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Abstract  39 

SARS-CoV-2 variants of concern (VoC) show reduced neutralization by vaccine-induced and 40 

therapeutic monoclonal antibodies. We tested therapeutic equine polyclonal antibodies 41 

(pAbs) against four VoC (alpha, beta, epsilon and gamma). We show that equine pAbs 42 

efficiently neutralize VoC, suggesting they are an effective, broad coverage, low-cost and a 43 

scalable COVID-19 treatment. 44 
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To the editor: SARS-CoV-2 causes coronavirus infectious disease 19 (COVID-19), which 46 

leads to either critical illness or death in 5% of patients (1). COVID-19 prevention and 47 

treatment options include vaccines, antivirals, and antibody formulations. A wide array of 48 

vaccine platforms have shown efficacy in preventing severe disease, but universal access is 49 

limited and many resource-limited settings largely lack sufficient vaccine coverage (2). Even 50 

though there are more than 300 therapeutic drugs in clinical trials, few have proven 51 

advantageous, such as dexamethasone (1, 3). Direct-acting antivirals like Remdesivir are 52 

most effective if given very early, require supplementary oxygen therapy and are very costly 53 

at 2,000-3,000 USD per treatment, limiting universal access (4). Convalescent plasma or 54 

hyperimmune globulins, which can be prepared from the pooling of many donors, have been 55 

used for decades to treat diseases such as ebola and influenza and could be a more affordable 56 

at 350-1,000 USD per treatment. However, their preparation is donor-dependent, requires 57 

strict donor rigorous testing for both blood-borne pathogens and high levels of neutralizing 58 

anti-SARS-CoV-2 antibodies, not readily available on blood bank systems in many 59 

developing countries (5). The use of monoclonal antibodies (mAbs) are safe alternatives 60 

shown to enhance viral clearance, but their large scale production is challenging and costly, at 61 

around 1,500-6,500 USD per treatment (6). A low-cost alternative to mAbs are formulations 62 

of intact or fragmented equine polyclonal antibodies (pAbs), widely used for decades as 63 

therapies against viral infections or as antivenoms.  64 

We and others have previously shown that horses can be efficiently immunized with different 65 

SARS-CoV-2 antigens to yield high quantities of purified polyclonal antibodies (pAbs) that 66 

are 50-80 times more potent than convalescent plasma (7, 8). A formulation of equine 67 

polyclonal F(ab’)2 fragments against the receptor binding domain (RBD) of SARS-CoV-2 68 

was tested in a multi-center, double-blind, placebo-controlled phase II/III clinical trial 69 

showing that it is well tolerated and leads to clinical improvement of hospitalized patients 70 
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with moderate to severe COVID-19 (9). Additionally, there is an ongoing randomized, multi-71 

center, double-blind, placebo-controlled, dose-finding, phase IIb/III clinical trial 72 

(NCT04838821) at hospitals of the Costa Rican Social Security Fund testing equine pAbs 73 

formulations to treat moderate and severe COVID-19 cases. 74 

However, pre-clinical data of equine hyperimmune pAbs are only available for early SARS-75 

CoV-2 isolates, such data are lacking for recent and globally circulating variants, considered 76 

of concern (VoC) due to their increased transmissibility. Voc alpha, beta, epsilon and gamma 77 

(https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html) (lineage 78 

designations in Pango/Nextrain: B.1.1.7/501Y.V1 first detected in the United Kingdom, 79 

B.1.351/501Y.V2 first detected in South Africa, P.1/501Y.V3 first detected in Brazil/Japan, 80 

and B.1.427/B.1.429 first detected in the US/California) exhibit a substantial reduction or 81 

complete abrogation of neutralization by therapeutic mAbs or by antibodies present in the 82 

plasma of vaccinated or convalescent individuals (10).  83 

Here we report the results of a plaque reduction neutralization assay against VoC for our 84 

purified equine pAbs formulations.  The two formulations are the SARS-CoV-2 recombinant 85 

S1 protein (called anti-S1; produced in baculovirus insect cells), and SEM mosaic (called 86 

anti-mix; an E. coli derived recombinant protein containing the S, E, and M immunodominant 87 

regions) derived from the strain Wuhan-Hu-1, Accession N YP_009724390 (Native Antigen 88 

Company, Oxford, United Kingdom), purified using caprylic acid precipitation method (8). 89 

Both formulations effectively neutralized four VoC and an early isolate of the virus 90 

(Germany/Gisaid_EPI_ISL_406862) at similar inhibitory concentrations (IC50 range for anti-91 

S1 formulation: 0.206-0.377 µg/mL; and for the anti-mix formulation: 0.146-0.471 µg/mL; 92 

Figure 1; IC50 dose-response curves are shown in the Technical Annex). Those 93 

concentrations are extremely low when compared to pAbs doses used by other groups in 94 
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patients in clinical trials (4 mg/kg) (9), even at the upper estimates of the 95% confidence 95 

intervals, reaching a maximum of 13.89 µg/mL for the beta (B.1.351/501Y.V2) VoC. For 96 

both equine pAbs formulations the differences between potencies against tested VoC and 97 

early SARS-CoV-2 isolates were not statistically significant (sum-of-squares F test of Anti-98 

S1; p=0.9, Anti-Mix, p=0.8).  99 

Our data suggest high potential of equine pAbs for treatment of COVID-19. By shifting 100 

antivenom platforms to produce equine pAbs, laboratories in both developed and developing 101 

countries that have been manufacturing and distributing safe and standardized antivenoms for 102 

decades could rapidly fill the gaps in global demand for therapies that are both effective 103 

against VoC and affordable to low- and middle-income countries. 104 
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 142 
Figure 1. In vitro neutralizing potency of (A) Anti-S1 (S1 SARS-CoV-2 recombinant 143 

protein) and (B) Anti-Mix (mixture of S1, N, and SEM mosaic SARS-CoV-2 recombinant 144 

proteins of Wuhan-Hu-1, Accession N YP_009724390.1) polyclonal antibodies purified from 145 

the plasma of hyperimmunized horses against different SARS-CoV-2 variants of concern 146 

(VoC) and a early isolate, named using WHO and Pango/Nextrain designations (strains used= 147 

GERMANY/GISAID EPI_ISL 406862,  BetaCoV/ChVir21652, hCoV-148 

19/Aruba_11401/2021,  hCoV-19/Netherlands/NoordHolland_10915/2021, 149 

BetaCoV/ChVir22131/B.1.351/501Y.V2, acquired from https://www.european-virus-150 

archive.com/evag-news/sars-cov-2-collection). The inhibitory concentration (IC50) in plaque 151 

reduction neutralization tests (PRNT) was calculated using a nonlinear regression analysis in 152 

the GraphPadPrism 5 software. Potencies (IC50) were not statistically different among viral 153 

variants with either formulation, and the null hypothesis was not rejected, meaning the IC50 154 

was equal in all datasets. Dotted lines denote the mean minimum and maximum 155 

concentration and solid lines denote 95% confidence intervals for both formulations. Plaque 156 

reduction neutralization tests (PRNT) were performed as follows. Briefly, VeroE6 cells (3.25 157 

× 105 cells/ml) were seeded in 24-well plates and incubated overnight. Equine polyclonal 158 

antibody formulations were mixed in equal parts with a virus solution containing 20 PFU. 159 
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The serum–virus solution was incubated at 37°C for 1 h and added to the cells. After 1 h at 160 

37°C, supernatants were discarded, and cells were supplemented with 1.2% Avicel solution 161 

in DMEM. After 3 d at 37°C, supernatants were removed, and the 24-well plates were fixed 162 

and inactivated using a 6% formaldehyde/PBS solution and stained with crystal violet, and 163 

plaques were counted. 164 

 165 

 166 
 167 
Annex figure. IC50 dose-response curves to SARS-CoV-2 early isolates and variants of 168 

concern named using WHO and Pango/Nextrain designations. The Y axis denotes the mean 169 

plaque forming units (PFU) per milliliter in triplicate. The X axis denotes the Log10 170 

concentration of the Anti-S1 and the Anti-Mix (combination of S1, N and SEM mosaic 171 

protein of Wuhan-Hu-1, Accession N YP_009724390.1) formulations.   172 
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