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Abstract 

 

High throughput single cell transcriptomics (scRNA-seq) has been successfully applied to characterize 

immune cell heterogeneity across a diverse range of settings; however, analysis of human granulocytes 

remains a significant challenge due to their low gene expression transcript detection. Consequently, 

granulocytes are typically either absent or highly under-represented and inaccurately enumerated in most 

human scRNA-seq datasets. Here, we apply multi-modal CITE-seq profiling to characterize granulocytes 

in human whole blood and bone marrow, and we show that these populations can be accurately detected 

and analyzed using the antibody-based modality, and that their frequencies and phenotype align well with 

antibody-based characterization of the same samples using CyTOF. These analyses also clearly highlight 

extremely low gene transcript detection across the entire granulocyte lineage including the earliest 

neutrophil progenitor populations when using the 10X Genomics platform. By contrast, when performing 

parallel analyses of the same samples using the BD Rhapsody platform, we recovered a much higher 

proportion of granulocyte gene transcripts, enabling true multi-modal characterization of human 

granulocyte heterogeneity.       
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Introduction 

High-throughput single-cell transcriptomic (scRNA-seq) technologies are increasingly being applied to 

study immune cell heterogeneity across a wide range of diseases1–4. The 10X Genomics platform is 

currently one of the most widely utilized commercial platforms for high throughout scRNA-seq5. The 

platform utilizes microfluidics to encapsulate single cells and reverse transcription reagents with barcoded 

gel beads, enabling the generation of barcoded cDNA within each droplet. To ensure the pairing of single 

cells with beads, the system utilizes an excess of beads and introduces cells at a limiting dilution such that 

the vast majority of bead-containing droplets do not contain a cell. Thus, one of the first steps in performing 

scRNA-seq analysis is to filter out “empty” bead barcodes that were never paired with a cell to restrict 

analysis to only cell-associated barcodes. This is typically accomplished by thresholding on the gene UMI 

count of each barcode based on the assumption beads that were encapsulated with a cell will have high 

gene UMI counts while those that were not will have low UMI counts.  

 

While the measurement of thousands of genes can resolve the complexity of phenotypic and functional 

heterogeneity, gene expression does not always serve as an adequate proxy for protein expression, and 

it can sometime be challenging to relate cell populations defined by unbiased transcriptomic clustering to 

those identified by historical antibody-based approaches. Recent methods, such as CITE-seq, have 

introduced the use of oligonucleotide labelled antibodies to enable simultaneous single cell detection of 

protein epitopes in parallel with unbiased transcriptome profiling6,7. When performing multi-modal CITE-

seq analyses, cell-associated barcodes can be defined by thresholding on either total gene UMIs or 

antibody UMIs. The latter approach is particularly relevant when utilizing antibodies against ubiquitous cell 

surface antigens for cell “hashing”8.  

 

When analyzing high quality peripheral blood mononuclear cells (PBMCs) isolated using density 

centrifugation, we find that total gene and hashtag antibody UMIs are typically well correlated and that 

thresholding on either results in a very similar number of cell barcodes (Figure 1A). The number of cell 

barcodes aligned well with the estimated number of cells captured based on pre-encapsulation cell counts 

(Figure 1B). In these samples, the small number of cells with high hashtag UMIs but low gene expression 
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UMIs represented low quality/viability cells. Conversely, the small number of cells with high gene UMIs but 

low hashtag UMIs were identified as red blood cells, which do not express high levels of the antigens 

detected by the hashing antibodies.   

 

However, when analyzing dissociated tissue cell suspensions and other sample types not processed using 

density centrifugation, such as RBC-depleted whole blood and bone marrow, we noted a high proportion 

of cells expressing high levels of hashtag antibody UMIs but low levels of gene UMIs (Figure 1C). These 

low-UMI cell barcodes are typically excluded by traditional gene UMI-based filtering as is typically 

performed in default Cell Ranger processing, resulting in a much lower recovery of cell barcodes than 

would be expected based on pre-loading cell counts (Figure 1D).   

 

CITE-seq analyses with the 10X Genomics platform allow for accurate enumeration and antibody-

based characterization of human granulocytes but highlight low gene UMIs 

We noted that the proportion of cells with divergent gene and hashtag antibody UMIs correlated directly 

with the expected proportion of granulocytes in these samples. Notably, while mouse granulocytes have 

been successfully characterized by scRNA-seq using the 10X Genomics platform9–11, granulocytes are 

largely absent or extremely under-represented in human data scRNA-seq datasets generated using the 

10X Genomics platform 12,13. Despite their low gene expression, we reasoned that the robust detection of 

antibody-derived UMIs would allow for accurate identification and deeper phenotypic characterization of 

these cell populations using CITE-seq. To specifically focus on granulocytes, we analyzed fresh whole 

blood and bone marrow samples from healthy human donors, which were processed without gradient 

centrifugation to preserve all granulocyte populations. Following RBC and platelet depletion, the 

leukocytes were stained with a panel of 30 oligonucleotide-conjugated antibodies designed to identify and 

characterize most major immune cell types particularly granulocytes and granulocyte progenitors (Table 

1). In addition to the phenotypic antibody panel, the samples were also split, stained with hashtag 

antibodies, and re-pooled prior to encapsulation to facilitate identification of cell-cell multiplets. The stained 

blood and bone marrow samples were analyzed using the 10X Genomics Chromium platform using the 

3’v3.1 chemistry.   
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As expected, the unfiltered Cell Ranger matrices derived from these samples contained a large proportion 

of cells with low gene UMIs so were instead processed by thresholding on antibody UMIs, resulting in a 

number of cell barcodes that closely matched the targeted cell recovery. The filtered cell barcodes were 

clustered based on antibody expression, and major immune cell types and progenitor populations were 

manually annotated based on canonical protein expression patterns (Figure 2A-C). Notably, our antibody 

panel enabled clear delineation of granulopoiesis including identification of granulocyte-monocyte 

progenitors (GMP), multipotent neutrophil progenitors, pre-neutrophils, immature neutrophils, mature 

neutrophils and aged neutrophils, which exhibited protein expression phenotypes consistent with other 

reports14–17.  

 

To validate the cell annotations defined by our CITE-seq antibody-based annotations, parallel aliquots of 

the same RBC-depleted blood and bone marrow samples were stained with a panel of isotope-conjugated 

antibodies and analyzed by mass cytometry (CyTOF). Major immune cell types were similarly manually 

annotated using shared cell surface markers, and the relative proportion of cells was compared and found 

to be highly concordant between both platforms, supporting the fidelity of the CITE-seq antibody-based 

annotation (Figure 2D and Supplemental Figure 1). We next visualized the heterogeneity of transcriptional 

content across these annotated cell types (Figure 2E-F). Consistent with our hypothesis, we noted 

extremely low gene UMI and unique across all granulocyte populations, with mature neutrophils and 

eosinophils exhibiting gene UMIs and unique gene counts 10-100 fold lower than most other populations. 

Strikingly, while we observed high levels of gene UMIs in multipotent GMPs, the dramatic reduction of 

gene UMIs was observed at the earliest stage of granulocyte committed neutrophil progenitors. Low gene 

counts persisted throughout all stages of granulopoiesis with the lowest levels observed in aged 

neutrophils and eosinophils.  

   

While these results suggested extremely low levels of mRNA in these granulocyte cell types, this did not 

seem consistent with prior bulk sequencing studies18. We instead hypothesized that the low gene detection 

in these cells may be due to high levels of nucleases that degraded mRNA transcripts during cell 
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encapsulation and lysis. To test this hypothesis, we utilized cell hashing antibodies to identify neutrophil 

and T cell singlets, expressing CD66b and CD3 respectively, and only a single hashtag. We contrasted 

these cells with known cell-cell multiplets defined based on the expression of more than one hashtag 

antibody, which we further defined as T-T multiplets, neutrophil-neutrophil multiplets, or T-neutrophil 

multiplets based on co-expression of CD66b and CD3 (Figure 2G). A cell-cell doublet would generally be 

expected to contain the sum of UMIs from both contributing cells, and consistent with this, T-T cell 

multiplets typically showed a UMI count that was approximately 2-fold higher than T cell singlets. If 

neutrophils simply lacked mRNA content, a neutrophil-T cell multiplet would therefore be expected to 

contain a similar number of gene UMIs to a T cell alone. However, we instead found that the majority of T 

cell-neutrophil multiplets contained significantly lower UMI counts than T cells singlets, with the median 

UMI count of T-cell-neutrophil doublets being almost 10-fold lower than T singlets, thus supporting our 

hypothesis that nucleases released by neutrophils result in degradation of gene transcripts from a co-

encapsulated T cell. Interestingly, our observation that early neutrophil progenitors also gene UMI 

detection suggests that the development of these cellular nucleases occurs prior to the formation of mature 

granules.  

 

The BD Rhapsody platform results in higher gene recovery from granulocytes and enables 

multimodal analysis of human granulopoiesis  

Notably, the degradation of granulocyte transcripts occurs despite the presence of RNAase-inhibitors 

contained in the 10X encapsulation reagents. Furthermore, supplementing RBC-depleted whole blood 

samples with additional RNAase inhibitor cocktail prior to 10X encapsulation did not appreciably improve 

recovered UMIs from neutrophils or other cell types (data not shown). We therefore sought to determine 

whether this phenomenon was also observed in other scRNA-seq platforms. We used parallel aliquots of 

the same antibody-stained blood and bone marrow cells used for our 10X Genomics experiments and 

analyzed them using a whole transcriptome analysis kit on the BD Rhapsody platform, which utilizes a 

microwell array system for single cell encapsulation with capture beads19. The associated gene and 

antibody libraries were sequenced at a comparable depth to the 10X libraries and the resulting cell-

barcodes were clustered and annotated based on antibody expression as with the earlier 10X analysis. 
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When evaluating transcriptional heterogeneity across the similarly annotated cell subsets, we noted that 

while gene UMIs and unique gene counts were still somewhat lower in granulocytes, the counts were 

significantly higher than observed with the 10X platform (Figure 3A). A titration of sequencing read depth 

showed that while the 10X 3’v3.1 chemistry resulted in approximately 5-fold higher gene UMIs for a given 

average reads per cell for most immune cell subsets, such as T cells, neutrophil gene UMIs were 

approximately 10-fold higher on the BD Rhapsody platform (Figure 3B).  

 

Given the higher gene recovery on the Rhapsody platform, we leveraged the multimodal data to integrate 

the data from both the blood and bone marrow and leveraged a recently described weighted nearest 

neighbor approach to analyze cells in both antibody and transcriptional space. This approach allowed us 

to clearly define key differentially expressed genes associated with distinct granulocyte lineages (Figure 

3C), including high expression of several inflammatory S100 proteins and the chemokine CXCL18 in 

neutrophil subsets. Eosinophils and basophils expressed high levels of CLC, which encodes the Galectin-

10 enzyme, and basophils additionally expressed FCERIA, GATA2 and HDC, which encodes histidine 

decarboxylase, an enzyme responsible for catalyzing the decarboxylation of histidine to form histamine. 

While single cell gene expression patterns were generally well conserved between the Rhapsody and 10X 

platforms, the lower gene capture resulted in lower mean expression levels and much higher levels of 

gene drop out even for canonical high abundance genes in the granulocyte populations in the 10X data 

(Figure 3D and supplementary Figure 2). Consequently, while gene expression based-integration of the 

datasets worked well for most immune populations, it was less effective for accurately resolving the 

heterogeneity amongst granulocyte populations (supplementary Figure 2).  

 

We further leveraged the higher gene recovery on the Rhapsody platform to evaluate progressive gene 

expression changes associated with neutrophil maturation. We performed a gene-expression based 

clustering of all neutrophils in the bone marrow sample and found that the pseudotime trajectory estimated 

from the gene expression clustering broadly aligned with the antibody-based annotations (Figure 4A and 

B). Evaluating differential gene expression changes along the pseudotime trajectory revealed a clear 

signature associated with early neutrophil progenitors and a continuum of changes during maturation. The 
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trajectory terminated with a subpopulation of neutrophils expressing CD83 together with high levels of the 

chemokines CCL3, CCL3L1, CCL4 and CCL4L1, suggesting a more inflammatory state. While the current 

study focuses only on samples from healthy donors, it is intriguing to consider whether this specific 

subpopulation may be expanded in the setting of infection20.  

 

Granulocytes play critical roles across many diseases ranging from allergy to systemic inflammatory 

responses to bacterial and viral sepsis, and scRNA-seq offers an opportunity to better characterize 

granulocyte heterogeneity and decipher the molecular mechanisms underlying these responses. However, 

our findings highlight the major limitations associated with studying human granulocytes using single cell 

transcriptional approaches on the 10X Genomics platform. While the incorporation of oligonucleotide-

conjugated antibodies does allow for identification and characterization of granulocytes populations on the 

10X Genomics platform based on their cell surface protein expression, our results the suggest that the BD 

Rhapsody platform is better suited to performing true single cell multi-modal analyses of granulocyte 

populations.               

                    

 

 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2021. ; https://doi.org/10.1101/2021.06.12.448210doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.12.448210


8 

Methods 

 

Samples 

Fresh whole blood was collected from a healthy donor on the day of the experiment under an institutionally-

approved IRB protocol. Fresh whole bone marrow was purchased from AllCells Inc. and delivered on the 

day of the experiment. The bone marrow was in a volume of 3mL and the sample was limited to 2 

units/donor. The blood and bone marrow samples were depleted of red blood cells using StemCell 

Technologies EasySep™ RBC Depletion Reagent protocol. We found that this magnetic depletion method 

was superior to hypotonic lysis methods in preserving granulocyte quality. Platelets were subsequently 

depleted from the sample by a 5 minute centrifugation at 200 rcf. The remaining cells were resuspended 

in staining buffer (1x PBS + 0.2% BSA), counted and assessed for viability with acridine orange and 

propidium iodide staining using the Nexcelom Cellometer Auto2000 (Nexcelom Bioscience, Lawrence, 

MA, USA). 

 

Antibodies 

Oligonucleotide-conjugated AbSeq antibodies for cell characterization were purchased from BD 

Biosciences (Table 1). Cell hashing antibodies targeting human Beta-2-microglobulin (clone 2M2) and 

CD298 (clone REA217) were purchased from Biolegend and Miltenyi Biosciences, respectively, and 

conjugated in house using Thunder-Link Plus Oligo Antibody conjugation kits (Expedeon) in accordance 

with the manufacturer’s instructions using an antibody:oligo ratio of 1:5. After conjugation, free oligo was 

depleted using 10 washes in a 50kDa Amicon filter. Isotope-conjugated antibodies for CyTOF analysis 

(Table 2) were either purchased pre-conjugated from Fluidigm or conjugated in-house using Fluidigm X8 

polymer conjugation kits in accordance with the manufacturer’s protocols.    

 

AbSeq antibody staining 

Bone marrow and whole blood leukocytes were treated with human TrueStain FcX (Biolegend) to reduce 

non-specific antibody staining. The samples were first hashed by dividing into 10 aliquots of 250,000 cells 

each and stained with 10 hashtag antibodies at room temperature for 20 minutes. After washing three 
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times by centrifugation at 350 rcf, the hashed samples were pooled and counted. 1 million hashed cells 

from the bone marrow and whole blood pools were then stained with a panel of 30 AbSeq antibodies at a 

dilution of 1:100 in a volume of 100uL. Residual antibodies were again washed 3 times to remove residual 

antibodies and counted using a Nexcelom Cellometer Auto2000 prior to encapsulation.  

 

10X Processing 

The hashed and stained bone marrow and whole blood pools were each loaded on one lane of the 10X 

Genomics Chromium Next GEM Single Cell 3’ v3.1 assay with a targeted cell recovery of 10,000 cells. 

Gene expression libraries were made as per the 10x Genomics demonstrated protocol. During cDNA 

amplification, primers designed to amplify the hashtag (GTGACTGGAGTTCAGACGTGTGC*T*C) 

and AbSeq (AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC*T*C) 

primers were included in the PCR reaction to amplify the hashtag and AbSeq oligonucleotides 

respectively, and these amplicons were isolated from the cDNA amplicons via SPRISelect size selection. 

Hashtag oligo (HTO) libraries were prepared according to the New York Genome Center Technology 

Innovation Lab specifications “hashing” protocol. AbSeq libraries were prepared according to the New 

York Genome Center Technology Innovation Lab specifications “ADT” protocol. All libraries were 

quantified on the Agilent 2100 hsDNA BioAnalyzer and KAPA library quantification kit (Roche Cat# 

07960140001). The resulting gene expression libraries were sequenced on an Illumina sequencing 

platform with a 28 X 8 X 60 bp configuration at a targeted depth of 25000 reads per cell, AbSeq libraries 

at a depth of 5000 reads per cell and HTO libraries at a depth of 1000 reads per cells. 

 

BD Rhapsody processing 

Aliquots of the same hashed and stained bone marrow and whole blood samples used for the 10X 

experiment described above were each loaded in parallel onto a BD Rhapsody cartridge with a target 

capture of 20,000 cells each. Since cell capture and cDNA synthesis was performed using the BD 

Rhapsody Express Single-Cell Analysis System, and antibody and gene expression libraries were 

prepared using the AbSeq and Whole Transcriptome Analysis Amplification Kits, respectively. We were 

unable to successfully generate libraries for our in-house hashing antibodies using the Rhapsody platform. 
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The resulting gene expression and AbSeq libraries were sequenced on an Illumina sequencing platform 

with 75 X 8 X 75 bp configuration a at a target depth of 25000 reads per cell and 5000 reads per cell, 

respectively to match the conditions used for the 10X analysis.  

 

CyTOF antibody staining 

Aliquots of the same RBC-depleted bone marrow and whole blood leukocytes used for AbSeq staining 

were stained in parallel for CyTOF analysis. The cells were live-cell barcoded with cadmium-conjugated 

antibodies targeting Beta-2-microglobulin and CD29821, thus matching the same approach used for cell 

hashing. During the 30-minute live cell barcoding incubation, the cells were supplemented with Human 

TruStain FcX (Biolegend) to reduce non-specific antibody staining and 5uM Rhodium-103 (Fluidigm) for 

initial viability staining. After live-cell barcoding, cells were washed twice in flow buffer to remove residual 

barcode and pooled into one cell pool. After pooling, the cells were spun down and resuspended in the 

CyTOF antibody cocktail for 30 minutes at room temperature. Cells were then washed twice to remove 

residual CyTOF antibody and then subjected to Cell-ID Cisplatin (Fluidigm, San Francisco, CA, USA) post-

stain viability staining following standard manufacturer protocols. Finally, the cell pool was fixed with 2.4% 

paraformaldehyde for 30 minutes at room temperature. 125nM Iridium-193 DNA intercalation and osmium 

tetroxide cell membrane labeling were performed simultaneously with cell fixation. Cells were then washed 

twice with staining buffer to remove excess iridium and osmium. Samples were stored at -80°C in FBS + 

10% DMSO to preserve sample staining integrity 22. 

 

CyTOF data acquisition / processing 

Immediately prior to data acquisition, samples were thawed and room temperature and washed with Cell 

Staining Buffer and Cell Acquisition Solution (Fluidigm, San Francisco, CA, USA) and resuspended at a 

concentration of 1 million cells per ml in Cell Acquisition Solution containing a 1:20 dilution of EQ 

Normalization beads (Fluidigm, San Francisco, CA, USA). The samples were then acquired on a Helios 

Mass Cytometer equipped with a wide-bore sample injector at an event rate of <400 events per second. 

After acquisition, repeat acquisitions of the same sample were concatenated and normalized using the 

Fluidigm software. From here, CyTOF data processing and  EQ bead based normalization was conducted 
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with the provided Fluidigm software. Routine sample demultiplexing was conducted with the Zunder Lab 

debarcoder23. The demultiplexed files were then uploaded to Cytobank for subsequent  sample clean-up. 

Specifically, EQ beads (140Ce+) and bead-cell doublets (140Ce+Ir193+) were excluded from the data, as 

well as Gaussian doublets (Residual high / Offset high) and cross-sample barcode doublets 

(barcode_separation_dist low / mahalanobis_distance high). Viable immune cells were identified as 

CD45+Ir+ and populations were annotated as described below. 

 

Data processing and analysis 

BCL files for both 10X and Rhapsody samples were base-called and demultiplexed using cellranger 

mkfastq v3.1.0. For 10X samples, the alignment of gene expression libraries to human reference GRCh38 

as well as the counting of unique features of the AbSeq and HTO libraries were performed using cellranger 

count v3.1.0. Similarly, Rhapsody samples were processed using BD Rhapsody™ WTA Analysis Pipeline, 

v1.9.1. 

 

Putative cells in 10X samples were determined by gating the droplets gene umi sum and hashtag umi sum 

and choosing a threshold where the density was the highest. Cell-cell multiplets were identified based on 

co-expression of multiple hashing antibodies. This method could not be applied to the Rhapsody samples 

due to insufficient counts for the hashtags returned from the pipeline. Hence, putative cells were 

determined using Rhapsody’s second derivative analysis algorithm on the gene expression. Notably, in 

both cases we applied an inclusive thresholding strategy to include cell barcodes associated with either 

gene or antibody UMIs to ensure inclusion of granulocyte subsets. Multiplets and cells with more than 15% 

mitochondrial genes were excluded from downstream analyses unless specifically noted.  

 

The 10X antibody staining data were normalized and denoised using DSB and visualized using 

Clustergrammer2 (https://github.com/ismms-himc/clustergrammer2)24. Phenotypically homogenous cell 

populations were identified by hierarchical clustering using the Clustergrammer2 interactive dendrogram 

and manually annotated based on canonical protein expression patterns. A consistent cell annotation 
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strategy was applied across the 10X, Rhapsody and CyTOF antibody datasets to enable cross-platform 

comparisons.  

 

Gene expression data were analyzed using the Seurat 4.0  R packages25. To compare the relative 

gene expression matrices generated from the different technology platforms (CITE-seq and 

Rhapsody) and tissue sources (blood and bone Marrow), we harmonized the gene expression 

datasets. Each individual dataset was log normalized and scaled followed by PCA. 3,000 most 

variable genes were used to identify the pairwise anchors of the datasets. We used the CCA method 

which has been shown to be able to effectively integrate datasets with shared biological markers 

and conserved gene correlation patterns even with presence of extensive technical and/or biological 

differences26. After data integration, primary differentially expressed genes between the annotated 

populations were determined using the presto R package27. For a given cell type, genes were 

selected by their capability to distinguish from other cell types (AUC > 0.7) and their mean 

expression (Top 5).  

 

We explored the pseudotime trajectories in different stages of bone marrow neutrophil lineage. PCA 

was first performed on the gene expression of all neutrophil populations using the top 5000 variable 

geens, followed by generating the two dimensional projection in UMAP space using the first 50 

principle components. 4 clusters were identified using Seurat’s graph-based clustering method. The 

Slingshot R package28 was used to estimate the pseudotime trajectories/potential lineages based 

on the UMAP embedding and cluster labels. Top 10 genes up or down regulated in adjacent cluster 

contrast were identified by (FDR < 0.05 and sorted by logFC). The R package tradeSeq 29 was used 

to estimate gene expression along the trajectories.  
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Data Availability 

 

All data associated with this publication have been made publicly available. CyTOF FCS files are 

available on Flow Repository (https://flowrepository.org/id/FR-FCM-Z3T8).  

 

For Multi-modal 10X and Rhapsody data, raw FASTQ files have been deposited into NCBI with 

BioProject ID: PRJNA734283. Raw Gene Expression and Antibody Stained matrices can be found 

at the following link: https://himc-project-

data.s3.amazonaws.com/ADRA_RnD/sent_out/Neutrophil_BoneMarrow_WholeBlood_10X_Rhapsody.t

ar.gz 

 

The integrated 10X and Rhapsody data are accessible at Galaxy30 via url: 

https://usegalaxy.eu/u/qij01himc/h/rhapbmneut. Interactive Environments can be created from the 

shared dataset to visualize the Integrated Multi-modal UMAP.  
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Table 1. AbSeq antibodies 

 

Target Clone Vendor Catalog # Oligo ID 
CD39 TU66 BD Biosciences 940073 AHS0006 
CD11b ICRF44 BD Biosciences 940266 AHS0184 
CD4 SK3 BD Biosciences 940001 AHS0032 

CD274 MIH1 BD Biosciences 940035 AHS0004 
CD123 7G3 BD Biosciences 940020 AHS0020 
CD62L DREG-56 BD Biosciences 940041 AHS0049 
CD1c F10/21A3 BD Biosciences 940083 AHS0088 
CD14 MPHIP9 BD Biosciences 940005 AHS0037 
CD11c S-HCL-3 BD Biosciences 940265 AHS0183 

CD45RA HI100 BD Biosciences 940011 AHS0009 
CD8 SK1 BD Biosciences 940305 AHS0228 
CD38 HB7 BD Biosciences 940466 AHS0189 
CD3 UCHT1 BD Biosciences 940307 AHS0231 
CD19 HIB19 BD Biosciences 940247 AHS0161 
CD27 M-T271 BD Biosciences 940018 AHS0025 
CD127 HIL-7R-M21 BD Biosciences 940012 AHS0028 
CD161 DX12 BD Biosciences 940070 AHS0002 
CD86 2331 BD Biosciences 940025 AHS0057 

HLA-DR G46-6 BD Biosciences 940010 AHS0035 
CD24 ML5 BD Biosciences 940028 AHS0042 
CD16 3G8 BD Biosciences 940006 AHS0053 
CD56 NCAM16.2 BD Biosciences 940007 AHS0019 
CD10 HI10A BD Biosciences 940045 AHS0051 
CD35 E11 BD Biosciences 940248 AHS0162 
CD101 V7.1 BD Biosciences 940269 AHS0188 
CD15 W6D3 BD Biosciences 940274 AHS0196 
CD66 B1.1/CD66 BD Biosciences 940088 AHS0094 
CD71 L01.1 BD Biosciences 940275 AHS0197 
CD117 104D2 BD Biosciences 940250 AHS0165 
CD34 581 BD Biosciences 940021 AHS0061 
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Table 2. CyTOF antibodies 

 

Target Clone Vendor Catalog # Isotope 
CD45 HI30 Fluidigm 3089003B 89 Y 
CD57 HNK-1 Biolegend 359602 113 In 
CD11c Bu15 Biolegend 337202 115 In 
CD33 WM53 Biolegend 303410 141 Pr 
CD19 REA675 Miltenyi 130-113-642 142 Nd 

CD45RA REA562 Miltenyi 130-122-292 143 Nd 
CD15 W6D3 Fluidigm 3144019B 144 Nd 
CD4 REA623 Miltenyi 130-122-283 145 Nd 
CD8 RPA-T8 Miltenyi 130-122-281 146 Nd 
CD20 H1 Fluidigm 3147007B 147 Sm 
CD16 REA423 Miltenyi 130-108-027 148 Nd 
CD127 A019D5 Fluidigm 3149011B 149 Sm 
CD1c REA694 Miltenyi 130-090-695 150 Nd 

CD123 REA918 Miltenyi 130-122-297 151 Eu 
CD66b REA1004 Miltenyi 130-108-019 152 Sm 
CD62L DREG-56 Biolegend 304802 153 Eu 
CD86 IT2.2 Biolegend 305410 154 Sm 
CD27 REA499 Miltenyi 130-122-295 155 Gd 
PD-L1 29E.2A3 Biolegend 329711 156 Gd 
CD10 HI10a Fluidigm 3158011B 158 Gd 
CD24 ML5 Biolegend 311102 159 Tb 
CD14 REA599 Miltenyi 130-122-290 160 Gd 
CD56 REA196 Miltenyi 130-108-016 161 Dy 
CD64 10.1 Biolegend 305002 162 Dy 

CD172a/b SE5A5 Fluidigm 3163017B 163 Dy 
CD69 FN50 Biolegend 310902 164 Dy 
Lox-1 331212 R&D Systems MAB1798 165 Ho 
CD25 M-A251 Biolegend 356102 166 Er 
CD34 581 Biolegend 343531 167 Er 
CD3 REA613 Miltenyi 130-113-138 168 Er 
CD71 CY1G4 Biolegend 334102 169 Tm 
CD38 REA572 Miltenyi 130-122-288 170 Er 
CD161 HP-3G10 Biolegend 339902 171 Yb 
CD39 A1 Biolegend 328202 172 Yb 
CD73 AD2 Biolegend 344002 173 Yb 

HLADR REA805 Miltenyi 130-122-299 174 Yb 
CD117 2B8 Biolegend 105802 175 Lu 
CD21 Bu32 Biolegend 354902 176 Yb 
CD11b ICRF44 Fluidigm 3209003B  209 Bi 
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Figure 1. Discrepancies in cell barcode identification by gene and hashtag antibody UMIs in PBMCs 

and whole blood/bone marrow. (A) Representative biaxial plot of an unfiltered Cell Ranger matrix 

showing the correlation between total gene and HTO UMIs in a PBMC sample analyzed with the 10X 

Genomics 3’v2 kit. Dashed lines indicated thresholds applied to filter cell-associated barcodes from empty 

droplets. (B) Correlation between the number of filtered cell barcodes defined by either gene or HTO based 

thresholding and the number of cells targeted for capture based on pre-encapsulation cell counts. Each 

point represents a distinct PBMC sample. (C) Representative biaxial plot of an unfiltered Cell Ranger 

matrix showing the correlation between total gene and HTO UMIs in a RBC-depleted whole blood sample 

analyzed with the 10X Genomics 3’v2 kit. (D) Correlation between the number of filtered cell barcodes 

defined by either gene or HTO based thresholding and the number of cells targeted for capture based on 

pre-encapsulation cell counts. Each point represents a distinct whole blood or bone marrow sample.  
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Figure 2. Multi-modal profiling of human peripheral blood and bone marrow with the 10X Genomics 

platform results in low gene detection in cells of the granulocyte lineage. Fresh whole blood and 

bone marrow samples from two healthy donors were depleted of RBCs, stained with a panel of 30 

oligonucleotide-conjugated antibodies, and encapsulated using a 10X Genomics Chromium 3’v3.1 chip. 

Cell-associated barcodes were filtered from the resulting Cellranger matrix by thresholding on total 

antibody-transcript UMIs, and cell types were manually annotated based on protein expression of 

canonical cell surface markers. (A-C) UMAPs generated using antibody markers only and colored by 

sample source (A) or annotated cell type (B), with a corresponding hierarchically-clustered heatmap of 

scaled protein expression for each of the annotated subsets (C). (D) Parallel aliquots of the same RBC-

depleted blood and bone marrow samples were analyzed by CyTOF using a matched antibody panel, and 

the relative frequencies of the paired cell subsets were compared across both platforms. (E) UMAP with 

cells colored by total log10 gene UMIs. (F) Mean log10 gene UMI (top) and unique genes (bottom) for each 

of the annotated cell subsets. (G) Cell singlets and known multiplets were defined using sample hashtags. 

Mean gene UMIs are shown for T cells singlets and multiplets (CD3+CD66b-), neutrophil singlets and 

multiplets (CD3-CD66b+) and in T cell-neutrophil multiplets (CD3+CD66b+). 
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Figure 3. Multimodal profiling with the BD Rhapsody platform results in higher gene detection 

within the granulocyte lineage. Parallel aliquots of the same antibody-labeled blood and bone marrow 

samples shown in Figure 1 were encapsulated using the BD Rhapsody platform, and the same cell 

populations were similarly manually annotated using antibody expression alone. (A) Mean log10 gene UMI 

(top) and unique genes (bottom) for each of the annotated cell subsets. (B) Mean log10 gene UMI for blood 

neutrophils and CD4+ T cells at different read depths using the BD Rhapsody (left) and the 10X Genomics 

Chromium 3’v3.1 (right) platforms. (C) Mean expression and detection proportion of primary differential 

expressed genes for each of the annotated cell subsets. (D) Histograms comparing expression of highly 

expressed canonical genes in whole blood neutrophils, eosinophils and basophils using the BD Rhapsody 

and 10X  Genomics platforms. The median expression and proportion of cells with non-zero gene counts 

are shown above each plot.  
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Figure 4. Trajectory-based differential gene expression analysis of human neutrophil development. 

(A-B) Gene expression UMAPs of bone marrow neutrophils analyzed using the BD Rhapsody platform 

colored based on antibody-based annotations (A) or estimated pseudotime based on gene expression 

clustering (B). (C) Estimated gene expression changes along the pseudotime trajectory.     
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Supplementary Figure 1. Representative CyTOF and AbSeq antibody staining on bone marrow 

neutrophils. UMAPs of bone marrow neutrophils analyzed by CyTOF (left) and AbSeq antibody staining 

(right). colored by (A) annotated population and (B) protein expression reveal relative concordance 

between the two immune profiling technologies. 
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Supplementary Figure 2. Gene expression integrated across platforms and sample types. (A) Post-

integration UMAPs clustered by gene expression and colored by antibody-based cell type annotations. (B) 

Mean and non-zero gene counts for neutrophils and non-neutrophils for each of the platforms and sample 

types. 
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