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Figure 7: Simulated BOLD signal from neural activity using forward hemodynamic model and diminished spatial
resolution (A) A tripartite hemodynamic forward model used to transform neural activity z(¢) to the BOLD signal
S(t). First, neural activity z(¢) triggers a vasolidatory signal s(#) which leads blood flow to increase. Second, the flow
leads a change in both blood volume v(¢) and deoxyhaemoglobin g(¢) and third both v(¢) and ¢g(¢) combine non-linearly
to generate BOLD signal S(¢). (B-D) Effect of hemodynamic coupling and spatial averaging within voxels in BOLD
images on detectability of MVR and sMVR (B) Crossnobis and Geodesic distances of simulated BOLD signal using
real neural data in V2 with 30dB SNR. (C) Crossnobis and Geodesic distances for noisy simulated BOLD signal given
real neural data in V2 as a function of increasing SNR for A = 90. (D) same format as C but for A§ = 22.5. The
SNRs with statistically significant differences are marked with a red line and asterisk (P,,,, < 1073) . Geodesic
distances in none of the scenarios were non significant.
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nevertheless had strong MVR effects or anywhere else in the brain. Importantly, theoretical predictions based on the
forward hemodynamic models using simulations revealed inherent limitations for fMRI signals to contain detectable
sMVR even at unrealistically high SNR for conventional fMRI studies. Our results in this study call for caution in
interpreting significant MVPA results as representing anything beyond a collection of univariate effects. It remains
to be seen whether the advent of high field MRI (7T and above) with higher spatial resolutions and use of more
sophisticated analysis for extracting higher-order interactions between voxels can overcome the current limitations in
finding "true’ modulation of multivoxel coordination by task conditions of interests.

8. Methods

9. Crossnobis distance

In this dissimilarity measure, the data is divided into two independent samples, and the Mahalanobis distance is
computed in each split separately [28]. Consider X , € RVNXY (X € RV*V) represent N samples of condition A (B)
with V' Voxels.

The first parameters that need to be estimated are the means and the covariance matrices of conditions. The mean
of condition A is estimated as p, = % Zfl\’:l X 4(n, 1) and the covariance matrix can be estimated as

EA:

M =

1
~ 2 Xa- Tl (X, = 1p’)T 2)
i=1

where u, € RV, 2, e RV and 1 =[1,...,1] € R¥X!, X, is computed in the same way.
In this cross-validated method, each matrix is divided into two independent sub-matrices R times (Fig S1A) and
then in each rth partition (r = 1, ..., R), four different Mahalanobis distances are computed as following

a,0 = [XP0) - x| 57 [x Py - xP)] 3
apn = [XP0) - xP0)] = X - xP )| )
dup =[xV = XV =[x - xP00] 5)
dpa = [XD0) - X0 57 X0y - xPn)| ©)

where X S)(r) and X f)(r) (X g)(r) and X g)(r)) are two independent sub-matrices for X 4 (X g) in rth random partition-
ing. Note that equal covariance matrices for two conditions are assumed in this measure (X4 = X5 = X). In addition,
if the covariance matrix of two conditions are not equal in reality, then the average of covariance matrix of X 4 and X
is assigned to X.

Thus, Crossnobis distance as MVR extraction method is defined as following

R
Crossnobis(X ,, X 5) = % 3 [dap(r)+ dpa(r) = dy(r) - dp(r)] )

r=1

For real fMRI datasets, Crossnobis(X 4, X p) is divided to the number of voxels in that searchlight to eliminate the
effect of searchlight size. Note that this measure with applying cross-validation technique removes biases originated
from noise [41], therefore, Crossnobis distance is more reliable than simple distance measures [28]. On the other hand,
since this distance does not have an upper limit unlike the accuracy criterion [13], it is a better measure to represent
the ease of decoding for the two conditions (Fig. 1B).

Crossnobis distance can quantify the impact of noise correlation in a voxel set on the decoded information about
conditions (Fig S1B). It should be noted that in the literature, noise correlation illustrates the degree to which the
variability of responses (in repeated presentations of the same condition) is shared between pairs of voxels [25, 42].
As a result, Crossnobis distance takes into account noise correlations that have an important impact on the accuracy
of any decoding method [43].
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10. Geodesic distance

Geodesic distance (Geodesic distance) is a geometry-aware approach in comparing covariance matrix structures
and uses the positive semi-definiteness of covariance matrices to represent the underlying non-Euclidean geometry of
them (Fig S2A-B). This distance assumes that covariance matrices lie on a non-linear space and finds their shortest
distance along this manifold. As a result Geodesic distance is a sensitive and of the most accuarte methods to examine
changes in the covariance matrices [29]. For two covariance matrices X, and Xp, their Geodesic distance can be
quantified as

-1 -1
Geodesic distance(Z 4, Xp) = \/trace <10g2 <ZA2 £5%, 2 ) ) @®)

Since this measure is not symmetric between conditions A and B, we have used the average of Geodesic distance(Z 4, Zp)

and Geodesic distance(Z g, X 4) instead.

At the end, Geodesic distance(X 4, ) is divided to the number of voxels in that searchlight to eliminate the effect of
searchlight size. Geodesic distance is applied in various fMRI analyses especially in comparing functional connectivity
matrices [37, 44] and comparing representational similarity matrices in the brain and models [45].

Fig S2B shows Geodesic distance on the nonlinear manifold of positive semi-definite matrices. Note that, unlike the
Euclidean distance, Geodesic distance constraints the distance of path to be within the given manifold which contains
only valid covariance matrices (symmetric positive semi-definite matrices) [37].

To reduce the effect of small sample size on estimating the correct covariance matrices, the covariance matrices
were estimated via more efficient methods such as [46, 47] and then the computed matrices were compared with
Geodesic distance. The method in [46] considers the maximum likelihood (ML) estimation for the covariance matrix
besides applying constraints on the positive semi-definiteness, as well as enforcing condition number upper-bounds.
Furthermore, the method in [47] is a distribution-free estimator that leads to a closed-form covariance estimate. While
the reported results are not done with these robust methods, using these methods did not change any of the main
findings (i.e. lack of sMVR in fMRI data or simulations).

11. Permutation test

Estimating the statistical significance of detected differences between two conditions needs to be approached with
care due to the high dimensionality of the data and the relatively small number of samples [48]. Permutation tests are
one type of non-parametric test and their essential concept is relatively intuitive. If there is no experimental effect,
then the labeling of samples by the corresponding condition is arbitrary, because the same data would have arisen
regardless of the condition. Consequently, the null hypothesis would be the labeling is arbitrary and the significance
of a main statistic (obtained from original data) can then be assessed by comparison with the distribution of values
obtained when the labels are permuted.

If N is the number of random relabelings in the permutation test, then the P-value is:

1 + # relabeling statistics greater than main statistic
P vlaue = 1+ N (9)

In this study, for each decoding task in both MVR and sMVR extraction methods, N = 999 and the reported results
have uncorrected Pvalues less than 0.01 .

For the group-level analysis of MVR and sMVR for the human dataset (Figs. 3B and 4B), average Crossnobis and
Geodesic distance for each voxel was averaged across all 17 subjects and this observed average was compared with the
distribution of averages obtained from the N = 999 relabelings for each subject to calculate group-level P-value for
each voxel.

Minimum cluster size of 30 voxels was used for reported results for both human and monkey datasets for both
single subject and group-level analyses.

12. Simulated fMRI data

To investigate the presence of MVR and sMVR in real fMRI data, first blood oxygenation level-dependent (BOLD)
signal is simulated using forward hemodynamic model [49]. The forward hemodynamic model predicts the BOLD
signal one would expect to measure with given neural activity and it explains the procedure that generates BOLD
time-series from the underlying causes. This model applies a detailed biophysical model of the generation of the
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BOLD signal based on the Balloon model [50]. The pathway from neural activity to BOLD signal can be divided into
(1) interactions of neuronal activity and neurovascular coupling (flow induction), (2) blood vessel dynamics (Balloon
model) [51], and (3) these parts combine to generate the observed nonlinear BOLD signal [52]. A brief explanation
about this model is depicted in Fig 7A. Furthermore, the effect of spatial integration across neural populations due to
large voxel sizes is also considered. Therefore, before applying DCM forward model, some random sets of neurons are
selected from the neuron pool, and the average of the responses of these neurons is then applied to the hemodynamic
forward model.

It this study, the MATLAB routines of freely available SPM toolbox [53] (SPM 12) is used to simulate BOLD signal
based on DCM hemodynamic model. The main functions that are used from SPM toolbox are spm_fx_fmri.m and
spm_gx_fmri.m with default hemodynamic parameters (repetition time= 2, rate of signal decay (x) = 0.64, stiffness of
blood vessels (@) = 0.32, autoregulation (y) = 0.32, hemodynamic transit time (7) = 2.00, resting oxygen extraction
(Ey) = 0.4, time to echo (T,,,) = 0.04, ratio of intra- and extravascular signal (¢) = 0.5, resting venous volume
(Vo) =4).

Note that neuronal activations are not the only contributors to BOLD signals. The sensitivity of fMRI data analysis
methods in detecting effects is susceptible to the relative levels of signal and noise in the BOLD signal. The sources
of noise in fMRI data are related to instabilities in the recording system, subject head motion, and physiological fluc-
tuations [54, 55]. Therefore, noise with a predefined signal-to-noise ratio (SNR) is added to the synthesized BOLD
signal.

The input neural data to synthesize BOLD signal was taken from a simultaneous extracellular recording of neuronal
populations in visual areas V1 and V2 [56, 57] a previously published and publically available dataset (http://crcns.org).
In this study, the V2 recordings are used that were performed using tetrodes and include five recording sessions in three
animals. The presented stimuli in this dataset are sets of oriented gratings of 8 different orientations (22.5 interval) in
a pseudorandom sequence .

The real V2 data for every pair of different grating orientations (6, and €5) were entered into the model and cor-
responding simulated BOLD signal is generated. Besides, the function spm_rand_power_law.m is applied to generate
random variables with a power law spectral density, and the noise is added to simulated BOLD signal with different

SNRs such that SNR = 10logy (M)

co

Noise Power

13. fMRI data preprocessing
The preprocessing of two datasets (monkey and human) was performed in AFNI software packages [58, 59]. The
preprocessing steps are as following:

1. warping anatomy to standard space (auto_warp.py)

aligning each dataset to base volume to correct head motion (3dvolreg)
aligning datasets to standardized anatomy (3dNwarpApply)

slice time correction (3dTshift)

removing spikes (3dDespike)

wok v

For sMVR analysis, first the GLM analysis using 3dDeconvolve was carried out to conduct the beta coefficients
using model time series and nuisance regressors [30]. The model time series consisted of two regressors ([right, left
hemifield] for monkeys in left/right experiment, [face, object] for monkeys in the face/object experiment, and [face,
scene] for human dataset) that were 1 during the condition’s blocks and 0 otherwise and were convolved with a MION
hemodynamics. Seventeen nuisance regressors were motion and their first derivatives (12 parameters), blinks, and eye
position (horizontal, vertical, and interaction).Before regression, all nuisance time series except the ones related to the
motion were convolved with MION hemodynamics.

After preprocessing and GLM analysis, the first three samples of each condition’s blocks (preprocessed fMRI signal
and GLM residuals) were discarded, and then the blocks of each task condition were concatenated to make one matrix
for each condition. Then Crossnobis distance from preprocessed BOLD signal and Geodesic distance from GLM
residuals were computed. Note that Geodesic distance is computed for each run separately and then averaged across
runs. Also, a searchlight-based analysis using CoOSMoMVPA toolbox [60] (with V' = 15 voxels in each searchlight) is
performed to obtain a brain wide map of activations.

IThis dataset is available at https:/portal.nersc.gov/project/crcns/download/v1v2-1 [Accessed: 2020-06-20].
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14. Sources of data
The human fMRI dataset is available in the Princeton Neuroscience Institute data repository at http://dataspace.princeton.edu/
[Accessed: 2020-11-25]

15. Author Contributions
MP and AG conceived of the problem and the required analysis. MP performed the data analysis and simulations
in discussions with AG. Both authors wrote the paper.
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