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Abstract

Neurons communicate with each other by sending action potentials through their axons. The
velocity of axonal signal propagation describes how fast electrical action potentials can travel,
and can be affected in a human brain by several pathologies, including multiple sclerosis, trau-
matic brain injury and channelopathies. High-density microelectrode arrays (HD-MEAs) provide
unprecedented spatio-temporal resolution to extracellularly record neural electrical activity. The
high density of the recording electrodes enables to image the activity of individual neurons down
to subcellular resolution, which includes the propagation of axonal signals. However, axon recon-
struction, to date, mainly relies on a manual approach to select the electrodes and channels that
seemingly record the signals along a specific axon, while an automated approach to track multiple
axonal branches in extracellular action-potential recordings is still missing.

In this article, we propose a fully automated approach to reconstruct axons from extracel-
lular electrical-potential landscapes, so-called "electrical footprints" of neurons. After an initial
electrode and channel selection, the proposed method first constructs a graph, based on the volt-
age signal amplitudes and latencies. Then, the graph is interrogated to extract possible axonal
branches. Finally, the axonal branches are pruned and axonal action-potential propagation veloc-
ities are computed.

We first validate our method using simulated data from detailed reconstructions of neurons,
showing that our approach is capable of accurately reconstructing axonal branches. We then apply
the reconstruction algorithm to experimental recordings of HD-MEAs and show that it can be used
to determine axonal morphologies and signal-propagation velocities at high throughput.

We introduce a fully automated method to reconstruct axonal branches and estimate axonal
action-potential propagation velocities using HD-MEA recordings. Our method yields highly re-
liable and reproducible velocity estimations, which constitute an important electrophysiological
feature of neuronal preparations.
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1 Introduction
Axons are assumed to be faithful conductors of action potentials (APs) that encode and transmit
information between individual neurons. Traditionally, axons are often considered as simple transmis-
sion cables, whose role is the reliable conveyance of APs to the presynaptic terminals of synaptically
connected neurons [1]. Owing to recent technology advancements, such reductionist view of the role of
the axon is being challenged. A growing body of evidence suggests that axons may provide important
contributions to neuronal information processing [2, 3]. For example, the waveform of APs has been
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shown to be modulated during axonal conduction, which facilitated synaptic transmission to postsy-
naptic neurons [4]. Moreover, studies using two-photon imaging have found that structural changes of
axonal arbors are involved in circuit-level mechanisms of perceptual learning [5]. Therefore, a precise
tracking of axonal arbors, including the length of the axonal branches, number of branching points, and
AP conduction velocities, will help to shed light onto mechanisms involved in axonal growth during
development, axonal-AP modulation and their impact on neuronal signaling.

Due to the small diameters of axons of around 200 nm, the tracking of complete axonal arbors
is challenging. Several classical electrophysiological techniques have been used for measurements and
detection of AP propagation along axonal arbors. Whole-cell patch clamp, for example, has been used
to measure the fidelity of AP propagation using dual patching at the soma and axonal blebs [6] or
using cell-attached extracellular recordings in unmyelinated axons [7]. However, due to limitations in
simultaneously recording from multiple sites along axons, the patch-clamp technique cannot be used
to map axonal arbors. Alternatively, morphological information about neurons, including their axonal
arbors, can be obtained with high-resolution imaging techniques. Recent advancements in imaging
techniques, such as high-content imaging (HCI) [8, 9], have enhanced spatial resolution of acquired
images. Together with the advances in image processing techniques [10, 11, 12], the reliability and
throughput of such imaging methods allow for automatic tracing of neurites and their interconnections
[12]. Yet, the use of imaging techniques requires fluorescent labels [13, 14], that may alter the physio-
logical properties of the cells [15] through phototoxicity and photobleaching. In addition, it is difficult
to extract axon morphologies in high-density cultures, where axons form bundles. HCI after post-hoc
immunostaining ensures high spatial resolution, but axonal properties can only be investigated in live
neurons.

High-density microelectrode arrays (HD-MEAs) have also been used to acquire electrophysiolog-
ical signals of neurons at high temporal and spatial resolution [16]. Previous studies demonstrated
the possibility to extract detailed representations of the extracellular electrical-potential landscape, so
called "electrical footprints" of individual neurons from HD-MEA recordings by applying spike sorting
and spike-triggered-averaging techniques [17, 18, 19]. These electrical footprints reflect the neurons’
morphology, so that researchers can use them for tracking neurite outgrowths of single neurons. How-
ever, the number of axonal arbors that could be extracted in the above-mentioned studies was limited
to a few tens of cells in each sample due to tedious manual procedures to select and assign axonal
signals. To date, no automatized method for extraction of morphological and functional information
from large-scale electrophysiological HD-MEA data is available.

Building upon ideas and concepts of recent previous work [20, 21], we developed a novel, fully
automated method to accurately reconstruct axonal arbors from functional electrophysiological HD-
MEA recordings. Our method relies on a graph-based approach to reconstruct axonal branches and
estimate AP conduction velocities. The proposed automatic method for reconstruction of axonal arbors
and determining the corresponding AP conduction velocities from large-scale HD-MEA recordings
opens up new possibilities to use axonal properties as electrophysiological biomarkers for studying
compound efficacy and neural development as well as for drug screening and disease modeling.

2 Methods
In this section, we first introduce the biophysical simulation framework that we used as development
test bench and for validation. Next, we describe in detail the implementation of the axonal tracking
algorithm. Finally, we describe the protocols and procedures for experimental validation of our method.

2.1 Biophysical simulations
In order to develop and validate our axonal tracking approach, we initially used biophysical simulations.
A simulation environment allowed us to explore complexities in the extracellular action potentials in a
controlled manner, and to refine our method to deal with different cases. The simulations were carried
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out using LFPy 2.2.1 [22, 23] and NEURON 7.8.2 [24].

2.1.1 Cell morphologies

We used morphological reconstructions of human pyramidal neurons from the Allen Institute of Brain
Science cell-type database [25]. The cell models were downloaded from the Neuromorpho.org web-
site [26] and included four samples (NeuroMorpho IDs: Cell 1 - NMO_86990 - Figure 1A, Cell 2 -
NMO_86976 - Figure 1B, Cell 3 - NMO_86965 - Figure 1C, Cell 4 - NMO_87042 - Figure 1D). Since
axonal tracking will be performed for cells cultured on a flat MEA substrate [19], the morphology of
which extends principally in two dimensions, we modified the morphologies by setting all z-values to
0 µm, i.e., generated planar morphologies.

2.1.2 Cell biophysics

For all cell models, biophysical properties were added in order to obtain realistic AP generation and
axonal AP propagation. The membrane capacitance was set to 1 µF/cm2 for all compartments.
Dendritic trees were defined to feature only passive membrane properties, with a membrane resistance
of 150 kΩ and a reversal potential of −85 mV . The somatic compartments featured sodium and
potassium Kv1 channels [27], with maximum conductances of 500 and 100 S/cm2, respectively. The
axonal tracts also featured sodium- and potassium-channel conduction mechanisms, with maximum
conductances of 500 and 400 S/cm2, respectively. The reversal potential for the sodium channel was

A B

C D

Cell 1 (NMO_86990) Cell 2 (NMO_86976)

Cell 3 (NMO_86965) Cell 4 (NMO_87042)

Figure 1: Neuron morphologies for biophysical simulations. Realistic morphologies from the
Allen Institute of Brain Science cell-type database: Cell 1 (NMO_86990) - A, Cell 2 (NMO_860976)
- B, Cell 3 (NMO_86965) - C, and Cell 4 (NMO_87042) - D. The axonal arbors are colored in green,
while dendrites are in grey.
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set to 55 mV , and for the Kv1 channel to −98 mV [27]. The axial resistance was set to 80 Ωcm and the
temperature to 33° Celsius. The resting potential was set to −85 mV , and we simulated the cell model
for 100 ms. The time step for the simulations was set to 0.03125 ms, yielding a sampling frequency of
32 kHz. In order to induce a single AP, we stimulated the cell with two to five consecutive synaptic
inputs (ExpSyn mechanism - 1 ms between inputs) directly to the soma of the neuron.

2.1.3 Modeling of extracellular signals

Extracellular potentials were modeled with a well-established forward-modeling scheme using the LFPy
software [23]. Assuming a quasi-static, linear, isotropic, homogeneous, and infinite medium, the contri-
bution of a neuronal transmembrane current Ii(t), distributed over a line source (line-source model),
centered at a point ri to the potential φi(rj , t), measured by an electrode at position rj , can be
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Figure 2: Simulation of extracellular signals. A) Representation of the HD-MEA and the Cell
1 neuron located on top of the MEA. B) Amplitude map (in log scale) of the extracellular action
potentials. Several axonal branches are clearly visible. C) Membrane potentials (Vm - top) and
extracellular signals (Vext - bottom) for the four points, indicated in color, along the longest axon
in panel B. The vertical grey dotted line indicates the time of occurrence of the signal peak on the
electrode featuring the largest AP amplitude.
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computed as:

φi(rj , t) =
1

4πσ
Ii(t)

∫
dri

‖rj − ri‖
. (1)

where σ is the extracellular conductivity (0.3 S/m). While the assumption of an infinite and
homogeneous milieu is clearly violated in the presence of a highly insulating HD-MEA surface [28, 29],
we did not apply any correction, e.g., by using the method of images [28]. A correction would only
change the signal amplitudes but not alter signal timing and the relative signal amplitude distribution
across the electrodes, which are pivotal for applying the proposed tracking algorithm.

The HD-MEA device was simulated using the MEAutility package [30], which is integrated in LFPy
(version ≥ 2.1). A 100x100 electrode grid (10’000 electrodes in total) featuring a pitch of 17.5 µm,
which represents the state-of-the-art of HD-MEA devices [31, 32, 33], was placed on the x-y plane at
a vertical distance of 10 µm below the neuronal-cell plane. To represent the spatial extension of the
electrodes, they were modeled as squares with a 5µm side length. The recorded electrical potential
was computed as the average over 10 points randomly positioned within the electrode surface using
the so-called disk-approximation [22].

Figure 2A shows a visualization of the Cell 1 (NMO_86990) in black on top of the electrode grid
of HD-MEA. Displayed is the complete morphology including axons and dendrites. The extracellular
electrical-potential amplitude map (in log scale) is shown in Figure 2B, while the insets of Figure 2C,
display the aligned intracellular and extracellular signals, showing the axonal propagation from the
proximal part of the longest axon (blue, bottom) to the distal end (red, top).

2.2 Graph-based algorithm
In this section, we describe the proposed algorithm, the application of which includes four main steps:
i) channel selection, ii) graph construction, iii) axonal-branch reconstruction, and iv) axonal-arbor
pruning and velocity estimation. The method originated from ideas and concepts in our group [20, 34],
which have been organized, modified, validated and assembled to obtain a coherent and fully functional
method for axonal-arbor reconstruction. In Section 4 we compare the presented new approach to the
previously used approaches.

2.2.1 Channel selection

In order to track axonal branches, first, a subset of electrodes/channels needs to be selected that can
be used for axonal tracking. Four filters, based on signal amplitudes, kurtosis, peak time standard
deviations, and initial signal delays are available. An appropriate channel selection depends on many
factors, such as the probe geometry and the noise level, therefore, the proposed method gives freedom
to the user to modify the filter configuration to maximize tracking performance. In the following
section, we briefly describe how the different filters operate and we display, in Figure 3, the channel
selection for a real neuronal footprint, which was obtained in an HD-MEA recording using ∼20’000
channels [20]). The footprint is shown in Figure 3A, the channel selection for each available filter in
Figure 3B-E and the selection using all 4 filters in Figure 3F.

Amplitude filter The first available filter is a detection filter based on the amplitude of the recorded
signal. Only channels with a peak-to-peak amplitude larger than a detection threshold are kept for
further processing. The detection threshold can be defined relative to the largest signal amplitude of
the recording (default) or as an absolute value in µV, and the default setting is 0.01 (1 %). Figure 3B
shows all available channels in grey and the selected channels after applying the detection filter in
black.

5

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2021. ; https://doi.org/10.1101/2021.06.12.448051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.12.448051


Kurtosis filter Second, a filter based on kurtosis can be used in order to ignore channels that may
contain only noise. A noisy channel, in fact, may pass the detection filter unnoticed. However, if a
channel features signal spikes, its kurtosis should be above zero, i.e., it should exhibit a supergaussian
distribution. The default setting of the kurtosis filter is 0.3, and all channels with a kurtosis value
below this threshold are removed. Figure 3C shows all available channels in grey, and the selected
channels after application of the kurtosis filter in black.

Peak time standard deviation filter A third available filter relies on the standard deviation of
the occurrence time of the signal peaks in neighboring channels (channels within 30µm distance are
selected as default) [18]. The recommended threshold for this filter is 1 ms, and the channel selection
based on this filter is shown in Figure 3D.

Initial delay filter Finally, since our aim is to track axons, we remove all channels whose the signal
peak occurrence time is lower than that of the channel featuring the largest signal amplitude, referred
to as initial channel plus an additional delay (set to 0.1ms by default). The signal in this initial
channel is assumed to originate from the axon initial segment [17]). This removal is done to wait until
electrical-signal propagation has entered the axonal branches. Figure 3E shows all available channels
in grey, and the selected channels after using the initial-delay filter in black.

All selection filters are applied separately, and the final channels selected correspond to the intersec-
tion of the channels selected by each individual filter (Figure 3F). Finally, isolated channels (selected
channels without a neighbor within 100µm distance) are removed from the selection.

2.2.2 Construction of the graph

After the channel selection, the remaining channels are used as the nodes of a graph. Prior to the
graph construction, however, the channels are sorted based on the following heuristic:

hinit = αinit · an + (1− αinit) · pn (2)

where an are the normalized amplitude values, pn are the normalized peak latencies, and αinit is a
scalar that weighs the contributions of amplitude and peak latency. The channel sorting will influence
the order of initial channels chosen to construct axonal branches. By default, αinit is set to 0.2, so that
the channels with signal-amplitude peaks that occur comparably late are favored, and among those,
the channels featuring the largest amplitudes.

When channels are sorted, they are used as nodes to populate a directed graph. The graph is
built using the NetworkX Python package [35]. Next, edges are added to the graph. For each node, at
most n_neighbors edges (default: 3) can connect to other candidate nodes if: i) the candidate node
has a signal peak occurring earlier in time, and ii) the candidate node is within a maximum distance
(default: 100µm). Among the candidate nodes that satisfy these two requirements (there can be more
than n_neighbors depending on the electrode density of the MEA), the channels featuring the largest
amplitudes and the lowest distances are favored. Channels for which there is no other channel with an
earlier peak occurrence (excluding the initial channel) are connected to the initial channel if they are
within a defined spatial range (default: 200µm distance). Each edge is added to the graph along with
the average amplitude of the nodes that it connects (edge amplitude). After all edges have been added
to the graph, all amplitudes values are retrieved and normalized between 0 and 1. For amplitudes,
the slope is reversed so that the largest amplitude has a value of 0, and the smallest one is assigned a
value of 1. We denote these normalized edge amplitudes as hedge, since they are used as a heuristic
to find axonal branches. For all edges connecting to the initial channel, the hedge value is set to 2.

The graph nodes for the model of Cell 1 is shown in Figure 4A. The nodes are colored according to
hinit values. Figure 4B shows the edges colored according to hedge values for the same cell model. It
becomes evident that the hinit values exhibit local maxima at the axon ends and that lower values of
hedge nicely coincide with axonal paths. These two heuristics are then used to reconstruct the axonal
branches.
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Figure 3: Channel selection procedure. A) Amplitude map (log scale) of a neuron footprint.
B-E) Selected (black) and excluded (grey) channels after filtering for amplitude (B), kurtosis (C),
peak time standard deviation (D) and initial delay (E). Selected (black) channels after combining all
filters.

2.2.3 Axonal branch reconstruction

The two heuristic functions (hinit and hedge) are used to reconstruct axonal branches. The goal
of this step is to find possible paths that represent axonal branches. Since graph nodes are already
sorted by hinit, this procedure loops through the nodes and attempts to find paths P towards the
initial channel while minimizing the edge heuristic hedge. A path is searched between a node and the
initial channel only if the node is a local maximum in the hinit space, i.e., it has the largest value of
hinit compared to other channels within a distance of 100 µm (distance adjustable by the user). This
approach ensures that only a small number of paths is reconstructed and improves the efficiency of the
method. The nodes indicated in red in Figure 4A represent the local maxima that have been identified
as starting nodes for axonal branches. The shortest path is obtained using the A∗ method, which also
considers the spatial distance between channels. In order to avoid long jumps, the distance used by
the algorithm is computed as:

dn =

[
d−min(d)

max(d)−min(d)

]e
(3)

where d is the distance between two nodes that are connected by an edge and e is the configurable
exponential (2 by default). To further minimize long jumps, the value of e can be increased. Finally,
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Figure 4: Axonal reconstruction method. A) Graph nodes colored according to hinit values
for the Cell 1 neuron. The nodes marked with a yellow diamond indicate nodes for which a path
towards the initial channel has been searched for. B) Graph edges colored according to hedge values.
C) Identified raw axonal paths. The dark grey dots are the selected channels. The colored nodes
around an identified path are the neighbor nodes for that path, which have been removed for further
searches. The yellow circles indicate the branching points. D) Robust velocity estimation. For each
reconstructed branch, a robust estimator was used to fit the axonal AP propagation velocity. The blue
and pink diamonds at the bottom left show detected outliers from branch 0 (blue) and branch 2 (pink)
respectively, which were removed from the cleaned paths.

the A∗ method finds the path that minimizes:

argmin
P

∑
p∈P

(
1

2
hedgep +

1

2
dnp

)
(4)

where p is a single node, and P is the set of nodes that makes up a path. When a path is found, the
channels within the neighborhood of each channel in the path (by default, within 100 µm) are stored
as the neighbor channels set. If a channel in a newly identified path is already included in the set of
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neighbor channels (i.e., it is neighboring an already existing path), this channel and all channels in
the path closer to the initial channel are removed from the path. The last channel, which has not
been removed, is connected to the closest node of the already identified closest path. In this case, the
new channel becomes a branching point. After all paths and all branching points have been found,
paths are pruned and merged. A path is pruned if a portion of it extending from a branching point
does not have at least three points by default (this value is adjustable by the user). Finally, pairs of
paths that, after pruning, share a branching point which corresponds to the last channel of one path
and the first channel of the other path are merged. After pruning and merging, a path is stored as a
raw axonal branch if two conditions are met: i) the length of the path is larger than a path length
threshold (default is 100 µm), and ii) the path contains at least a minimum number of points (5 by
default). Once a path has been accepted, all the channels of the path and the ones within a neighbor
radius (50 µm by default) of any of its nodes are stored in the memory and excluded from further
searches. This step ensures that no duplicate paths are found for the same axonal branch.

The identified branches for the Cell 1 model are shown in Figure 4C. In this case, three raw
branches were found (blue, red, pink). The grey dots are the selected channels and the shaded nodes
around each path (with the same color) indicate the channel neighbors, which were removed from
further path searches. The yellow circles represent the branching points.

The full algorithm to estimate raw branches is described in Algorithm 1 in Appendix A.

2.2.4 Path cleaning and velocity estimation

After obtaining the set of paths, axonal velocities can be estimated. Peak times are computed as the
difference between the occurrence time of the signal peak at each node and the peak time occurrence of
the first node in the path (which is the one featuring the earliest signal peak by definition). Cumulative
distances are calculated by integrating the distances between the channels along the path.

Once peak times and distances have been computed, a robust linear fit using the Theil-Sen regressor
(using scikit-learn [36]) is used to reduce contributions of possible outliers. The velocity estimate
is derived from the slope of the regression line. We use a non-parametric and robust approach to
identify and remove possible outliers from the path. We first compute the prediction error for each
channel. We then identify outliers as nodes with an error of N times larger than the median absolute
deviation (MAD) of the error distribution (N is 8 by default) and is above a fixed threshold (30µm
by default). Outliers are then removed from the axonal branches, and a new linear fit is computed.
In some cases, it could happen that a path presents a shortcut either between different branches or
within the same branch with an undetected axonal section. In this case, a jump in the peak signal
occurrence times is observed. In order to correct for this unwanted behavior, the method attempts
to split the path to fit the sub-paths separately, when jumps in the peak times are detected (>1ms
by default). If the average R2 of the sub-paths is larger than the R2 of the original path, the path
is split and the sub-paths are considered as separate branches. Finally, axonal branches with an R2

value below a user-defined threshold (default 0.9) are discarded.
Figure 4D shows the peak latencies (x-axis), cumulative distances (y-axis), and the fitted AP

propagation velocities (dashed lines) for the raw branches displayed in Figure 4C for the Cell 1 model.
The linear fit achieves a very high R2 value, partially owing to the removal of outliers of the blue and
pink branches, depicted as diamond shapes.

2.3 Software implementation and code availability
The implementation of the above-described algorithm is available as an open-source Python pack-
age called axon_velocity on GitHub (https://github.com/alejoe91/axon_velocity) and on PyPi
(https://pypi.org/project/axon-velocity/). All the code needed to reproduce figures in this ar-
ticle can be found in the figure_notebooks folder of the GitHub repo, while the required data are
available at Zenodo (https://doi.org/10.5281/zenodo.4896745).
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The graph-based algorithm takes the electrode array template (a numpy array with dimensions
num_channels x num_samples), the x-y electrode locations (a numpy array with dimensions num_channels
x 2), and the sampling frequency as required arguments. Additionally, all algorithm-specific parameters
can be passed as extra arguments:

import axon_velocity as av

params = av.get_default_grapth_propagation_params()
gtr = av.compute_graph_propagation_velocity(template, locations, sampling_frequency,

**params)

The returned gtr object is a GraphAxonTracing object, which contains the following fields:

• branches: list of dictionaries for the detected axonal branches. Each dictionary contains the
following fields.

- channels: selected channels in the path

- velocity: velocity estimate in mm/s

- offset: offset (intercept) of velocity estimate

- r2: r2 of the AP velocity fit

- error: standard error of the linear fit

- pval: p-value of the linear fit

- distances: array with cumulative distances computed along the branch

- peak_times: array with signal peak occurrence time differences to initial channel

• selected_channels: list of selected channels used for axonal tracking

• graph: the NetworkX graph used to find axonal branches

In Table 2 of Appendix B we list and describe the additional parameters (**params), their default
values, their types, and a brief description of their role.

2.4 Experimental procedures
High-density microelectrode arrays

To validate the tracking algorithm with experimental recordings, we used data from two types of HD-
MEA chips: the first device features 26’400 electrodes with a center-to-center electrode distance of
17.5 µm and can record from up to 1024 channels simultaneously at 20 kHz [31, 32] (referred to as
MEA1k); the second device is a dual-mode HD-MEA including switch-matrix and active-pixel readout
schemes for electrodes [37, 20] (referred to as DualMode). It features a full-frame readout of 19,594
electrodes at a sampling rate of 11.6 kHz; the center-to-center electrode distance is 18µm.

Cell cultures and plating

Rat primary neurons were obtained from dissociated cortices of Wistar rats at embryonic day 18, using
the protocol described in Ronchi et al. [21]. All animal experimental protocols were approved by the
Basel-Stadt veterinary office according to Swiss federal laws on animal welfare and were carried out in
accordance with the approved guidelines.
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Prior to cell plating, HD-MEA chips were sterilized using 70% ethanol for 30 minutes. Ethanol was
then removed, and the chips were rinsed three times with sterile tissue-culture-grade water. The HD-
MEA chips were coated with a layer of 0.05% polyethylenimine (Sigma) in borate buffer to render the
surface more hydrophilic. On the plating day, a layer of laminin (Sigma, 0.02 mg/mL) in Neurobasal
medium (Thermo Fisher Scientific) was added on the array and incubated for 30 minutes at 37 °C
to promote cell adhesion. We dissociated cortices of E-18 Wistar rat enzymatically in trypsin with
0.25% EDTA (Gibco), followed by trituration. Cell suspensions of 15,000 to 20,000 cells in 7 µL were
then seeded on top of the electrode arrays. The plated chips were incubated at 37 °C for 30 min
before adding 2 mL of plating medium. The plating medium consisted of Neurobasal, supplemented
with 10% horse serum (HyClone, Thermo Fisher Scientific), 0.5 mM Glutamax (Invitrogen), and 2%
B-27 (Invitrogen). After 3 days, 50% of the plating medium were replaced by a growth medium,
which consisted of D-MEM (Invitrogen), supplemented with 10% horse serum, 2% B27, and 0.5 mM
Glutamax. The procedure was repeated twice a week. The chips were kept inside an incubator at 37°C
and 5% CO2. All experiments were conducted between days in vitro (DIVs) 10 and 28.

Extracellular recordings and analysis

For the MEA1k system, only 1024 channels of the array’s 26’400 electrodes can be recorded simultane-
ously, therefore an axon scan assay was performed: we sequentially recorded 33 different configurations
of randomly placed electrodes in order to cover the entire chip area, while the 200 electrodes showing
the highest spontaneous activity were fixed. Each configuration was recorded for 120 seconds. The
recorded data were analyzed using SpikeInterface [38]: the signals from the fixed electrodes were con-
catenated in time and spike-sorted using Kilosort2 [39]. The spike sorting output was automatically
curated by removing units with a firing rate lower than 0.1 Hz, an ISI violation threshold [40] higher
than 0.3, and a signal-to-noise ratio lower than 5. Afterwards, the automatically curated data was
exported to Phy [41, 42] for visual inspection and manual curation. The manually curated data were
then used to extract full templates across the entire array: first, the spike trains were categorized
depending on the start and end time of the different configurations; second, the template for each
configuration was computed as the median of all extracted waveforms; finally, templates extracted
from different configurations were averaged to obtain the final full template.

For the DualMode system, we analyzed a short full-frame recording of ∼ 285 seconds. As most
spike sorters do not handle more than ∼ 1000 channels, we first computed the spike rate of each
channel using a spike detection based on 5 times the median absolute deviation. We then selected the
1024 most active channels and spike sorted them using Kilosort2 and the same automatic curation
as for the MEA1k recordings. A final manual curation step using Phy was performed, and templates
were extracted by combining spike times and the full-frame recording.

2.5 Evaluation of the tracking performance
In order to evaluate the performance of the proposed axon-tracking algorithm, we used the simulated
data as ground truth. The ground-truth branches of the cell models were matched to the estimated
axonal branches using a many-to-one strategy (since the estimated branch could span over one or
more ground-truth branches). The matching was performed by computing the median distance of
each ground-truth path to each estimated path. A possible match was called if the median distance
was below a 40µm threshold. Among the ground-truth branches matched to the same estimated
branch, overlapping ground-truth branches were discarded. Overlapping branches were defined as
ground-truth branches with more than 20% of their segments being located within a distance of 15µm.
In case overlapping ground-truth branches were found, the shortest ones were removed.

After the matching procedure, tracking errors and AP propagation velocities were computed for
each estimated branch. The tracking errors were computed as the distance between each channel of
an estimated branch and the closest segment of the matched ground-truth branches. Tracking errors
were reported as mean±standard deviation in Table 1. In case of velocities, we also computed the
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A B

C DCell 3 Cell 4

Cell 1 Cell 2

Figure 5: Axonal reconstruction on realistic neuron morphologies. Morphological reconstruc-
tions of Cell 1 A), Cell 2 B), Cell3 C) and Cell 4 D). Colored lines display ground-truth branches
that have been matched to the reconstructed branches (colored circles). The morphology of the cell is
shown in the background.

absolute velocity error (abs(vgt− vest)) and the relative velocity error (abs(vgt− vest)/vgt). Here vgt is
the ground-truth velocity – computed as the weighted average of the branch AP propagation velocity
with respect to the branch length – and vest is the estimated branch AP propagation velocity.

3 Results

3.1 Algorithm performance on realistic, simulated morphologies
In order to validate and assess the performance of the proposed method, we analyzed the axonal
reconstructions and velocity estimations of simulated extracellular APs using the realistic morphologies
from the Allen Institute database (Figure 1). Already from the morphologies, one can appreciate that
the first three neuronal models (Cell 1, Cell 2, Cell 3) displayed well separated axonal branches, while
Cell 4 (Figure 1D) showed a much more intricate axonal arborization.

We ran the graph-based algorithm with default parameters (listed in Table 2) and evaluated the
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model ID branch ID velocity GT velocity est. abs. vel. error rel. vel. error tracking error
(mm/s) (mm/s) (mm/s) (%) (µm)

Cell 1 0 218 219 1 0.5 8.8±13.6
1 224 220 4 1.6 7.7±7.2
2 246 235 11 4.2 50.3±56.6

Cell 2 0 287 216 71 24.7 12.5±9.6
1 260 225 35 13.6 7.3±3.7
2 278 250 28 10.2 18.2±26.9
3 279 256 23 8.2 12.5±8.1
4 257 259 2 0.8 8.7±4.2

Cell 3 0 223 213 10 4.7 8.7±8.6
1 221 223 2 0.7 11.3±23.5
2 218 216 2 0.8 37.4±37.8
3 220 151 69 31.5 29.9±42.4
4 241 215 26 10.9 15.1±13.4

Cell 4 0 210 209 1 0.5 9.9±13.1
1 258 250 8 2.9 14.5±9.9
2 216 225 9 3.9 6.4±2.5
3 194 181 13 6.7 20.6±29.1
4 220 210 10 4.7 64.5±79.9
5 218 219 1 0.4 4.8±2.0
6 163 175 12 7.3 48.8±45.3
7 235 195 40 16.8 77.5±84.2
8 215 205 10 4.7 16.0±27.0
9 222 204 18 7.9 12.9±19.6

10 222 160 62 27.8 20.6±23.7
11 216 214 2 0.8 13.8±18.8
12 220 201 19 8.8 68.9±87.0

Table 1: Performance on simulated data of model cells. Each entry of the table reports the
Cell model (1, 2, 3, 4), the branch IDs (corresponding to Figure 5), the ground-truth and estimated
velocities, the absolute velocity error (inmm/s) and the relative error (in %). The last column displays
the mean and standard deviation of the tracking error in µm.

tracking results against ground-truth information of the model cells. Figure 5 shows the estimated
branches as dots and the matched ground-truth branches as lines. The estimated and corresponding
matched ground-truth branches are plotted in the same color. Qualitatively, the developed method
correctly identifies the main axonal branches of all tested model cells and shows good performance even
for Cell 4, despite the multitude of axonal branches crossing each other. Table 1 shows the ground-
truth and estimated velocity, the absolute and relative velocity errors, and the mean and standard
deviation of the tracking errors for all estimated branches of the four model cells. In most cases (19
out of 26 axonal branches) the relative error is below 10 %. Higher velocity and tracking errors can
be due to a partial match to the ground-truth branch (e.g., branch 0 in Figure 5B and branch 3 in
Figure 5C). Nevertheless, the proposed tracking algorithm is capable of correctly reconstructing large
portions of the axonal arborization of all model cells.

3.2 Application to HD-MEA recordings
After validating the tracking performance of the proposed algorithm on simulated data, we analyzed
experimental data from recording sessions, of two different HD-MEAs, a MEA1k and a DualMode
recording. In both cases, we ran the proposed tracking algorithm using a detection threshold of
1%, a kurtosis threshold of 0.1, a standard deviation threshold of the signal peak occurrence time
of 0.8ms, and an initial delay of 0.2ms. For the MEA1k dataset, the spike-sorting procedure after
manual curation yielded 77 isolated units. Out of these, 67 units had detectable axonal branches. The
algorithm found a total of 249 axonal branches, with velocities of 386.03± 250.7 mm/s, path lengths
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Figure 6: Application to HD-MEA recordings. A) Axonal arbors on a MEA1k device. All re-
constructed units are displayed with a representation of the MEA (26’400 channels) in the background.
B) Amplitude map (top left), peak latency map (top right), reconstructed branches (bottom left), and
velocity fits (bottom right) of the "MEA1k neuron" shown in blue in panel A. C) Axonal arbors on a
DualMode device. D) Amplitude map (top left), peak latency map (top right), reconstructed branches
(bottom left), and velocity fits (bottom right) of the "DualMode neuron" shown in blue in panel C.

of 458.07 ± 257.03 µm and R2 values of 0.94 ± 0.05. In Figure 6A we show all reconstructed axonal
branches with a visualization of the MEA1k device with 26’400 electrodes in the background. Figure 6B
shows a representative neuron of Figure 6A (marked in blue). The amplitude map of the template
(top left), the peak latency map (top right), the reconstructed branches (bottom left), and the fitted
velocities (bottom right) are shown. For this neuron, the channel selection yielded 1252 channels,
featuring 8 axonal branches with path lengths of 486.77 ± 151.15 µm, AP propagation velocities of
417.57± 116.65 mm/s, peak-to-peak extracellular amplitude of 69 µV, and R2 values of 0.93± 0.05.

In the DualMode recording, we found 58 units after spike-sorting and curation. Out of these, 51
had detectable axonal branches (shown in Figure 6C), and a total of 191 branches have been found
(velocities: 368.88± 203.33 mm/s, path lengths: 504.18± 317.15 µm, R2 values: 0.95± 0.05). Similar
to Figure 6B for the MEA1k neuron, Figure 6D shows detailed plots for one representative neuron
displayed in blue in Figure 6C. For this unit, the channel selection yielded 2819 channels, where 14
axonal branches were traced featuring path lengths of 627.8± 426.24 µm, AP propagation velocities of
448.53±173.33 mm/s, peak-to-peak extracellular amplitude of 103.2 µV, and R2 values of 0.96±0.03.

We showed that the application of the proposed axonal reconstruction algorithm to spike-sorted
data of HD-MEAs yields a high-throughput detection and assessment of axonal properties. The al-
gorithm can potentially provide valuable information on axonal properties under physiological and
pathological conditions.
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4 Discussion
In this article, we introduce a novel, fully automated algorithm for reconstruction and AP-propagation
velocity estimation of axons using HD-MEAs. The algorithm uses an efficient graph-based approach to
reconstruct multiple axonal branches from extracellular electrical potential recordings. After detailing
the different steps of the method, we assessed its performance using biophysical simulations. After-
wards, we validated our approach with experimental data recorded from two different HD-MEA de-
vices - MEA1k and DualMode. We successfully reconstructed over 400 axonal branches and estimated
the corresponding AP propagation velocities in two recording datasets. The developed algorithm and
method can be used with all commercially available CMOS-based HD-MEAs. Moreover, we provide an
open-source Python package available on GitHub (https://github.com/alejoe91/axon_velocity)
and on PyPi (https://pypi.org/project/axon-velocity/) to facilitate the adoption of the method.

Comparison with previous work The presented algorithm builds upon previous approaches in
our group to automatically reconstruct axonal arbors from HD-MEA extracellular signals. In Yuan
et al. 2020 [20], the authors introduced an axon-reconstruction method developed for the DualMode
device. A basic idea of this approach that we also utilized for the method presented here, is to start the
axon reconstruction backwards, i.e., from electrodes featuring late signal peak occurrences, which are
most likely at the end of the respective axonal branches. However, a main limitation of this approach
is that the search for axonal paths is local, i.e., that, in each step, the algorithm selects the next
channel in the path only based on local signal amplitudes under the condition that the signal peak
occurrence is earlier. This local search can result in zig-zag paths, as the algorithm has no information
on the global structure of the signal landscape. To overcome this limitation, in Ronchi et al. 2020
[34] we introduced a very first version of a graph-based algorithm. Subsequently, we made several
improvements that were facilitated by the model-based validation that we present here. First, we
extended the list of available filters for channel selection; in [34] only detection and kurtosis filters
were used; second, we changed the interrogation of the graph to find axonal branches from using only
the distance criterion, i.e., shortest distance (which could result in shortcuts and undetected axonal
segments) to using a combination of distance and amplitude (hedge) criteria with the A∗ method;
third, we changed the strategy to avoid duplicates in the path: instead of looking for and removing
duplicate paths a-posteriori, we here utilized the set of neighboring channels to existing paths to avoid
finding duplicates a-priori, which also resulted in a more efficient implementation. Finally, we added
pruning, merging, and splitting steps that were not implemented in [34], which arguably provide a
better estimation of the axon branches.

Limitations While the proposed method is, to the best of our knowledge, the first attempt of axonal
tracing using HD-MEA signals in a fully-automated way and at high throughput, some limitations
remain. Given the two-dimensional geometry of the recording electrode array, the method can only
capture features in 2D and ignores modulations in the third dimension. A modulation in the z-distance
of an axon to the MEA surface will result in a distorted estimate of axonal AP propagation velocity,
as the distance traveled by the AP along a path in 3D will be different from its 2D projection onto the
electrode plane. However, most neuronal preparations in vitro are 2D, at least most primary neuronal
and organotypic cultures, where neurons and their neurites extend across a planar electrode array.
Moreover, estimating the z-coordinate (the height above the electrode plane) in addition to the x-y
coordinates of an axon is a complicated inverse problem. While the amplitude of the recorded axonal
signal is known to depend on the position relative to the recording electrode, various other biophysical
factors, such as ion-channel densities and kinetics, membrane capacitances, axial resistances, and axon
geometries, can influence axonal AP conduction velocities in unmyelinated axons [43, 44, 45, 46, 47, 48].
In order to use the signal amplitude to correct for z-modulation, one would need to make assumptions
about these other biophysical factors.
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Applications to neurological disease characterization and network dynamics An auto-
mated and sufficiently accurate method to estimate axonal AP propagation velocities from HD-MEA
recordings holds great promise to study axonal electrophysiology and pathophysiological conditions re-
lated to axonal dysfunction. A panoply of pathological conditions impair axonal functions and mostly
result in conduction delays, which ultimately may cause conduction failures [49, 50, 51, 52, 53, 54].
Axonal dysfunction due to demyelination (e.g., multiple sclerosis) [55, 56], acute axonal damage [57],
and channelopathies, among others, are shown to change axonal AP conduction properties [58, 59, 60].

Axonal features, such as differences in axon growth, axon signal conduction, time-course of axon
degeneration or axon excitability can also be included in electrophysiological phenotypic characteri-
zation of human induced pluripotent stem cell (hiPSC)-derived neuronal cultures. Such cultures are
available from patients suffering from neurological disorders and from healthy donors, so that elec-
trophysiological biomarkers associated to neurological diseases can be established. In Ronchi et al.
[34], for example, we made a first attempt to characterize axonal velocities of hiPSC-derived neuronal
cultures and found significant differences between healthy motor and dopaminergic neurons and dis-
ease phenotypes featuring mutations related to Amyotrophic Lateral Sclerosis (ALS) and Parkinson’s
disease (PD).

Besides identification and characterization of neurological diseases, an accurate determination of
axonal AP propagation velocity opens up pathways to investigate axonal conduction times and delays
and their role in neuronal coding and plasticity. Repetitive activity can alter the excitability of axonal
membranes and AP conduction velocity, which can result in substantial changes in AP timings and
spike propagation to presynaptic sites [61, 2, 62]. Conduction delays, which depend on conduction
velocity and axonal length, can vary during repetitive activity, resulting in altered spike timings and
intervals. Such changes in temporal spike patterns may be an important feature in shaping the neural
code [63, 64, 65]. Similarly, axonal conduction velocities are highly adaptive in neuronal circuits
and undergo changes in unmyelinated axons upon depolarization or during formation of new myelin
sheaths depending on neuronal activity [66, 67, 68]. Our algorithm helps to facilitate the study of
axonal conduction and potential failures, as it enables to simultaneously track a larger number of
different axonal branches, to assess AP propagation velocities and conduction delays and to study
the role of plasticity of conduction velocity in network-level dynamics. Such applications can also be
extended to various model preparations such as organotypic cultures, acute brain slices and retinal
slices.

Outlook In conclusion, in this article, we introduced and validated a novel automated method for
axonal reconstruction from HD-MEA recordings, which enables to track changes in axonal conduction
velocity over days. By providing an open-source Python package to use and apply the algorithm,
we envision rapid adoption by the electrophysiology and HD-MEA community, which will eventually
boost our understanding of biophysical and computational properties of axons in healthy and diseased
states.
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APPENDIX

A Raw axonal branches estimation algorithm
In this appendix, we report the pseudo-code for the algorithm to estimate raw axonal branches from
the constructed graph (see Section 2.2.3). Note that the pruning and merging steps are not included.

input : graph, min_points, min_length, init_channel
output: raw_paths, branching_points

// list with raw paths
raw_paths = list()
// list with removed nodes per path
removed_neighbors_per_path = list()
// set with all removed nodes
all_removed_neighbors = set()
// list with branching points
branching_points = list()

// path indexes
path_idxs = list()
current_idx = 0

for source_node in graph.nodes do
if source_node not in all_removed_neighbors then

if is_local_maximum(source_node) then
// Find shortest path to init channel
path = astar_path(source_node, init_channel)

// Remove nodes already in other paths and connect to branching point
for i in path_idxs do

removed_nodes_in_path = removed_neighbors_per_path(i)

for node in path do
if node in removed_nodes_in_path then

// Remove further nodes along the path
path.remove(node:end)

// Find and append branching point
closest_node = find_closest_node(node, raw_paths(i))
path.append(closest_node)
possible_branching_point = closest_node

end
end

end
if length(path) ≥ min_points and length_in_µm(path) > min_length then

// Accept raw path
raw_paths.append(path)

// Update list of removed nodes
neighbor_nodes = find_neighbors(path)
removed_neighbors_per_path.append(neighbor_nodes)
all_removed_neighbors = all_removed_neighbors ∪ neighbor_nodes
branching_points.append(possible_branching_point)
path_idxs.append(current_idx)
current_idx += 1

end
end

end
end

Algorithm 1: Identification of raw axonal paths from the graph.
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B Description of parameters
In this appendix, we report a complete list of the parameters available for axon_velocity version
0.1.1. The parameters are listed in Table 2.

Parameter Value Type Description

General
upsample 1 int upsampling factor for template
min_selected_points 30 int minimum number of selected points to run axon tracking
verbose False bool if True, the output is verbose
Channel selection
detect_threshold 0.02 float detection threshold (with respect to maximum channel)

below which a channel is discarded
detection_type "relative" string whether to use an "absolute" or

"relative" detection threshold
kurt_threshold 0.5 float kurtosis threshold below which a channel is discarded
peak_std_threshold 0.5 float peak time standard deviation threshold

below which a channel is discarded
init_delay 0.1 float initial delay in seconds (with respect to maximum channel)

below which a channel is discarded
peak_std_distance 30 float distance in µm to select channel neighborhood to compute

peak time standard deviation
remove_isolated True bool if True, isolated channels are removed from selection
Graph
init_amp_peak_ratio 0.2 float scalar value that weighs the contribution of the amplitude

and the peak latency for hinit (αinit in Eq. 2)
max_distance_for_edge 100 float maximum distance in µm between channels to create

a graph edge
max_distance_to_init 200 float maximum distance in µm between a channel and the

init_channel to create a graph edge
below which an axonal branch is discarded

n_neighbors 3 int maximum number of edges that one channel can connect to
distance_exp 2 float exponent for distance computation (e in Eq 3)
edge_dist_amp_ratio 0.3 float relative weight between distance and amplitude

to select neighbor nodes for graph edges
Axonal reconstruction
min_path_length 100 float minimum axon path length in µm to include

an axonal branch
min_path_points 5 int minimum number of channels in an axon path

to include an axonal branch
neighbor_radius 100 float radius in µm to exclude neighboring channels around

an identified path
min_points_after_branching 3 int minimum number of points after a branching to avoid

pruning
Path cleaning/Velocity estimation
mad_threshold 8 float threshold in median absolute deviations on the fit error to

consider points as outliers in the velocity estimation
split_paths True bool If True, the final path splitting step is enabled
max_peak_latency_for_splitting 0.5 float If a jump in the peak latencies of a path exceeds this value,

the path can be split in sub-paths
r2_threshold 0.9 float R2 threshold for velocity linear fit below which an axon

branch is discarded
r2_threshold_for_outliers 0.98 float R2 threshold below which outliers are detected and

removed
min_outlier_tracking_error 50 float tracking error in µm above which a point can be

considered an outlier and removed

Table 2: Additional parameters list for the compute_graph_propagation_velocity() function, in-
cluding default values, data types, and descriptions.
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