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We present here a new algorithm based on a random model for sim-
ulating efficiently large brain neuronal networks. Model parameters
(mean firing rate, number of neurons, synaptic connection probabil-
ity and postsynaptic duration) are easy to calibrate further on real
data experiments. Based on time asynchrony assumption, both com-
putational and memory complexities are proved to be theoretically
linear with the number of neurons. These results are experimen-
tally validated by sequential simulations of millions of neurons and
billions of synapses in few minutes on a single processor desktop
computer.
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There are more and more vast research projects, whose1

aim is to simulate brain areas or even complete brains2

to better understand the way it works. Let us cite for in-3

stance: the Human Brain Project (1) in Europe, the Brain4

Mapping by Integrated Neurotechnologies for Disease Studies5

(Brain/MINDS) (2) in Japan or the Brain Initiative (3) in6

the United-States. Several approaches are feasible. There is7

the biochemical approach (4), which is doomed for systems8

as complex as the brain. A more biophysical approach has9

been investigated, see for instance (5), where cortical barrels10

have been successfully simulated, but are limited to about 105
11

neurons. However, the human brain contains about 1011 neu-12

rons whereas a small monkey, like marmosets (2), has already13

6× 108 neurons (6) and a bigger monkey, like a macaque, has14

6× 109 neurons (6).15

To simulate such huge networks, models reduction have16

to be made. In particular, a neuron has no more physical17

shape and is just represented by a point in a network with18

a certain voltage. Hodgkin-Huxley equations (7) are able19

to reproduce the physical shape if it is combined to other20

differential equations, representing the dynamic of ion channels,21

but the complexity of these coupled equations that form a22

chaotic system (8), makes the system quite difficult to simulate23

for huge networks. If ion channels dynamic is neglected, the24

simplest model of voltage is the Integrate-and-Fire model (9).25

With such models, it has been possible on supercomputers26

to simulate a human-scale cerebellar network reaching about27

68× 109 neurons (10).28

However there is another point of view, which might allow29

us to simulate such massive networks with simplified models.30

Indeed, one can use much more random models to reproduce31

the essential dynamics of the neurons: their firing pattern.32

The randomization of not only the connectivity graph but also33

the dynamics on the graph is making the model closer to the34

data at hand and explain to a certain extent their variability.35

The introduction of randomness is not new and has been done36

in many models including Hodgkin-Huxley (11) and Leaky37

Integrate-and-fire (LIF for short) (12). 38

Here we want to focus on particular random models - point 39

processes (13) - which have a particular property: time asyn- 40

chrony, that is the inability of the model to have two spikes 41

that are produced exactly at the same time by two differ- 42

ent neurons. This includes in particular Hawkes models and 43

variants such as GLM, Wold processes, Galves-Löcherbach 44

models, and even some random LIF models with random or 45

soft threshold, all of them having been used to fit real data 46

(13–19). 47

This property, which is well known in mathematics (14, 48

20), combined with graph sparsity lead us to propose a new 49

algorithm in (21). The computational complexity of this new 50

algorithm has been computed. Thanks to time asynchrony 51

and to the computational activity tracking of firing neurons 52

(22), we have shown in particular that if the graph is sparse, 53

the complexity cost of the computation of a new point in 54

the system is linear in the number of neurons. However the 55

memory burden was too high to reach networks of 108 neurons. 56

In a preliminary work (23) focusing on the mathematical 57

aspects of mean-field limits of LIFs, we formalized a way to 58

deal with this memory aspect without putting it into practice: 59

the main point is to not keep in memory the whole network, 60

but to regenerate it when need be. Recently, the same idea, 61

under the name of procedural connectivity, has been applied 62

with success on LIF models in (24): using GPU-based parallel 63

programming, and without time asynchrony, the authors have 64

been able to simulate a network of 4×106 neurons and 24×109
65

synapses on a desktop GPU computer. 66

But, as we show in the present article, the gain of proce- 67

dural connectivity is even huger when combined with time 68
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asynchrony. Indeed, classical parallel programming usually69

uses a discrete simulation time and computes for all neurons70

(or synapses) what happens at each time step in a parallel71

fashion (even if spikes can be communicated in between two72

time steps (10)). At each time step, each process correspond-73

ing to a different neuron has to wait for the calculations of74

all the other processes to know what needs to be updated75

before computing the next step. With time asynchrony, we76

can leverage discrete-event programming (25–28) to track the77

whole system in time by jumps: from one spike in the net-78

work to another spike in the network. Since a very small79

percentage of a brain is firing during a given unit of time80

(29), the gain we have is tremendous in terms of computations.81

Thanks to the procedural connectivity, the memory needed82

to access for the computation of each new spike is also con-83

trolled. Hence, thanks to procedural connectivity combined84

with time asynchrony, we propose a new algorithm for time85

asynchronous models, running sequentially on a single pro-86

cessor, thus simulating a realistic network of 108 neurons for87

which computational complexity as well as memory costs can88

be controlled beforehand.89

Results90

Time synchrony for parallel simulation. Brain simulation of91

large networks is usually done in parallel based on simulation92

synchronization. Of course, this depends on both the mathe-93

matical model at hand and the simulation algorithm. However,94

for most models, differential equations are used to derive the95

time course of the membrane voltage for each individual neu-96

rons. These equations are (approximately) solved by usual97

discrete-time numerical schemes (cf. Figure 1a) (24).98

In this kind of implementation, when one presynaptic neu-99

ron fires at a time t, i.e., emits a spike (red dots in Figure100

1a), the synaptic transmission to post-synaptic neurons is101

done at the next time step t+ ∆t (orange dots in Figure 1a).102

Between two synaptic transmissions, the membrane potential103

of a neuron evolves independently of the other neurons and104

can be computed in parallel (green dots in Figure 1a). How-105

ever, since one does not know when a spike will be emitted106

in the network in advance, the membrane potential of all the107

neurons are classically computed in a synchronous way to be108

able to eventually transmit spikes, at each time step ∆t of the109

algorithm.110

Time asynchrony for sequential simulation. As said in the in-111

troduction, point processes models of neuronal network may112

guarantee time asynchrony if they have a stochastic intensity.113

Such processes include Hawkes processes, GLM approaches,114

Wold processes or Galvès Löcherbach models in continuous115

time (13, 15–18). Most of these models have proved their116

efficiency in terms of goodness-of-fit with respect to real spike117

train data (13–17, 30). Often, the intensity in these models118

can be informally interpreted as a function of the membrane119

voltage and for more evidence, we refer the reader to (31),120

where the spike train of a motor neuron has been shown to121

be adequately modeled by a point process whose stochastic122

intensity is a function of the membrane voltage.123

These point processes models differ from classical LIF,124

mainly because the higher the intensity (or the membrane125

potential) of a given neuron is, the more likely it is that the126

neuron fires, but this is never for sure. In classical LIF models,127

the neurons fire when their membrane potential reaches a fixed 128

threshold. Therefore it may happen that if a presynaptic neu- 129

ron fires, and if the corresponding postsynaptic neurons have 130

a potential close to the threshold, then all the postsynaptic 131

neurons fire at the exact same time. This phenomenon can 132

be massive (32, 33): this corresponds to the mathematical 133

phenomenon of blow-up, which happens for some mean-field 134

limits of such models. In this case, no time asynchrony is 135

possible but such phenomenon is completely unrealistic from 136

a biological point of view. There are LIF models with random 137

or soft threshold (19, 23) which might not have this problem 138

and which may also satisfy time asynchrony. 139

In (21), we proposed a discrete-event algorithm to simulate 140

point processes with stochastic intensities. This algorithm is 141

based on the theory of local independence graph (34), which 142

is the directed neuronal network in our present case. 143

The algorithm works as follows (see Figure 1b). The spike 144

events happen in continuous time in the system (up to the 145

numerical precision). Once a spike on a particular presynaptic 146

neuron happens (red dots in Figure 1b), the postsynaptic 147

neurons are updated (orange dots in Figure 1b). The presy- 148

naptic and the post synaptic neurons compute their intensities 149

(assimilated to membrane potential) and forecast its evolution 150

(green arrows in Figure 1b) if nothing in between occurs in 151

the system. They are therefore able to forecast their potential 152

next spike (gray dots in Figure 1b). The algorithm maintains 153

a scheduler containing all potential next spikes on all neurons 154

and decides that the next neuron to fire effectively is the one 155

corresponding to the minimum of these potential next spikes. 156

For more details, we refer to (21). 157

The gain comes from the fact that neurons that are not 158

firing a lot, do not require a lot of computation either. In 159

particular we do not have to update all neurons at each spike 160

but only the pre and post synaptic neurons that are involved in 161

the spiking event. This is the main difference with the parallel 162

simulation framework detailed above. The other difference 163

is that we can work with arbitrary precision, typically 10−15
164

if necessary, without impeding the time complexity of the 165

algorithm. 166

Note that the whole algorithm is possible only because 167

two neurons in the network will not spike at the same time: 168

the whole concept is based on time asynchrony to be able to 169

jump from one spike in the system to the next spike in the 170

system. Of course, this is true only up to numerical precision: 171

if two potential next spikes (gray dots on Figure 1b) happen 172

at the exact same time with resolution 10−15, by convention 173

the neuron with the smaller index is said to fire. But the 174

probability of such event is so small that this is not putting 175

the simulation in jeopardy. 176

Also note that this does not prevent neurons to eventually 177

synchronize frequently over a small time duration of a few 178

milliseconds, as defined for instance in (35) and the references 179

therein. 180

Procedural connectivity. One of the memory burden of both 181

methods (parallel and time asynchrony) comes from the fact 182

that a classic implementation stores the whole connectivity 183

graph, which is huge for brain scale models. 184

If the connectivity is the result of a random graph and 185

that each presynaptic neuron is randomly connected to its 186

postsynaptic neurons, one can store the random seed instead 187

of the result of the random attribution. Hence the whole 188
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graph is never stored in full but only regenerated when need189

be (see Figure 1b). The random connectivity is regenerated190

at each spike taking advantage of the deterministic nature of191

the pseudo-random generator used in the simulation. Storing192

the generator initial seed, the seed of each neuron is computed193

based on initial seed value and neuron index (see Figure 1c).194

With this method, only the initial seed is stored in memory.195

Of course this dynamic regeneration at each spike has a cost196

in terms of time complexity, but this cost is negligible with197

respect to the other computations that need to be made and198

this saves memory.199

This method has been evoked at first in (23) for time asyn-200

chronous algorithms, without being put into practice, whereas201

this method has been already implemented with success on202

parallel programming with GPU (24).203

Computational and memory costs. In (21), we obtained an204

accurate estimate of the complexity of the algorithm without205

procedural connectivity, for the simulation of linear Hawkes206

processes (cf. Equation 7 of (21)). This can be reused to207

compute the computational complexity of the same model,208

when the procedural connectivity step is added. Thus the209

overall time complexity of our algorithm is of the order of210

O
(
T
[
Md2m̄2 + log(M)Mdm̄+Mdm̄

])
[1]211

where M is the number of neurons, p the connection probabil-212

ity, d = dpMe the average degree of the network, m̄ the average213

firing rate of the network and T the simulation duration. The214

last term in Eq. (1) corresponds to the computational cost215

of the procedural connectivity at each spike, which is indeed216

negligible with respect to other terms, as explained before.217

Note that such computational costs depend in particular218

on the intensity shape of the underlying point process model.219

The linearity of the Hawkes processes makes it easy to derive,220

whereas this can be much more cumbersome with other models221

such as stochastic LIF, which needs to compute the distribution222

of the time at which the threshold is reached.223

The maximal memory cost of the procedural connectivity,224

without the spike times storage, is of the order of O(dω) =225

O(pMω), with ω the number of bits necessary for representing226

the index of a post-synaptic neuron.227

The memory cost of a static storage of the whole graph is228

of the order of O(dMω) = O(pM2ω). We do not include in229

this the memory costs for the storage of each spike of each230

neuron. However, this cost is the same whatever the method231

and it is of the order of MTm̄ε, where ε is the number of bits232

necessary to represent a spike, which depends on the numerical233

precision with which time is recorded. If d is thought to be a234

fixed parameter, the memory cost of our complete algorithm235

with procedural connectivity is thus236

O(dω +MTm̄ε) [2]237

Conversely, the use of a static storage of the network is238

O(dMω + MTm̄ε). Note however that depending on what239

the program needs to return, we might not want to have the240

whole set of points but only summary statistics such as firing241

rates that will cost in memory much less than O(MTm̄ε).242

Choice of brain scale parameters. Because of the precision of243

the actual measurements and the brain region and neuron244
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Fig. 1. Neuronal computations in time and in the network

variability, it is difficult to estimate quantitatively both physi- 245

ological (number of synapses per neuron, etc.) and dynamic 246

parameters (average firing rate, etc.) of neuronal networks 247

in primates (6) and humans (36). Only rough estimates are 248

available. The human brain being the more computationally 249

intensive, we estimate here its main parameters for simulation. 250

Our goal is indeed to show the algorithm scalability to simulate 251

large networks with such parameters. 252

To our knowledge, the best documented region of the human 253

brain is the (neo)cortex. Based on the structural statistics 254

(number of neurons and synaptic connections) of neuronal 255

networks in the (neo)cortex, we extrapolate here their repre- 256

sentative parameter values at brain scale. 257

The firing rate of a neuron in the brain can be estimated 258
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by the limited resources at its disposal, especially glucose.259

Measures of ATP consumption have shown (see (29)) that the260

firing rate of a neuron in human neocortex can be estimated261

around 0.16Hz. Still based on ATP consumption, only 10% of262

the neurons in the neocortex can be active at the same time.263

So it seems coherent to choose an average of 0.16Hz. These264

values can be extrapolated to the whole brain∗, as follows.265

The neocortex represents 80% of the volume of the brain
(37) and consumes 44% of its energy (29). Considering that
the energy consumed by the brain is proportional to the firing
rate of the neurons, the power ratio then consists of

Pcortex
Pbrain

∼ Vcortexm̄cortex

Vbrainm̄brain
,

with m̄cortex the mean firing rate of individual neurons in the266

neocortex (resp. in the brain) and Vcortex the volume of the267

neocortex (resp. in the brain). The average firing rate of268

the brain then consists of m̄brain = 0.8× 0.16
0.44 = 0.29 Hz per269

neuron.270

This average firing rate should not be confused with the271

fact that particular neurons can have a much larger firing272

rate. Particularly, groups of neurons synchronize together for273

achieving a particular cognitive task: this is the concept of274

neuronal assemblies (38). In an assembly, neurons can usually275

increase their rates to tens Hz (possibly 50Hz) over a short276

duration. Therefore, we choose a firing rate in the brain where277

most of the neurons have a firing rate of 0.3Hz but some have278

a much higher firing rate (up to 50Hz) using an heavy tailed279

distribution, see Materials and Methods and Table 2.280

The average number of synaptic connections in human281

brains is hard to estimate and depends heavily on the neuron282

types and brain regions. For example, in the brain, it is as-283

sumed that the majority of neurons are cerebellum granule284

cells (39). In (40), the number of synaptic connections to gran-285

ule neurons is estimated to an average of only 4 connections,286

matching those observed anatomically. On the other hand,287

Purkinje neurons can have up to 200, 000 synapses on only one288

dendrite in the human brain (39). The approximate number289

of synapses in the cortex is 0.6 × 1014 (41). Assuming that290

the volume of the cortex represents around 80% of the volume291

of the brain, the number of synapses in the brain is of order292

1014. Considering that the number of neurons in the human293

brain is of order 1011 (36), we find that the average number of294

synapses is about 1, 000 synapses per neuron†. The synaptic295

connection probability thus depends on the number of neurons296

M : pM = 1,000
M

.297

Finally, an action potential arriving on one pre-synaptic298

neuron produces an Excitatory PostSynaptic Potential (EPSP),299

or an Inhibitory PostSynaptic Potential (IPSP), in the postsy-300

naptic neuron. The duration of these postsynaptic potentials301

is about τ = 20ms (39).302

Therefore the parameters that we used in the simulation303

are indicated in Table 1. Notice that these parameters are304

generic and intuitive and can be taken easily into account in305

further studies, either at a biological or at theoretical model306

level.307

∗This calculus can be found on AI impact project webpage: https://aiimpacts.org/
rate-of-neuron-firing/ (lastly verified: 02/09/2021)

†Calculus on AI impact project webpage: https://aiimpacts.org/scale-of-the-human-brain/ (lastly ver-
ified: 02/09/2021).

Simulation duration T = 5s
Mean firing rate m̄ = 0.3Hz

Number of neurons simulated M = {105, 106, 107, 108}
Synaptic connection probability pM = 1000/M

Postsynaptic duration τ = 20ms
Table 1. Neuronal network parameters at human brain scale level.

Software and hardware configurations. The simulations have 308

been run on a Symmetric shared Memory multiProcessor 309

(SMP) computer equipped with Intel CascadeLake@2.6GHz 310

processors‡. This kind of computer is used here to have access 311

to larger memory capacities. At computational level, only 312

one processor was used for the simulations. For small sizes 313

of networks requiring small amounts of memory (cf. Figure 314

3b), e.g. a network of 106 neurons with a total of 109 synaptic 315

connections, this computer is equivalent to a simple desktop 316

computer. The simulation of such networks takes only 25 317

minutes for each biological second. This is of the order of 318

the 4.13× 106 neurons and 24.2× 109 synapses simulated on 319

GPUs (24), which takes about 15 minutes for each biological 320

second. This GPU-based simulation was already running up 321

to 35% faster than on 1024 supercomputer nodes (one rack of 322

an IBM Blue Gene/Q) (42). Our simulation only requires a 323

single usual processor and no GPU. 324

The implementation of the algorithm is written in C++ 325

(2011) programming language and compiled using g++ 9.3.0. 326

Firing rate at network level. Table 2 presents classical elemen- 327

tary statistics on the simulated firing rates, whereas Figure 2 328

presents the corresponding densities. As one can see in Section 329

Material and Methods, the system is initialized with a lot of 330

neurons whose spontaneous spiking activity is null. The sys- 331

tem needs to warm up to have almost all neurons spiking. This 332

explains why the density at T = 5s is still rippled whereas, at 333

T = 50s, it looks much smoother. This last case corresponds 334

basically to the stationary version of the process. Indeed, as 335

explained in Section Material and Methods, the parameters 336

of the Hawkes model (in particular the spontaneous spiking 337

activity) have been fixed to achieve a certain stationary distri- 338

bution of the firing rates (with mean 0.3Hz), which is heavy 339

tailed to achieve records as large as 50 Hz. As one can see 340

(even if at T = 5s the system is not warmed up yet with a 341

lot of non spiking neurons), one can still achieve the desired 342

average firing rate and extremal values. These basic statistics 343

are not varying a lot with T (see Table 2). Note that the 344

density plots are roughly the same for all configurations: with 345

ripples at T = 5s and smooth curve at T = 50s. 346

Our approach is particularly adapted to simulate precisely 347

and efficiently a huge disparity in frequency distributions. 348

Indeed, our simulation algorithm (22) allows focusing efficiently 349

the computing resources on highly spiking neurons without 350

computing anything for almost silent neurons (cf. Figures 1a 351

and 1b). The last advantage of our approach is to be able to 352

store time stamps with a precision of 10−15s. 353

Execution times and memory usage. The simulation execu- 354

tion times are presented in Figure 3a for different sizes of 355

‡We used v100l and v100xl partitions on Joliot-Curie supercomputer at TGCC as a Fenix Infras-
tructure resource. Each node of v100l and v100xl has Intel CascadeLake@2.6GHz processors. A
node on v100l is a dual-socket one with 2x18 cores, each core having a memory of 10 GBytes, so
the total amount of available memory is 360 GBytes. A node on v100xl is a quad-socket one with
4x18 cores, each core having a memory of 41.5 GBytes, so the total amount of available memory
is 3 TBytes.
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Fig. 2. Densities (on a logarithmic scale) of the simulated firing rates in the network
with M = 106 neurons and d = 1000 post-synaptic connections in average. In red,
for T = 5s and in blue for T = 50s. These densities are obtained with a Gaussian
kernel estimator with bandwidth 0.02.

neural networks and different numbers of synaptic connec-356

tions (called children). The experimental execution times357

obtained are in agreement with Eq. (1) which predicts, for358

instance, O(1012) operations for M = 107 and d = 103. The359

curves are almost linear (with slopes around 1.1) with respect360

to the number of neurons, for different numbers of synaptic361

connections.362

The total amount of memory used is displayed in Figure 3b.363

They are in agreement with the procedural memory complexity364

of Eq. (2) and also almost linear (with slopes slightly below365

1). Note in particular that for M = 107, d = 103, ω = 32 and366

ε = 64 (leading to a 10−15 precision in time), the memory cost367

predicted by Eq. (2) is O(1011) for the static implementation,368

whereas it is O(109) for the procedural connectivity imple-369

mentation. Besides notice that, as expected, increasing the370

M d Average freq. Freq. min. Freq. max. Freq. std. Percentage of non
spiking neuron

1e5 250 0.279 (0.279) 0 (0) 14 (13.94) 0.315 (0.222) 31.2 (0.01)
1e5 500 0.334 (0.333) 0 (0.02) 6.6 (5.76) 0.328 (0.218) 23.5 (0)
1e5 1000 0.399 (0.398) 0 (0.04) 10.4 (11.64) 0.345 (0.220) 16.9 (0)
1e6 250 0.267 (0.267) 0 (0) 19.2 (20.84) 0.308 (0.217) 33 (0.01)
1e6 500 0.322 (0.324) 0 (0) 38.4 (39.38) 0.329 (0.225) 25.1 (0.00)
1e6 1000 0.383 (0.387) 0 (0.02) 13.4 (12.9) 0.344 (0.223) 18.5 (0)
5e6 250 0.26 (0.261) 0 (0) 27.4 (28.5) 0.307 (0.217) 34.1 (0.02)
5e6 500 0.315 (0.316) 0 (0) 34.2 (34.1) 0.324 (0.220) 26 (0.00)
5e6 1000 0.377 0 19.8 0.342 19
1e7 250 0.258 (0.259) 0 (0) 23.2 (21.62) 0.306 (0.217) 34.4 (0.02)
1e7 500 0.311 0 21.6 0.322 26.4
1e7 1000 0.374 0 21.8 0.342 19.3
5e7 250 0.253 0 38.2 0.304 35.4
5e7 500 0.305 0 50.6 0.321 27.2
1e8 250 0.251 0 46.2 0.303 35.7

Table 2. Firing rates elementary statistics obtained by simulation for
different sizes of neural networks and different numbers of synaptic
connections and T = 5s. The number between parentheses displays
the results at T = 50s for the less complex simulations

.

average number of post-synaptic connections per neuron has 371

few impact on the memory. Indeed, within the network, only 372

the post-synaptic connections receiving spikes are dynamically 373

generated. 374

Material and Methods 375

Model. For a set of M neurons, we first design the graph of 376

interaction by saying that neuron j influences neuron i if 377

a Bernoulli variable Zj→i of parameter p is non zero. The 378

resulting network is an Erdös-Rényii graph. 379

Once the network is fixed, we design the spike apparition
thanks to a Hawkes process, that is a point process whose
intensity is given by

λi(t) = νi +
M∑
j=1

∫ t

0
hj→i(t− τ)dN j

τ ,

with dN j the point measure associated to neuron j. In this 380

formula, νi represents the spontaneous firing rate of the neuron 381

i if the other neurons do not fire, whereas hj→i is the interac- 382

tion function, that is hj→i(u) is the increase (if positive) or 383

decrease (if negative) that the firing rate of neuron i suffers 384

due to a spike on j, which happens u seconds before. 385

We are interested in a particular case of the Hawkes process
where all the interaction functions are always the same when
they are non null. More precisely, we set the interaction
function

hj→i = Zj→iθh,

where h is a fixed positive interaction function of integral 1, θ is 386

a tuning parameter that we need to calibrate to avoid explosion 387

of the process. We also set hi→i = 0 (no self interaction). We 388

take h = 501[0,0.02]: the interaction function is a constant 389

and non zero only on a small interval of length 20ms, which 390

corresponds to typical Post Synaptic Potentials in the brain. 391

Let us denote Hj→i =
∫ +∞

0 hj→i(t)dt) and H = 392

(Hj→i)i,j=1,...,M is the corresponding matrix (line i corre- 393

sponds to a triggered neuron, column j to a triggering neuron). 394

Note in particular that in this model, there are only excita- 395

tory neurons : if in the brain, there are inhibitory neurons, this 396

will only reduce the number of points without changing the 397

complexity. Moreover when all the interaction functions are 398

non negative, we can easily understand the explosion condition. 399

Indeed, this Hawkes process explodes, that is, it produces 400

an exponentially increasing number of point per unit of time 401

(see (43)) if the spectral radius of H is larger than 1. 402

If (Condition Stat) the spectral radius is strictly smaller 403

than 1 (44), then a stationary version exists and the corre- 404

sponding vector of mean firing rates m = (mi)i=1,...,M is given 405

by 406

m = (I −H)−1ν. [3] 407

Note also that if we start the simulation without points before 408

0 in (Condition Stat), the process is not stricto sensu stationary 409

but it will converge to an equilibrium given by the stationary 410

state (ergodic theorem) and that the number of points that 411

will be produced is always smaller than the stationary version. 412

In the present case we want (i) to prevent explosion and 413

(ii) to reach a certain vector m which is biologically realistic 414

(average around 0.3 Hz, records around 50 Hz). Both of these 415

calibrations can be done mathematically beforehand in the 416

Hawkes model : we can guarantee the behavior of the whole 417
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Fig. 3. Simulation execution times (3a) and memory usage (3b) for different sizes of networks.

system even before performing the simulation, whereas this418

might be much more intricate for other models such as LIF.419

Choice of θ or how to avoid explosion. Note that H = θZ,420

with Z = (Zj→i)i,j=1,...,M . So if we can compute the largest421

eigenvalue of Z or an upper bound, we can decide how to422

choose θ.423

We can use Gershgorin circles (45) to say that any complex
eigenvalue λ of Z satisfies (because the diagonal is null),

|λ| ≤ max
i=1,...,M

∑
j 6=i

Zj→i.

Therefore the spectral radius is upper bounded by424

maxi=1,...,M Bi, where Bi =
∑

j 6=i Zj→i. This random quan-425

tity can be computed for small networks but it is clearly too426

intensive in our setting: indeed, with the procedural connec-427

tivity implementation, it is always easy to access the children428

` of a given i, i.e. such that i→ ` is in the graph, but we need429

to look at all the neurons in the graphs to find out the set of430

parents j of i, i.e. such that j → i is in the graph. However,431

probabilistic estimates might be computed mathematically.432

Indeed Bi is just a sum of i.i.d. Bernoulli variables. So we433

can apply Bernstein’s inequality (46). This leads to, for all434

positive x,435

∀i = 1, ...,M,436

P(Bi ≥ (M − 1)p+
√

2(M − 1)p(1− p)x+ x/3) ≤ e−x,437

and, by union bound, for the maximum

P(max
i=1,...,M

Bi ≥ (M−1)p+
√

2(M − 1)p(1− p)x+x/3) ≤Me−x.

Therefore let us fix a level α, say 1%, and take x =
log(M) + log(1/α) in the previous equation. We obtain that
with probability larger than 1− α, the spectral radius of Z is
upper bounded

ρmax = (M − 1)p+ ξα

with

ξα =
√

2(M − 1)p(1− p)[log(M) + log(1/α)]
+[log(M) + log(1/α)]/3

Note that ρmax is roughly (M − 1)p, which is the largest 438

eigenvalue of E(Z). Finally it means that if we take θ < 439

1/ρmax, the process will not explode with probability larger 440

than 1−α. In practice, to ensure a strong enough interaction, 441

we take θ = 0.9ρ−1
max. 442

Choice of νi or how to constraint the distribution of the mean 443

firing rates. The first step consists in deciding for a target 444

distribution for the mi. We have chosen to pick the mi’s 445

independently as 0.1X where X is the absolute value of a 446

student variable with mean 3 and 4 degrees of freedom. The 447

choice of the student variable was driven by the wish of having 448

a moderate heavy tail, which will ensure records around 50 449

Hz and a mean around 0.3Hz. 450

The problem is that the mi’s are not parameters of the
model, so we need to understand how to tune νi to get such
mi’s. Note that by inverting Eq. (3), we get that

(I −H)m = ν

that is for all i

νi = mi − θ
∑
j 6=i

mjZj→i,

which is very intuitive (47). Indeed the spontaneous rate that 451

we need to put is the mean firing rate mi minus what can be 452

explained with the parents of i. 453

So in theory, the Hawkes model is very easy to tune for pre- 454

scribed firing rates since there is a linear relationship between 455

both. However, and for the same reasons as before, it might 456

be too computationally intensive to compute this explicitly. 457

One possible way is to again use concentration inequalities, 458

but this time on
∑

j 6=imjZj→i and not on Bi. However we 459

decided to do something simpler, which works well (as seen in 460

Figure 2). 461
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Indeed
∑

j 6=imjZj→i is a sum of about (M − 1)p ' 1000462

i.i.d variables with mean m̄ = 0.3Hz. Hence it should be close463

to m̄Bi. With the previous computations, we know already464

that νi should therefore be larger than mi − θρmaxm̄.465

With the previous choice of θ = 0.9ρ−1
max, we have chosen to

take the positive part for the νi’s in the simulation, that is :

νi = max(mi − 0.9m̄, 0).

Therefore νi remains positive or null, which guarantees that466

the Hawkes process stays linear. However, this also means467

that a non negligible portion of the neurons start with a null468

spontaneous firing rate, which explains the ripples of Figure 2.469

With this choice, we cannot hope to have exactly the same470

distribution as the desired mi’s, but it conserves the same471

heavy tail and roughly the same mean firing rate as the one472

we wanted, as one can see on Table 2.473

Discussion474

Thanks to time asynchrony, we propose a new scalable algo-475

rithm to the simulate spiking activity of neuronal networks.476

We are able to generate roughly the same firing pattern as a477

real brain for a range between 105 and 108 neurons, in a few478

minutes on a single processor, most parameters being tuned479

thanks to general considerations inferred from the literature.480

Corresponding computational and memory complexities are481

shown to be both linear.482

At simulation level, whereas usual simulations are based483

on the continuous variation of the electrical potentials of LIF484

neurons, point processes lead to much more efficient simula-485

tions. In particular, instead of computing the small continuous486

variations for all neurons, only discrete spikes and their in-487

teractions are simulated in the network. Between two spikes488

no computations are done. Point processes also lead to time489

asynchrony (two spikes cannot occur at the same time in the490

network), which is a fundamental hypothesis for the algorithm491

to work.492

Combining the time asynchrony hypothesis with procedural493

connectivity drastically reduces the memory consumption and494

also, for the same network activity, reduces the computations495

per spikes (cf. Figures 1a and 1b). In particular, complexities496

(both theoretical and concrete) can be computed and proved497

to be almost linear in the number of neurons, when Hawkes498

processes are generated, leading to simulation scalability of499

the whole approach without precision loss.500

Both modeling and simulation results open many research501

perspectives. We are currently developing new discrete event502

algorithms that are able to simulate the spiking activity of503

neurons embedded in potentially infinite neuronal networks504

(48). This paves the path for simulation of parts of the brain505

as an open physical system.506

Furthermore, the minimal number of computations and507

memory storage obtained here open new exciting perspectives508

with respect to massive neuromorphic computers, by improving509

the energy saving consumption of neuromorphic components510

(49).511

Finally, if we have proved that the simulation is doable,512

the point process model used here can be calibrated further513

on real data, by incorporating inhibition and more variability514

in the interaction functions. Also, this model can be used for515

reconstructing the functional connectivity of experimentally516

recorded neurons (15, 47) to have access to more realistic517

interaction functions. Besides, as only few computing resources 518

(one single processor) is used with a minimal memory amount, 519

this opens new possibilities to run in parallel many independent 520

replications of stochastic simulations of large networks. This 521

is particularly interesting for calibrating models based on real 522

data collections. 523
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