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Abstract
Completing complex tasks requires flexible integration of functions across brain regions. While
studies have shown that functional networks are altered across tasks, recent work highlights
that brain networks exhibit substantial individual differences. Here we asked whether individual
differences are important for predicting brain network interactions across cognitive states. We
trained classifiers to decode state using data from single person “precision” fMRI datasets
across 5 diverse cognitive states. Classifiers were then tested on either independent sessions
from the same person or new individuals. Classifiers were able to decode task states in both the
same and new participants above chance. However, classification performance was significantly
higher within a person, a pattern consistent across model types, datasets, tasks, and feature
subsets. This suggests that individualized approaches can uncover robust features of brain
states, including features obscured in cross-subject analyses. Individualized approaches have
potential to deepen our understanding of brain interactions during complex cognition.
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Introduction
Achieving task goals requires the integration of functions associated with many different

brain regions organized into large-scale brain networks 4,5. Functional connectivity MRI (FC)
provides the opportunity to examine how brain region interactions change in healthy humans
when performing various tasks. FC involves tracking correlations between activity of brain
regions over time. These correlated signals recapitulate functional systems seen in task
activations, and are seen even in spontaneous activity at rest 6. Relative to rest, FC is altered
subtly but significantly across diverse task states7–9 and researchers have been able to use
machine learning on FC signals to classify task states with good accuracy 7,10–16, even during
self-driven tasks 15,17. These findings of significant and predictable changes in FC during
complex tasks improve our understanding of how goals alter the ways that brain regions
interact.

Most prior FC MRI studies combine FC patterns across individuals to overcome
relatively low reliability seen with small amounts of individual subject data, inherently making the
assumption that network organization has high correspondence across participants. Studies
using machine learning to predict cognitive state 14,15,17–21 typically train classifiers on
multi-subject data (e.g., N-1 participants) to predict network changes in unseen participants
(e.g., participant N)  . However, recent work has shown that there is substantial individual
variability in the network organization of the human brain 22–26. This cross-subject variation likely
limits task state prediction by introducing variability and obscuring relevant features of the data
which may be critical to informing our understanding of network changes during tasks.

One approach to measuring individualized brain function may be to shift the focus of
data collection and analysis to single individuals through extended single subject data collection,
an approach termed precision fMRI (pfMRI)23,27. This method produces reliable FC maps that
are sensitive to individual features 9,22,23,26,28,29. We recently used pfMRI data to demonstrate that
brain networks are largely stable within an individual and subject to only subtle modulations
from cognitive states 9. These task-modulations appeared to vary across people 9, consistent
with past reports that task and individual differences may have interactive influences on brain
networks 9,30–32. Past work has taken these results to suggest that measuring FC across different
states can be a way to maximize individual identification (i.e., fingerprinting) across people.
Here we take the complementary view that by studying task related changes at the level of
single individuals, we may be able to provide a more accurate depiction of how cognitive state
influences brain networks. That is, a precision fMRI approach may reveal novel components of
how brain areas interact during complex tasks, which will necessarily be masked in approaches
based on grouping data across people.

The goal of this paper is to determine the extent to which brain network properties that
classify task states in a single person are unique. Specifically, we ask whether these
individualized models generalize or show specificity by testing their ability to predict task state in
new individuals. To address these questions, we used the Midnight Scan Club (MSC) pfMRI
dataset – which contains over 10 hrs of fMRI data per participant - to build classifiers to
discriminate brain states (task vs rest) from a single person's multi-session data. We then tested
whether these classifiers could accurately determine task state in independent data from either
the same person or a different person. Our results demonstrate that individualized classifiers
can predict task state with high accuracy, exhibiting sensitivity to subject-specific features that
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are obscured in cross-subject data. This work shines a light on previously masked – individually
specific – characteristics of how functional brain networks are altered by cognitive state.

RESULTS
In this project, our goal was to improve our understanding of how brain areas interact during
tasks by using an individual-level approach to test whether (and which) state changes in
functional networks are specific to particular individuals. We measured functional brain networks
across 4 task states and rest in highly sampled individuals with 10 separate fMRI sessions from
the MSC dataset 23. We used a machine learning approach, wherein we trained classifiers to
predict task state based on data from a single individual. We then tested whether these
classifiers could effectively classify state on independent data from the same individual or data
from other individuals (Fig. 1). Eight individuals were examined, serving as 8 replications of our
findings.
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Figure 1. Overview of each analysis Classifiers were trained to distinguish task from rest functional connectivity
using many sessions of data from a single participant with ridge regression. (a) For our first set of models, classifiers
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were trained to discriminate between all tasks and rest (80 total samples per participant). (b) In the second group of
models, classifiers were trained to distinguish a single task (vs. rest) (c) Finally, multiclass models were trained to
discriminate among all task states at once In all cases, models were then tested on independent session data from
either the same person (gray bar) or a different person; performance was contrasted across these tests.

Individualized classifiers can predict task state both within and between individuals
We first evaluated the performance of models trained in a single person to distinguish between
task states and rest (binary - any task vs. rest) using independent data in the same individual.
We began by training a classifier using ridge-regression with leave-one-session-out cross
validation (80 samples per person, 72 training and 8 testing per fold; see Methods). In all
participants, models performed well at discriminating task from rest for new data from that same
person (Within-person test: M=.97+/-.01; p<.001in contrast to a permuted label null). Models
also predicted task state significantly greater than chance when tested in other participants
(Between-person test: M=.68+/-.11; p<.001 for all participants; Fig. 2a; see Fig. S5 for results
and p-values per person).

We then evaluated prediction performance for specific tasks. Again, classifiers were trained on a
subset of a given participant’s data and tested on data from an independent session from the
same person or another person using leave-one-session-out cross validation. We saw
consistent results across tasks and participants (Fig. 2b), with significant task state decoding
when tested on data from both the same (Within-person test: Coherence M = .87+/-.06; Memory
M = .99+/-.01; Motor M = .98+/-.02; Semantic M = .94+/-.03; all p<.001) and other individuals
(Between-person test: Memory = .89+/-.1; Motor M = .78+/-.15; Semantic: M = .66+/-.14; and
Coherence: M = .57+/-.1;  all p < .001). These results demonstrate that functional networks
carry task state information, which can be used to make accurate predictions about state in the
same and other participants.
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Figure 2. Differences in classifier accuracy within and between person (a) Performance of an individualized
machine learning classifier for discriminating task from rest states when tested on independent data from either the
same individual or different individuals (colored lines = different participants). Initial models contrasted all task states
with equal samples of rest (N = 80 samples total per person). (b) Secondary analyses trained models to discriminate
a single task from rest. On average, all models were able to predict task state significantly better than chance in the
same person person (p<0.001 when compared to a permuted null with randomized task/rest labels) and in new
people (p<0.001 ; red dashed lines = chance). However, model performance was significantly higher when tested on
data from the same participant relative to other participants (*** p<0.001 compared to a permuted null on
within/between person labels; All Tasks vs. Rest: effect size=.24; Motor vs. Rest=.15; Coherence vs. Rest=.30;
Memory vs. Rest=.09; Semantic vs. Rest=.27;). Similar results were seen when tested with other machine learning
algorithms (Fig. S4). For a more detailed breakdown of person to person performance see Fig. S5.

Task state prediction is higher within than between individuals
Although we were able to predict task state both within and between individuals, task prediction
performance differed significantly in these two test sets. Classification was significantly more
accurate when discriminating between all task states and rest within the same person vs. other
individuals (mean effect size=.24, p<0.001 based on permutation, see Methods; Fig. 2a). These
findings were robust to the number of samples included in the training set (Fig. S1, when testing
on 16 - 80 samples): classification of task state generally improved for both the same and other
people with more samples, but more dramatic improvements were seen when tested in the
same person. In all cases, within person classification was higher than between person
classification.

This effect remained consistent when predicting tasks separately (Fig. 2b). Within-person
classification was significantly higher than between-person classification for all comparisons
(Mean difference of within and between person performance: Motor=.15; Coherence=.30;
Memory=.09; Semantic=.27, p<.001 for each separate comparison). Notably, the
between-person test performance was similar to the performance seen for a more classic
leave-one-subject (groupwise) classifier both for all tasks and single tasks (where training was
performed on a session from many different participants and tested on a novel participant; Fig.
S2). The significantly higher performance of classifiers tested on the same individual suggests
that there are task network effects that are unique to individuals that do not generalize between
people. These findings reveal that individualized within-person analyses unmask substantial
information on how brain areas communicate during tasks.

To provide a more thorough investigation of classification accuracy we calculated task predictive
value (TPV; correct labeling of task divided by any labeling of task) and rest predictive value
(RPV; correct labeling of rest divided by any labeling of rest). When tested within the same
individual, TPV and RPV scores were both consistently high (all tasks vs. rest, within person:
TPV .97+/-.01 RPV .99+/-.006; single tasks vs. rest: see Table S1). More errors were seen for
between person analyses (all tasks vs. rest, between person: TPV .69+/-.1 RPV .93+/-.07;
single tasks vs. rest: see Table S1). The errors in state classification for new participants
differed by classification procedure: in the all task vs. rest discrimination, rest was frequently
mis-classified as a task, whereas in the single task analysis certain tasks (coherence, semantic)
were frequently mis-classified as rest. Importantly, in all cases the within person analyses had
both high TPV and RPV. These results suggest that classification across individuals can result
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in biased errors dependent on the training set. Within person classification is less subject to
these biases.

Individualized task state prediction is high across many tasks at once
Next we asked if individualized task state prediction could extend beyond a binary classification
(task vs. rest) to classify varied task states at once. Using ridge regression we trained a
multiclass model on data from a single individual to distinguish between the 5 different cognitive
states (rest, motor, memory, semantic, coherence) and then tested this model on states from an
independent session either from the same person or a new person (Fig. 3). In all participants,
multiclass models were able to predict task state above chance for both within and between
person test sets (Within person M=.83+/-.05, p<.001; Between person M=.53+/-.07, p<.001
relative to null permutation model). Again, however, we found that within-person classification
significantly out-performed classification across individuals (mean effect size= 0.3, p<.001
based on permutation). An analysis of the errors in multiclass performance showed greater
overall errors in between-person classification and a greater propensity to classify other tasks
as rest (especially for the motor and semantic tasks, see Fig. S6). Thus, individualized
classifiers can perform even fine-scale multiclass predictions with good accuracy, substantially
out-performing more standard between-person approaches. These results suggest that
individualized classifiers are able to capitalize on idiosyncratic task state information and may
be useful in providing robust analyses of the commonalities and differences across task states.

Figure 3. Accuracy using multiclass prediction to discriminate among five cognitive states. Average accuracy
when testing the individualized classifier on new sessions from either the same participant or a different person. For a
detailed breakdown of each individualized classifier see Fig. S7. Multiclass prediction was significant both in the
same and new people (red line = chance performance across 5 states), with higher performance in the same
individual (*** p<0.001).

Task state can be decoded from single networks
Next, we asked which brain network connections are most important for predicting cognitive
states. We addressed this question through complementary analyses on feature weights and

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.12.448198doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.12.448198
http://creativecommons.org/licenses/by-nc-nd/4.0/


feature selection procedures. First, we examined the anatomical distribution of the average
feature weights for each brain region to better understand which features contributed the most
to task state decoding. Feature weights were fairly consistent across folds for each
individualized classifier (Fig. 4a). However, strong feature weights mapped on to different
regions across people (Fig. 4b), likely underlying the variation in classification performance
across people . Feature weights also varied somewhat across tasks in the separate single task
classifiers (Fig. S3), indicating the presence of task-specific components to prediction and likely
underlying the success of multi class prediction.
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Figure 4. Feature Weight Analysis. Average absolute feature weights for each brain region for individualized
classifiers built to discriminate between all task states and rest. (a) Feature weights for a single person (MCS05) for
each fold. (b) Average feature weights for each individualized classifier. Note that while feature weights are fairly
similar across folds within a person, they show variation across people.

Next we asked whether single networks would be sufficient for predicting task state in
individualized classifiers. To address this question, we built classifiers restricted to features in
specific blocks of network-to-network connections (Fig. 5). We found good performance for
most classifiers based on single network blocks. For within-person analyses average block
performance was 83%, (range 61%-95%); 99% of blocks were able to decode task state on
their own above chance (SD=.008). In between-person analyses average block performance
was 57% (range 51%-68%). 95% of blocks were able to decode task state above chance
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(SD=.04).

Figure 5. Single network block performance in decoding task state. Here we trained classifiers to decode all
tasks from rest using subsets of network to network connections (each block was an independent classifier). We then
tested the classifier on new data from either (a) the same person or (b) a new person. Due to low feature numbers
prior to training the classifiers we standardized features (see Methods). Task state information was distributed across
many networks of the brain: in within person analyses 99% of blocks could decode task state; in between person
analyses 95%. Within person performance was consistently higher than between person classification.

This sufficiency test indicates that task state classification features can be found in almost all
networks. While performance levels varied by network block, these network blocks also differed
substantially in size (different numbers of regions in each network lead to different numbers of
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features), and better performance was generally found for larger networks. To systematically
test whether specific networks or simply higher feature numbers were important for classification
performance, we contrasted performance of features extracted from single networks (all
connections associated with regions from a single network) relative to feature sets that were
randomly selected from the full connectome. Random feature sets numbering 10-50,000
features were tested. In all cases, classifier performance improved with more features.
Moreover, at all feature numbers, within-person classifier performance outperformed between
person classifier performance (see Fig. 6). Interestingly, there were no cases where single
networks performed significantly better than random feature selection when feature numbers
were matched. Instead, in the majority of cases, single networks performed similar or worse
than randomly selected features. This suggests that task state information, including
individual-specific aspects of that information, is distributed across multiple networks that a
classifier can utilize in prediction. We hypothesize that prediction is better with random features
because random feature selection can utilize more independent sources of information from
different networks (within network features are more likely to share correlated information, as
has previously been found for age prediction performance33).

Figure 6. Overview of feature selection. Model classification performance when classifiers were trained on
randomly selected features of different numbers, or features associated with a given network. Random feature
number varied from 10-50,000, randomly indexed across all unique FC edges. Networks have been plotted on top at
the position equivalent to their feature size. Accuracy is shown both for models tested on the same person (circle
markers, blue line) or a different person (square markers, orange line). Error bars on the random feature selection
line represent the 5th and 95th percentile across iterations. (a) Performance when training and testing to discriminate
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all tasks from rest. (b) Performance when training and testing to discriminate a single task from rest. For a breakdown
of participants see Fig. S8.

A within person advantage is seen even on individually-mapped network regions
Most past machine learning studies rely on between person analyses using a common
standardized set of brain regions defined for group comparisons, which we demonstrate
systematically underperform within-person models. This observation naturally raises questions
about the source(s) of improved classification within-person. One possibility is that within person
classification is driven by differences in the underlying spatial positions of networks across
individuals; within a person, these are likely consistent over time 9,23,26 and may confer an
advantage in task state decoding for that same person relative to other individuals who differ in
their spatial network arrangement. Another possibility is that the magnitude of functional
connectivity changes during tasks, rather than the spatial position, varies systematically across
people.

To test whether variation in the spatial locations of networks across individuals drives
differences in classifier performance, we shifted our analysis strategy. Instead of relying on
common group parcellations and network definitions, we used individualized parcels and
network definitions from Gordon et al34 for each participant, derived using data-driven
community detection algorithms specifically for that person. We then estimated the average
functional connectivity within and between networks for each state in each person, creating a
set of 14x14 network correlation matrices (while differing in specific topography, 14 common
networks were consistently identified across individuals - see Methods and Fig. 7a). Classifiers
were trained to distinguish all tasks from rest in each participant, and then tested on
independent data from either that same participant or other participants. As with the other
analyses reported above, individualized classifiers were able to significantly decode task from
rest in both cases (Within-person test: M=.91+/-.04; Between-person test: M=.70+/-.05).
Importantly, however, classifiers still performed significantly better on the same person than
other people, even after matching for individualized network locations (mean effect size=.19;
p<.001, Fig. 7b). This suggests that the individualized advantage for task state decoding is not
driven only by differences in the spatial layout of networks, but may also be associated with
differences in the magnitude of functional connectivity changes across people.
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Figure 7. Classification performance built on individualized network parcellations. Comparison of performance
of individualized classifiers on networks derived from individual parcellations. (a) Individual person parcellations and
network definitions. FC matrices were calculated at the network level (network x network) using each participant's
network definitions in order to align across people. These FC matrices are then used to train a classifier to decode all
task states from rest as in previous analyses. (b) Individualized classifiers based on individualized networks were
significantly able to decode task from rest in both the same and new participants, but performed consistently better
for the same person (p<.001).

Discussion
A central question in cognitive neuroscience is how brain regions coordinate their actions during
complex tasks. In this study, we applied machine learning to precision fMRI data to determine
whether individual-specific classifiers can predict task state, and how these effects generalize to
new people. We found that high quality precision fMRI data led to robust estimates of state
differences in brain network interactions, permitting individualized classifiers to predict states
across a variety of tasks, within and across individuals. However, classifiers tested within the
same individual had significantly higher accuracy than those tested across individuals,
suggesting the presence of idiosyncratic features that are obscured in cross-subject analysis.
While single brain networks were able to predict task state alone, features for predicting task
state were distributed across multiple systems. Based on these findings, we suggest that
cognitive state leads to systematic and idiosyncratic changes in brain networks that are often
masked in cross-subject analyses. Using an individualized, high data approach can help capture
these features and improve our understanding of how brain networks are altered during tasks.

Task states alter networks in predictable ways
Task states have only relatively subtle effects on the intrinsic functional connectivity architecture
5,8. However, prior work has consistently demonstrated that sensitive machine learning methods
can effectively be used to predict task state from whole brain functional connectivity
data11,15,18,21,35–37. In fact, it is possible to predict tasks designed to measure a variety of cognitive
processes including attention 10,11,21,35–37, memory 11,15,17,20,38, language 17,20, and math processing
11 with accuracy levels well above chance. These investigations have typically been conducted
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using cross-subject prediction, with classifiers trained on a subset of participants and then
tested on left out subjects. This approach inherently assumes that task states will induce similar
network modulations across participants.

Our work builds on these findings by showing that you can predict task state even using
classifiers trained on a single person’s data. These individualized classifiers were able to predict
task state above chance even in other individuals (at similar levels to that seen with more typical
cross-subject classifiers, see Fig. S2). These findings underscore that there are common,
generalizable aspects to how brain networks are affected by task state. However, our findings
also showed a significant improvement in prediction when classifiers were used to predict state
within the same person. This suggests that an individualized approach may help to uncover
additional novel features associated with brain states that are masked in typical cross-person
analyses.

Cognitive effects on brain networks are strongly influenced by individual characteristics
Here, through a number of diverse analyses, we show a consistent benefit for within person
classification in the prediction of task states. Classifiers showed significantly higher accuracy for
predicting task state from data from the same person relative to new people. This finding was
seen in each of the eight precision datasets we measured and was consistent across different
tasks (Fig. 2b), networks (Fig. 5), subsets of samples (Fig. S1), and versions of the classifier
(all task Fig. 2a, single task Fig. 2b, multiclass Fig. 3) and classifier implementations (ridge
regression, logistic regression, support vector machines, Fig. S4). Consistent with past results
using cross-subject approaches 10,11,15,17,20,21,35,36, individualized classifiers tested on new people
were able to perform significantly above chance (and similar to that seen with classic
cross-subject classifiers, Fig. S2; see previous section), indicating that our findings were not
driven by general poor performance of the individualized classifiers. Rather, the large
enhancement in within-person classification suggests that individualized classifiers have the
potential to reveal novel, robust features of task states that are obscured in typical cross-person
designs.

These findings align with past results indicating large differences in functional brain networks
across people 22–26,30,34,39,40, as well as interactions between individual differences and changes in
task states 9,32,41. Here, we provide evidence that these individual differences have substantive
impact on classification of task state. These results concord with past evidence using task
evoked fMRI signals for classification, which also shows a within-person advantage 42–45.
Within-person classification may be necessary to reveal robust, impactful, but idiosyncratic
features of brain network states-- observations that are likely to be central to enhancing our
understanding of cognitive neuroscience. The growth of precision fMRI datasets sampling a
variety of task conditions such as the Natural Scenes Database46, the Individual Brain Charting
dataset47, and StudyForrest48,49 will be instrumental in this regard.

What are the sources of these individual differences in classification? One possibility is that
individual features may be driven by differences in the functional-anatomical topography of brain
networks. For many of the analyses in this manuscript, we used a group parcellation 34.
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Disruptions in classification could be driven to the extent that any individual showed deviations
from this typical group architecture23, consistent with suggestions that spatial topography is a
major form of individual differences in brain networks40. Deviations in spatial topography may be
important limitations in most past task state classification relying on cross-subject
correspondence, but could be addressed in the future through the use of functional alignment
procedures, such as hyperalignment, a method that has been successful at increasing model
performance across participants 41–45. However, we found that a within-person advantage
persisted even after functionally aligning across people based on their own intrinsic network
architecture (Fig. 7). This suggests that other sources of deviations, such as individual
differences in the magnitude of task modulations may also contribute substantially to task
network effects.

Individual task effects may be associated with differences in strategy for completing tasks 6,50.
As the tasks from the Midnight Scan Club were relatively simple and each participant was at
ceiling performance, this hypothesis would require that even minor differences in strategies
during a simple task could have measurable effects on brain networks. One exciting avenue of
future work will be to evaluate how precision data can generalize to predict novel task states
and diverse strategies. Studying individualized task network features across a variety of
contexts may help untangle these possibilities and piece apart the functional relevance
associated with different states.

Task state information is distributed across many large-scale systems
One question that arises from the current results is whether specific brain regions or
connections are particularly influenced by task states. Prior work has suggested that tasks
influence a range of within and between network connections8, and focused on highlighting
specific connections associated with various tasks 5,8,37,51. Like with past studies, we also found
that both within and between network connections contributed to decoding of task state.
Interestingly, however, we found that task state information was very distributed across the
connectome: almost every block of network to network connections was sufficient to decode
task state (within a person), but these single networks didn’t outperform random distributed
feature selection when matched on feature number. These results are consistent with past
work33 which showed that distributed brain network features outperform features from single
networks in predicting age, likely driven by the more diverse information that can be gained by
sampling from many different systems. Our findings suggest that completing various tasks
optimally recruits distributed systems rather than relying solely on any one network.

Importantly, regardless of the feature selection approach (single network, block, or random
feature), we found that within-person tests consistently outperformed between-person tests.
This finding not only underscores the robustness of our original result, but also suggests that
idiosyncratic task network features are distributed throughout different brain regions. Indeed,
analyses of the feature weights used in our machine learning models showed consistency of
distributed network features across folds of a single person, but substantial deviations across
people. Future deep analyses of the consistent and idiosyncratic features used across a variety
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of task contexts has substantial potential to help clarify the contributions of diverse systems to
completing complex tasks.

Practical considerations for individualize task state prediction
By necessity, individualized classifiers were built on a relatively small number of samples (80)
and sessions per participant (10). However,  the presence of eight participants allowed for eight
independent models to replicate the individualized classifier results. These individualized
classifiers showed many consistent results, including significant ability to decode task state
within and across people, across tasks, and across feature subsets. Prior work has shed light
on the effects of data quantity and reliability in FC matrices 52,53. To study how data quantity
affects individualized classifiers, we iteratively increased the number of samples (16-80 task/rest
pairs) used in our analysis. We found that increasing the amount of samples in the training set
influenced the models ability to accurately decode tasks from rest within a person, plateauing
around 25 sample pairs (50 samples). However, the number of samples only modestly improved
the model’s ability to predict state in a new person. Similarly, we found that increasing numbers
of features improved classification, even when drawn randomly from different positions in the
functional connectome. This was particularly true for within-person classification, which showed
substantial performance improvements plateauing at ~1000 features. This finding suggests that
caution should be warranted in interpreting differences in classification between networks of
different sizes. Notably, these results provide guidelines for the practical application of building
individualized classifiers in future studies seeking to maximize within and between person
prediction.

Applications of personalized state classifiers
Our current findings have focused on predicting cognitive states. One interesting question for
future work will be to determine whether individualized classifiers will also be useful in predicting
other types of states a person experiences such as arousal 51,54 and sleep 55,56, as well as
clinically relevant mood states such as bipolar disorder, depression episodes, and hallucination
states in schizophrenia. Given the highly replicated finding of individual variability in functional
network topography across individuals 23,26,28,30,34,39 including in large community-based samples
24,25,40,57, it is likely that individualized classifiers may have unique advantages across a variety of
contexts. If it is broadly true that idiosyncratic features are important for classifying states, then
person-specific precision analyses such as the ones conducted in this study may uncover new
important features for future study. Clinical applications may ultimately require a balance
between precision applications which may offer unique advantages in identifying idiosyncratic
features of diverse states and classifiers built to maximize cross-person generalization (e.g.,
large datasets with less precise measurements which can be used to capture large scale
generalizable features across a population58). One exciting avenue for future research will be to
understand whether there are common subsets of individuals that share idiosyncratic features
57, that can be used to improve cross-subject decoding while preserving sensitivity to individual
differences. Uniting individualized approaches and targeted cross-subject studies may help to
maximize our knowledge and prediction power.

Conclusion
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In this study, we asked whether people differ in how their brain interactions are altered by
cognitive state. Using a machine learning approach, we find that it is possible to classify task
state from a classifier trained on a single individual’s multi session data. Classification was
successful both for independent data from that person as well as for new people, but a big boost
in accuracy was seen for classification within-person. This result was consistent across
datasets, tasks, and classifier approaches. Feature selection analyses demonstrated that task
state information is distributed across large-scale systems, with single networks performing well
at classifying task state but not out-performing randomly selected features. These findings have
important implications for understanding how cognitive state influences brain networks,
emphasizing the importance of considering individual differences to reveal the full magnitude of
variations that are present.

METHODS
Overview
Our goal in this project was to investigate whether there are individual differences in how brain
networks integrate task states. We used the precision fMRI Midnight Scan Club Dataset (MSC)
dataset for this analysis 23. This dataset and its processing have been described extensively in
9,23, and we include a summary of the components relevant to this study below. We created
functional connectivity matrices from task and rest data for each participant, task, session in the
MSC. We then used a machine learning approach to train classifiers to distinguish rest from task
on a subset of sessions and then tested these classifiers on held out data from either the same
participant or a new participant. Variations on this analysis were conducted with different
classifiers, tasks, and feature subsets, as described below.

Dataset
The MSC dataset includes data from 10 individuals (5 females, ages 24-34) with ten fMRI
sessions each. Each session occurred on a separate day, beginning at midnight. Sessions were
completed within 7 weeks for all participants. Each session included fMRI data for a
resting-state scan and 4 tasks (see Task Designs and Analysis). Participants provided informed
consent and procedures were approved by Washington University Institutional Review Board
and School of Medicine Human Studies Committee. Participant MSC08 was excluded from the
study due to high levels of head motion and sleep (more details in 23). MSC09 was also
excluded due to insufficient samples in the motor task (only 5 of the sessions had sufficient low
motion data, see Functional Connectivity Processing). This resulted in eight participants used in
the final analyses.

MRI Acquisition
MRI data were acquired on a 3T Siemens Trio. Four T1-weighted images (sagittal, 224 slices,
0.8 mm isotropic resolution, TE = 3.74 ms, TR = 2.4s, TI = 1.0s, flip angle = 8 degrees), four
T2-weighted images (sagittal, 224 slices, 0.8 mm isotropic resolution, TE = 479 ms, TR = 3.2s)
were collected for each participant across two separate days. Functional MRI data was
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collected using a gradient-echo EPI BOLD sequence (TE =27ms, TR = 2.2 s, flip angle = 90,
voxels =isotropic 4mm3, 36 axial slices) during each of 10 sessions. The same sequence was
used for task and resting-state data. The same parameters were also used to collect a gradient
echo field map acquired during each session for de-warping of the functional data.

Task Designs and Analysis
Functional MRI data were collected during five conditions described briefly below (for a more
thorough description see 9,23). Task activations were modeled with a generalized linear model
(GLM) using in-house software written in IDL (Research Systems, Inc.). GLM residuals were
used for time-series correlations, following a background connectivity approach 59,60.

Resting-state: Each session started with a 30 min resting state scan, wherein participants were
asked to stare at a fixation on the center of a black screen.

Motor Task: The motor task was adapted from the Human Connectome Project 61 and consisted
of a block design in which participants are told to move either left or right hand, left or right feet,
or tongue based on visual cues. This included two runs in each session (7.8 min). Each block
began with a 2.2s cue, followed by a fixation caret flashing every 1.1s to signal a movement.
Each run included two blocks for each type of movement and three fixation blocks (15.4s). For
this GLM each motor condition was modeled separately with a block regressor convolved with a
hemodynamic response function.

Semantic Task: Each session included two runs (14.2 min) of a mixed block/event related
design modeled on tasks in 62. This included four blocks per run, two for semantic, two for
coherence (see below for coherence). The semantic task was a verbal discrimination task where
participants were visually presented with short words and asked to identify if they were nouns or
verbs (50% nouns, 50% verbs). Task blocks began with a 2.2s cue indicating which task was to
be conducted in the following block; after this 30 individual trials were presented. Trials
consisted of words presented for 0.5s with jittered 1.7-8.3s intervals. Participants responded to
whether each word was a verb or a noun. After, participants were presented with a cue (2.2s)
indicating the end of a block, with 44s fixation periods separating each block. The semantic and
coherence tasks were modeled together in a single mixed block/event-related GLM. Separate
regressors were included for each task block and for events (start and end cues in each task,
correct and incorrect trials of different types). Events were modeled with delta functions for 8
separate time-points to model the time course of responses using an FIR approach 63.

Coherence Task: Coherence task blocks were interleaved with the semantic task in the same
mixed runs and followed the same timing structure and analysis as the semantic task. Individual
trials consisted of arrays of Glass-like patterns, with white dots on a black screen that varied in
arrangement (0% or 50% coherence to a concentric arrangement, both presented with 50%
frequency) 64. Participants were told to identify dot patterns as concentric or random.

Memory Task: The incidental memory task employed an event-related design with 3 runs per
session (15min). A single run was collected for each type of stimulus (faces, scenes, words).
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During trials of the run, participants made binary decisions to categorize stimuli (male/female for
faces, indoor/outdoor for scenes, abstract/concrete for words). In each run participants viewed
24 images repeated 3 times. Images were presented for 1.7s, with jittered 0.5 – 4.9s intervals.
For the memory GLM, trials were modeled based on stimulus type and number of repetitions
with delta functions across 8 time-points.

Structural MRI Processing and Surface Registration
The procedure used to process the structural MRI data and align with the surface can be found
in extensive detail elsewhere 23,52. The high-resolution structural T1 images were first aligned
and averaged together, then registered to a volumetric Talairach atlas using an affine transform.
These averaged template T1s were used to generate a cortical surface in Freesurfer 65, which
was hand-edited to improve surface accuracy. The native freesurfer surface was registered to
fs_LR_32k space using a similar procedure described in 66.

Functional MRI Pre-processing
All fMRI data first underwent pre-processing in the volume to correct for artifacts and align data.
This included slice-timing correction, frame-to-frame alignment for motion correction, and
intensity normalization to mode 1000. Functional data was registered to the T2 image, which
was registered to the high-resolution T1 that had been registered to template space. Functional
data underwent distortion correction (see 23 for more details). Registration, atlas transformation,
resampling to 3mm isotropic resolution, and distortion correction were combined and applied in
a single transformation 67. All remaining operations were completed on the atlas transformed
and resampled data.

Task fMRI data were processed in the volume using a GLM, with the approach and regressors
described above (Task Designs and Analysis). The residuals from this model were used to
compute task functional connectivity (as in 9), following the same steps as rest (described
below).

Function Connectivity Processing
To reduce artifacts, data underwent initial functional connectivity (FC) processing in the volume,
with methods described in detail in 23,68. This involved demeaning and detrending the data,
nuisance regression of motion parameters and signals from white matter, cerebrospinal fluid,
and global signal, as well as their derivatives. High motion frames (framewise displacement, 69

FD > .2mm along with sequences containing less than 5 contiguous low motion frames, the first
30s of each run, and runs with <50 low motion frames) were censored and replaced with power
spectral matched data. For participants, MSC03 and MSC10 motion parameters were low-pass
filtered (<0.1Hz) before FD calculation. Following motion censoring, bandpass filtering
(.009Hz-.08Hz) was applied. Cortical functional data was then registered to the surface and
smoothed (Gaussian kernel, sigma=2.55mm) with 2D geodesic smoothing on the surface and
3D Euclidean smoothing for subcortical volumetric data (see 9 for more details). Finally,
interpolated high motion frames were removed before functional connectivity analysis. To be
included, each run was required to include at least 25 low-motion volumes and each session
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required at least 50 volumes total per task; we removed 5 sessions based on these criteria.
Task data was limited to task periods for each run (excluding fixation frames).

Functional Networks
Regions and Systems: This study examined functional connectivity among 333 cortical parcels
defined based on boundary-mapping techniques in a large group of independent participants 34.
These 333 parcels are divided into 12 functional systems: somatomotor (SM), somatomotor
lateral (SM-lat), visual (Vis), auditory (Aud), cingulo opercular (CO), salience (Sal), frontoparietal
(FP), dorsal attention (DAN), ventral attention (VAN), default mode (DMN), parietal memory
(PMN), and retrosplenial (RSP). Low signal regions that grouped poorly into a system were put
in an ‘‘unassigned’’ group.

Functional Connectivity (FC): FC was computed by averaging the BOLD time course within
each parcel, after removing censored and interpolated frames, and computing linear
correlations between the time-series of each pair of parcels. Task data were limited to task
periods within each run (i.e., excluding fixation periods). FC values were Fisher transformed for
normality. FC was represented with a parcel by parcel functional network matrix, sorted by
system; edges (FC values for a particular region-to-region pair) along the diagonal blocks
represent within-system correlations, and edges in the off-diagonal blocks represent
between-system correlations. Edges taken from the upper triangle of this matrix represent all
unique pairwise parcel relationships resulting in 55,278 values for each task of a given session;
combining all tasks and rest sessions for a given participant provided 80x55,278 values. Unique
edges were used as features in the machine learning classifier.

Machine Learning
We employed a machine learning approach at the individual level where models were trained to
classify task state using data from a single participant, which we call individualized classifiers.
Models were trained and tested on independent data using a leave-one-session-out
cross-validation framework, iteratively leaving out data (both task and rest) from an entire
session for training and then testing on either this left out data or data from a single session in
another person (for schematic see Fig. 1). Classification was performed using different
classifiers, subsets of tasks, and subsets of features as specified below.

Ridge Regression Classification: We used ridge regression for classification due to the high
collinearity among FC edges and the relatively small number of samples. Ridge regression
implements a shrinkage estimator that can improve performance in the presence of
multicollinearity 70. This pipeline was implemented using Python’s Scikit-learn package 71. As a
control, we also conducted analyses using support vector classification and logistic regression
and found that all models resulted in similar patterns of performance across conditions. (see
Fig. S1).

Binary classification of task state across people: Our first goal was to determine the extent to
which a model trained on one participant would be able to differentiate task from rest both in that
person and in new people.
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Training and testing procedure: We conducted two versions of binary classification to examine
task state prediction from FC data. The “All Task” classifier was trained to distinguish all tasks
(memory, motor, semantic, coherence) from rest in a single binary classifier. This classifier was
used as a higher sample test of the ability for classifiers to distinguish task states from rest. This
classifier had 80 total samples per participant: 40 task samples (10 sessions of motor,
coherence, semantic, and memory tasks) paired with 40 rest samples (rest split into four 7 min
increments for each of 10 sessions; we split rest samples in order to balance our training set
and avoid biasing the model towards the task samples). For each individual, we then trained a
classifier to predict task state (task vs rest) based on FC using a leave one session out
cross-validation scheme as described above (90% training data, 10% testing per fold). Each
model was also tested on a single session from other participants (resulting in 7 “other person”
tests per trained model). This training/testing process was repeated for all folds and all
participants.

The second “Single Task” binary classifier classified a single task at a time (e.g., memory vs.
rest). This classifier allowed us to determine whether the All Task results were consistent for
each specific task condition. The same procedure was used as for the “All Task” classifier,
except in this case each classifier was based on a total of 20 samples per participant (10 from a
single task, 10 from rest). Models were again trained on 90% of the data (9 sessions) and tested
on either left out data from that same participant (1 session) or another participant. The
procedure of training/testing an individual classifier was repeated for all 4 tasks (motor, memory,
coherence, semantic).

Model evaluation: Classifier accuracy (total percentage of test samples classified correctly), task
predictive value (TPV; correct labeling of task divided by any labeling of task), and rest
predictive value (RPV; correct labeling of rest divided by any labeling of rest) were used to
evaluate model performance for each individualized classifier. For each classifier, test
performance was averaged over folds. Data is presented separately for each participant (each
individualized classifier), representing an 8-fold replication of model training and testing on
independent people. Performance values were contrasted with permuted null models (see
below) to determine significance.

Model significance: First, we tested whether the performance of each classifier was significantly
greater than chance when compared to a permuted null model. For each model, we trained a
null classifier using the same FC data but permuted how samples were labeled as task or rest.
The null classifiers were subsequently tested on held out data using the same cross-validation
framework described above for each type of classifier. We repeated this process 1,000 times for
each task, averaging permuted and true accuracies across all individualized classifiers to
compute an omnibus statistic. We then calculated permutation-based p-values by comparing the
average true classification accuracy relative to the distribution of classifier accuracy of the null
classifiers (number of permutations that exceeded true model performance/1000). Additional
tests were run per individualized classifier, comparing that classifier to a permuted null sample.
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Second, we tested whether the performance of a classifier significantly differed when
applied to independent data from the same individual vs. a different individual. We again used a
permutation approach, in this case randomly shuffling the same-person or different-person
labels of the test sets, then calculating the difference in accuracy scores. We repeated this
process 1,000 times to create a null distribution, after which the true difference was contrasted
with the null distribution and used to estimate a permutation-based p-value.

Groupwise cross-subject models: To evaluate how these measures compare to a standard
machine learning approach we conducted a leave-one-subject-out analysis in which we trained
the classifier using a single session of data across all participants in the dataset and tested on
the left out participant (training 7 participants, testing 1 participant on the same session). We
then repeated this process across all participants and across all sessions. We conducted
cross-subject models both for decoding all tasks from rest (as in the All Task Analysis) and
models for discriminating a single task from rest (as the Single Task Analysis). Model
performance is reported as the average accuracy across all folds.

Multiclass classification of task state across people: We next asked if finer-scale discriminations
of task state could also be decoded from FC. To address this question we trained a Multiclass
classifier to discriminate among all 5 of the separate states (rest, motor, memory, semantic,
coherence; chance = 20%) . We then repeated the same procedure as above for
cross-validation (leave-one-session-out for a given participant, then test on the same or a
different participant) and model evaluation and significance. For this analysis we also created
confusion matrices of the test performance to better assess errors .

Classification of models built on individualized network maps: We conducted an additional set of
classification analyses to evaluate whether differences in participant performance could be
attributed to differences in underlying spatial layout of large-scale networks. To address this
question, we reconducted our classification based on individually defined network layouts.
Previously published 23 individually defined parcels and network assignments for the MSC
dataset were used for this analysis. These parcels and networks were defined independently for
each participant using data-driven procedures. Importantly, previous results show that these
individual network assignments reach high reliability with the precision fMRI data employed
here23. We then calculated functional connectivity among each of these individually defined
regions for each state. Finally, we averaged across each of 14 networks that could be identified
consistently in each individual (default mode network, visual, frontoparietal, dorsal attention
network, premotor network, ventral attention network, salience, cingulo opercular network,
somatomotor dorsal, somatomotor ventral, auditory, parietal memory network, and retrosplenial
network;  as in 9 Supp. Fig. S7). This resulted in FC matrices for each person, task, and session
with a 14 x 14 network dimensionality - notably while the dimensionality and network labeling
was matched across participants, each person’s networks were defined separately to optimize
accounting for that person’s specific spatial layout of networks. We then extracted the features
from these matrices and then conducted the same set of individualized model training and
testing as described in the binary classification section above.
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Feature Analyses
Next we asked if the classification of task state was dependent on specific features or networks.
We took two distinct approaches to address this question.

Feature weight analysis: First, we examined the feature weights from our individualized
classifiers. To do this we extracted the feature weights for the All Task binary classifier (see
above) averaged for each region (row of the correlation matrix; averages were taken on the
absolute values of the original weights). We qualitatively examined the variability of average
feature weights across folds to look at consistency within a person. We then examined the
variability of average feature weights across individuals (in this case averaged over folds) to
look at consistency of feature weights across people. We also conducted the same procedure
when analyzing feature weights at the single task level.

Feature Selection Analysis: Secondly, we conducted additional quantitative classification
analyses with only subsets of features to determine which features were sufficient for
classification. Three forms of feature selection were performed: (1) features were selected from
specific blocks of network to network connections (e.g., all of the features associated with
connections between the frontoparietal network and the default mode network). Due to low
feature size associated with specific blocks we standardized the data by removing the mean
and scaling to unit variance of the training set. We then transformed all test sets using the mean
and standard deviation from the training set 71. (2) To examine properties for full networks,
features were also selected for entire network rows (e.g., FC in all matrix rows associated with
default mode network regions), and finally (3) as a comparison, random features numbering 10
– 50000 were randomly selected from the full matrix (this process was repeated 1,000 times).
Model training and testing was then conducted as described in the binary classification section
for both the All Task and Single Task analyses. This process was repeated independently for
each feature subset and for each separate participant.

Data Quantity Dependence
Since data quantity has been demonstrated in the past to affect the reliability of FC matrices 53,72

we examined whether model performance depended on sample number (i.e., the number of FC
matrix pairs which were included in the training data). To determine how the number of samples
in the training set influenced model performance, we re-built the All Tasks classifier described
above using varying amounts of sessions from a single individual. Beginning with 80 samples of
FC matrices (40 task and 40 rest) for each person, we then sub-selected between 16 – 80
samples (in matched task/rest pairs) and repeated model training and classification, using a
leave-one-session-out cross validation approach. We also tested the model on each of the other
participants' task and rest data. This training/testing process was repeated for all folds and all
participants. This process was repeated 1,000 times for different random pairs of samples per
individualized classifier.

Data and Code Availability
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Data is publicly available (https://openneuro.org/datasets/ds000224). Code for analysis related
to MSC processing can be found at https://github.com/MidnightScanClub. Code related to the
analysis in this paper will be located at https://github.com/GrattonLab/Porteretal_taskprediction.
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Supplemental information

Training
Task

Same Person Different Person Within
vs.
between
significa
nce

Accuracy TPV RPV Accuracy TPV RPV

All Tasks
vs. Rest

.98
(.001)***

.97(.001) .99(.0008
)

.73(.01)*** .69(.01) .93(.01) p<.001

Individu
al

Network
s, All
Tasks

vs. Rest

.81(.005)**
*

.86(.008) .88(.008) .70(.01)*** .76(.02) .71(.01) p<.001

Multiclas
s

.83(.01)*** .53(.02)*** p<.001

Coheren
ce vs.
Rest

.87(.02)*** 1(0) .81(.02) .58(.01)*** .98(.009) .55(.01) p<.001

Memory
vs. Rest

.98(.009)**
*

1(0) .97(.01) .88(.01)*** .89(.01) .93(.01) p<.001

Motor
vs. Rest

.98(.009)**
*

1(0) .96(.01) .82(.01)*** .99(.003) .78(.02) p<.001

Semanti
c vs.
Rest

.94(.01)*** 1(0) .90(.01) .66(.01)*** .99(.001) .62(.01) p<.001

Table S1. Summary table of classification performance (accuracy=M(SE)) on cross-person tests, with training on one
person and testing on either the same person or a different person. Task predictive value (TPV) represents the
classifier’s ability to accurately label task divided by any labeling of task. Rest predictive value (RPV) represents the
classifier’s ability to accurately label rest divided by any labeling of rest.  Model significance was determined relative
to a random null created through permutation testing *p<.05, **p<.01, ***p<.001. The final column shows the
difference in model performance for within-person and between-person tests (computed with permutation testing)). All
Task vs. rest: binary classifier trained to distinguish all tasks from rest. Individual Network All Tasks vs Rest:similar to
all task vs. rest, but used networks derived from individual parcellations (Fig. 7). Multiclass: classification models
trained to distinguish between all five states (coherence, memory, motor, semantic, and rest). Coherence, memory,
motor, semantic: classifiers built to distinguish a single task from rest. These analyses are described in detail in the
Methods.
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Figure S1. Data Quantity Analysis. Classifier performance on discriminating all tasks vs. rest for data tested on the
same (blue) or a different person (orange) . Training samples were increased iteratively in pairs (rest and task) from
16 samples to 80 samples. This process was repeated with 1,000 random training sample iterations. Error bars
represent the 5th and 95th percentile at each sample pair. In all cases, classifier accuracy increased with larger
numbers of samples. Greater improvements were seen when testing on the same person compared to testing on a
different person.
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Figure S2. Comparison of individualized model to standard “groupwise” approach (a) Average accuracy of
classifier performance in discriminating all tasks from rest using either individualized classifiers tested on the same or
new people (as in the main text) or a more standard “groupwise” approach. The groupwise classifier was trained
using a leave-one-subject-out cross validation procedure and tested on the left out subject (see Methods). (b)
Average classifier performance for distinguishing a single task from rest using individualized classifiers tested on teh
same or a different person, or classifiers built using the groupwise cross-subject approach . Performance is always
higher when testing on the same person compared to testing on a different person and the groupwise approach;
groupwise classification is similar to the between subject tests of individualized classifiers.
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Figure S4 Feature Weights Across Task Average feature weights on the single task analysis for a single person
(MSC05). Feature weights vary by task.
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Figure S4. Model performance across different algorithms Task state prediction performance across different
machine learning algorithms when tested on independent data from the same (blue) or a different person (orange),
shown as box and whisker plots. The whiskers represent the upper and lower quartile to the highest/lowest value that
is within the 25th and 75th percentile. Points outside the range (solid diamonds) reflect outliers. Three different
classifiers were tested: ridge regression (“ridge”; the primary method in the main text), logistic regression (“log”; with
L2 regularization and lbfgs solvers) and support vector classification (“SVM”; using LinearSVC with default parameter
settings). (a) Classifier performance for data tested on the same or different person when trained to discriminate
between all tasks and rest data for a person. (b) Classifier performance for classifiers trained to distinguish a single
task from rest (averaged across tasks). (c) Multiclass performance for classifiers trained to distinguish among all four
tasks and rest.  Performance was similar across algorithms, with a consistent benefit for within person tests relative to
between person tests.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.12.448198doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.12.448198
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S5. Model performance per person. Comparison of model performance for models trained on a particular
individual (x-axis) and tested on either the same individual (large colored dots) or other individuals (blue dots).
Figures depict the average accuracy across folds, with chance (50%) represented as a dashed black line.
Significance per individualized classifier plotted as stars (dark blue within, light blue between; based on comparing
true scores to a permuted null; *p<0.05).   (a) Task state classification performance for classifiers trained to
distinguish between all tasks and rest (b) Classification performance for classifiers trained to distinguish single tasks
from rest. In all cases, performance is significantly higher when testing on the same person compared to between
people.
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Figure S6. Average Multiclass Confusion Matrices (a) within person and (b) across person. Classifiers performed
relatively accurately when classifying new data in the same person. When classifying across people there were more
errors, especially for motor which is often misclassified as rest. Classifier performance is averaged across
participants (see Figure S7 for single participant results).
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Figure S7. Multiclass confusion matrices of individualized classifiers. Multiclass output of confusion matrices for
each individualized classifier when testing on left out sessions from either (a) the same person or (b) a different
person. Performance was relatively similar across individualized classifiers. In all cases, within subject tests showed
a strong diagonal (correct performance) with relatively lower errors. Between subject tests were more varied, with
biased errors in classification (e.g., for motor and semantic especially).
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Figure S8 Random feature selection split up by individuals. Here we present random feature selection (10 -
50,000 number of features) when training the classifiers to (a) discriminate all tasks from rest or (b) single tasks from
rest. We’ve plotted how individual test sets perform when tested on the same person as the training set (95% range
in blue) compared to testing along a different person (orange). The mean for each individual is shown in a colored
line within each set.
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