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Abstract

The mechanism by which plasticity in millions of synapses in the brain is orchestrated to achieve behavioral
and cognitive goals is a fundamental question in neuroscience. In this regard, insights from learning methods in
artificial neural networks (ANNs) and in particular the idea of backpropagation (BP) seem inspiring. However,
the implementation of BP requires exact matching of forward and backward weights, which is unrealistic given
the known connectivity pattern in the brain (known as ”weight transport problem”). Notably, it is recently
shown that under certain conditions, error BackPropagation Through Random backward Weights (BP-TRW),
can lead to partial alignment of forward and backward weights overtime (feedback alignment or FA) and result in
surprisingly good accuracies in simple classification tasks using shallow ANNs. In this work, we took a closer look
at FA to find out why it occurs when using BP-TRW and explored ways to boost it for deep ANNs. We first show
that the gradual alignment of forward and backward weights arises from the successive application of BP-TRW
update rule on forward weights regardless of learning or loss function if error signals and outputs of neurons satisfy
certain conditions such as when they are autocorrelated. Moreover, we show that FA in deeper networks can be
improved significantly by applying a biologically-inspired weight normalization (WN) to the input weights of each
neuron. In addition, WN can improve the performance of both BP and BP-TRW when class labels are changed
across time, an under-explored phenomenon in ANNs which is crucial for flexible learning in the brain in everyday
life. With WN, BP-TRW test accuracy can almost match that of BP following class label changes. Altogether,
our results portray a clearer picture of the FA mechanism and provide evidence for how learning can occur using
BP-like mechanisms while abiding by biological limits on synaptic weights.

Keywords— feedback alignment, weight transport problem, bio-inspired artificial neural networks, bio-inspired learning
methods, biologically-inspired weight normalization, network flexibility

1 Introduction

For the past four decades, BP has been the dominant learning method used in artificial neural networks
[Rumelhart et al., 1985]; however, BP is known not to be plausible in the nervous system [Stork, 1989, Crick, 1989,
Song et al., 2020]. One of the key issues in BP which makes it biologically implausible is known as the “weight trans-
port problem” [Grossberg, 1987] which refers to the requirement for backward weights to precisely match the forward weights
so that accurate error signals are backpropagated to the early layer for efficient learning as stipulated by BP. However, in
the brain, axons transmit information unidirectionally, and to date, no explicit mechanism that guarantees a match between
backward and forward weights is reported.

Interestingly, despite differences in natural and artificial learning mechanisms, striking similarities between the ac-
tivity of neurons in the brain and that of artificial ones trained by BP have been reported [Zipser and Andersen, 1988,
Khaligh-Razavi and Kriegeskorte, 2014, Cadieu et al., 2014, Cichy et al., 2016, Nayebi et al., 2018], and possible occurrence
of BP-like mechanisms in the brain is suggested [Whittington and Bogacz, 2017, Lillicrap et al., 2020, Xie and Seung, 2003].
In particular, it has been shown that learning occurs even without weight transport by BP-TRW [Lillicrap et al., 2016,
Liao et al., 2016], where backward weights are fixed, random and distinct from forward ones. During the learning process of
BP-TRW angle between backward and transpose of forward weight matrices in each layer reduces and this partial alignment
leads to calculation of an approximate gradient direction. In addition to successive propagation of error in each layer to its
previous one in BP-TRW, learning can occur even when error is passed directly from output layer to each hidden layer through
random backward weights [Nøkland, 2016, Refinetti et al., 2020]. While there are some investigations on theoretical under-
pinnings and favorable conditions for FA [Lillicrap et al., 2016, Nøkland, 2016, Refinetti et al., 2020], a thorough examination
of mathematical and statistical basis of FA is still lacking.

In this work, we show that FA does not arise from the learning process, optimization, or reduction of loss function;
rather, it arises from the successive application of the BP-TRW update rule if error signals and outputs of neurons satisfy
certain conditions such as when they are autocorrelated. In general autocorrelation functions (ACFs) of error signals and
outputs of neurons play an important role in the final amount of alignment. Furthermore, we show that in deep ANNs,
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the accuracy of weight update directions computed by BP-TRW potentially decreases compared to the optimal directions
computed by BP as error successively backpropagates towards earlier layers; however, it can be improved by constraining the
norm of input weights to each neuron which is a biologically plausible constraint supported by mechanisms like homeostatic
synaptic scaling [Turrigiano, 2012], heterosynaptic plasticity [Chistiakova et al., 2015] and intrinsic saturation of each synapse
[Bi and Poo, 1998]. We show that supplementing the BP-TRW learning method with WN can improve alignment in deep
neural networks and allow for better flexibility in learning new contingencies similar to what is observed behaviorally in
biological agents.

2 Results

2.1 Persisting feedback error and input can lead to alignment

For simplicity, consider a two-layer linear ANN with a constant input matrix X where its columns correspond to activity
of each input neuron and its rows correspond to each individual input or stimuli. Activity of hidden and output layers are
L1 = XW0 and L2 = L1W1, respectively, where W0 is weight matrix of the first layer, and W1 is weight matrix of the
second layer. With gradient descent, the directions for updating weight matrices computed by BP are ∆W1,BP = ηLT1 E and
∆W0,BP = ηXTEWT

1 where E is the error matrix and η is a constant coefficient (learning rate) [Rumelhart et al., 1985].
With BP-TRW, error backpropagates to the hidden layer by a constant random matrix B, that is, ∆W0,FA = ηXTEB
[Lillicrap et al., 2016]. Assuming that the feedback loop is open and a hypothetical constant random E (regardless of loss
function and actual error) is fed to backward pass (Fig. 1A) during a period. This assumption is neither a realistic assumption
in the learning process of ANNs nor a necessary condition for FA and we will discuss the general case later on, however it
gives an initial intuition about the mechanism of FA in ANNs. In this condition, after a large enough number of iterations
(k), direction of W1 converges to

W1[k � 1] ' c2BTETXXTE (1)

where c2 is a constant coefficient (see Supplementary Note 2). The key factor for alignment of W1 with BT is ETXXTE as a
transformation matrix which applies to BT (equation 1). Indeed, it is a symmetric semidefinite matrix and this property makes
it intrinsically a transformation matrix that tends to partially preserve the direction after transformation (see Supplementary
Note 3).

Generally, eigenvalues of a transformation matrix and their arrangement determine the properties of that transformation
(Fig. 1B,D). Considere a special case in which elements of B ∈ Rno×nh , X ∈ Rnb×ni and E ∈ Rnb×no are i.i.d. from N (0, 1)
where ni, nh, and no are the number of neurons in the input, hidden, and output layers, respectively (network dimensions).
In this case, by expectation ETXXTE resembles an identity matrix scaled by a scaler (E(ETXXTE) = nbniI); thus, it is
expected to preserve BT after multiplication, yet the arrangement of eigenvalues, and network dimensions which themselves
impact arrangement of eigenvalues, affect the final amount of alignment. For instance, in this case, no being more than ni
results in at least no − ni zero eigenvalues that in turn can lead to more deviation and less alignment (Fig. 1B,D, Cond. 2
vs. 1 and 6), increase of nb improves alignment (Fig. 1B,D, Cond.2 vs. 3) and increase of nh, which does not contribute in
transformation matrix and only appears in the dimensions of B, does not have a significant effect on the mean amount of
alignment but decrease the variance of histogram (Fig. 1B,D, Cond. 2 vs. 5, t-test p > 0.5).

The final goal of FA is the reduction in ∆W0,FA]∆W0,BP and providing a good approximation of gradient direction
computed by BP (∆W0,BP is only calculated at each iteration for comparison with ∆W0,FA, by which W0 is actually updated
with BP-TRW). In addition to the alignment of W1 with BT , alignment between ∆W0,FA and ∆W0,BP also happens since in
BP we have

∆W0,BP [k � 1] = ηXTEWT
1 ' ηc2XTEETXXTEB (2)

and in comparison with equation 2 in BP-TRW we have

∆W0,FA[k � 1] ' ηXTEB. (3)

In equations 2 and 3, before substitution of W1 in equation 2, XTE can be considered as a transformation matrix applied
on two matrices WT

1 and B, which are partially aligned; thus, their transformed are also expected to be partially aligned (later
on we will discuss it in deep nonlinear networks). But in here (with the assumption of constant E and X), by substitution of
W1 in equation 2, XTEETX is a positive semidefinite transformation matrix which is applied to XTEB and can be expected
to preserve the direction of XTEB to some extent after multiplication (Fig. 1C).

2.2 Autocorrrelation of error and input matrix elements leads to alignment

In practical ANNs, updating weights in each iteration changes E continuously. In addition, by using mini-batches, the input
matrix changes at each iteration. Even in biological networks, namely visual cortex, input of the network is time-dependent
as the projected scene on the retina changes. In this more general case for BP-TRW in a two-layer linear network with
actual and variable error E[k] and input X[k] during iterations, expansion of update direction ∆W1,FA[k] = ηL1[k]TE[k] =
ηW0[k]TX[k]TE[k] by taking successive steps backward along the iterations and substituting W0, reveals the following terms
for 1 ≤ o ≤ k (see Methods)

T o1,aln[k] = η2BTE[k − o]TX[k − o]X[k]TE[k] (4)
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Figure 1 | Alignment occurs in an open-loop network with constant error and input matrices. Based on the formulation of BP-
TRW, for a two-layer linear network with constant X and open feedback loop which is fed with constant E, direction of W1 converges to the
direction of BTETXXTE and if ETXXTE, as a transformation matrix, partially preserves the direction of BT after matrix multiplication,
alignment occurs, yet the arrangement of its eigenvalues and also network dimensions affect alignment. Accordingly, the amount of alignment
is assessed in different conditions where elements of X, E and B are i.i.d. from N (0, 1).
(A) Diagram of an open-loop network in which backward and forward pass is fed with constant E and X respectively.

(B) Histograms of the angle between BT and BTETXXTE (W1[k � 1]) for a two-layer linear network with constant E and X.

(C) Histograms of the angle between XTEB (∆W0,FA[k � 1]) and XTEETXXTEB (∆W0,BP [k � 1]) for a two-layer linear network with

constant E and X. This angle may show a different behavior from BT]BTETXXTE since the transformation matrix applies on XTEB
is XTEETX (Cond.6 panel C vs. B).

(D) Histograms of eigenvalues of ETXXTE in different conditions. Eigenvalues of ETXXTE as a positive semidefinite transformation matrix
play a determinative role in expected final amount of alignment. Network dimensions affect arrangement of eigenvalues and consequently
affect the amount that ETXXTE preserves the direction of BT after multiplication. Conditions with more density of eigenvalues near zero
result in less alignment between BT and W1[k � 1] = BTETXXTE.

which we call them alignment term of order o, where ∆W1,FA[k] = ηW0[0]TX[k]TE[k]+T k1,aln[k]+· · ·+T 2
1,aln[k]+T 1

1,aln[k]. Each
T o1,aln[k] propels W1 towards BT provided that the transformation matrix Mo[k] = E[k− o]TX[k− o]X[k]TE[k] preserves the
direction of BT to some extent after multiplication. In general, Mo[k] is not symmetric but can be decomposed into symmetric
and skew-symmetric terms (Mo[k] = Mo

sym[k] + Mo
skew[k]). The skew-symmetric term (or any real skew-symmetric matrix)

totally deviates BT (or any real matrix) after matrix multiplication and BT]BTMo
skew[k] = 90◦ (see Methods). Therefore,

the two factors which determine the amount of deviation of BT from BTMo[k] are how much Mo
sym preserves the direction of

BT after multiplication and the ratio of ‖BTMo
skew‖F to ‖BTMo

sym‖F .

For alignment of T o1,aln[k] with BT , E[k−o], E[k], X[k−o] and X[k] should have some special properties. Each alignment
term of order o captures the statistical properties and possible autocorrelation (similarity) of error and input matrix elements
in o-step lag and the more E[k − o] and X[k − o] resemble E[k] and X[k], respectively, the more similar Mo[k] is to a
symmetric semidefinite matrix. To give an intuition about this, we plotted the histograms of measured angles BT]T 1

1,aln[1]
(arbitrary k = 1, o = 1), BT]BTM1

sym[1], and ratio of ‖BTM1
skew[1]‖F to ‖BTM1

sym[1]‖F , under various hypothetical
conditions (Fig. 2A,B,C). For instance, if the elements of E[0], E[1], X[0], X[1] and B are i.i.d. from N (0, 1) then they are
not autocorrelated (in the sense that E(X[0]i,jX[1]i,j) = 0 and E(E[0]i,jE[1]i,j) = 0) and on average no significant amount of
alignment is expected (Fig. 2C, Cond. 1, one sample t-test p > 0.5, n = 10000). Even if similar to this condition, we generate
random E[0], X[1] and X[0] but take E[1] equal to E[0], on average no significant amount of alignment is expected (Fig. 2C,
Cond. 2, one sample t-test p > 0.5, n = 10000). In another condition, we generated E[0], E[1], X[0] and X[1] with i.i.d.
elements from N (0.5, 1) and B with i.i.d. elements from N (0, 1). In this condition, alignment occurs (Fig. 2B,C, Cond. 3)
while all elements of X and E are independent yet (positively) autocorrelated during iterations in the sense that

E(X[0]i,jX[1]i,j) > 0, E(E[0]i,jE[1]i,j) > 0.

In addition to X and E, the final amount of alignment also depends on the distribution of Bi,j (Fig. 2B,C, Cond. 4 vs. 3).

Alignment in the last above condition occurs under the circumstances that E(E[1]) = E(E[0]) = 0.5Jnb×no and
E(X[1]) = E(X[0]) = 0.5Jnb×ni where Jn×m denotes an n × m all-ones matrix and by statistical expectation we have
E(E[0]TX[0]X[1]TE[1]) = 0.0625nin

2
bJno×no . All-ones square matrices are semidefinite with just one positive eigenvalue

corresponding to an all-ones eigenvector and the rest of eigenvalues are zero (Fig. 2E, Cond. 6). An all-ones matrix as a
transformation matrix also leads to alignment (Fig. 2C, Cond. 6).

The final amount of alignment between BT and W1 in learning process is the resultant of all order of alignment terms
during iterations (Fig. 2F). Indeed each aligned T o1,aln injects a component along with BT into the W1 and (owing to high-
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Figure 2 | Alignment terms propel forward weight matrices towards random feedback weights if error and input matrix
elements are autocorrelated. To provide an intuition about the FA mechanism in practical ANNs, for a two-layer ANN, the effect of
statistical properties of elements of E and X on alignment terms (equation 4) is assessed in different hypothetical conditions. With arbitrary

k = 1 and o = 1, alignment term of interest in linear case (A,B,C) is T 1
1,aln[1] = η2BTE[0]TX[0]X[1]TE[1] and defined transformation

matrix is M1[1] = E[0]TX[0]X[1]TE[1]. M1
skew[1] and M1

sym[1] are respectively skew-symmetric and symmetric parts of the transformation

matrix M1[1] = M1
sym[1] +M1

skew[1]

(A) Histograms of the ratio of ‖BTM1
skew[1]‖F to ‖BTM1

sym[1]‖F . This ratio is a measure of how much M1[1] acts like a symmetric

transformation on BT . The more M1[1] resembles a symmetric matrix, the less this ratio is expected.

(B) Histograms of the angle between BT and BTM1
sym[1].

(C) Histograms of the angle between BT and BTM1[1].

(D) Histograms of the angle between BT and T 1
1,aln[1] (equation 5) for a two-layer nonlinear network, in which elements of f ′

(
·
)

relating to
all element-wise matrix multiplications, are 0 or 1 with an equal probability of 0.5. Impact of nonlinearity can be considered as a distortion
in linear case formula.
(E) Histograms of eigenvalues of M1

sym[1] in different conditions. If eigenvalues of M1
sym[1] have symmetrical distribution around 0, alignment

does not occur (Cond. 1 and 2). M1
sym[1] being positive semidefinite is not a necessary condition for alignment; rather, if its eigenvalues

are well arranged, e.g., have positive mean and negative ones are relatively small, alignment is expected (Cond. 3-6).
(F) Diagram of FA mechanism where elements of E are only one step autocorrelated, hence T 1

1,aln shows alignment while higher order

alignment terms, which are aggregated in the defined auxiliary term T 1
1,sup = T 2

1,aln + T 3
1,aln + · · · (∆W1,FA[k] = T 1

1,sup[k] + T 1
1,aln[k], see

Methods), does not show alignment. The final amount of alignment is resultant of T 1
1,aln and T 1

1,sup. Note that it is a simplified diagram
and in practice alignment and sup-alignment terms are variable during iterations. In addition, depending on statistical properties of network
matrices, and in particular autocorrelation of elements of X and E in different lags, it may be that contrary to this diagram, T 1

1,aln does

not show alignment while T 1
1,sup shows alignment or both show alignment.

dimensionality and supposing that elements of both X and E can have only non-negative autocorrelation in each lag) each
non-aligned T o1,aln tends to inject W1 a component which is expected to be perpendicular to BT (Fig. 2C Cond. 1 and 2) and
does not oppose the component which is in line with BT ; however, perpendicular components sum with the aligned ones and
reduce their effect in the final amount of alignment.

This analysis can be extended to a nonlinear two-layer network where internal state of hidden and output layers are
Z1 = XW0 and Z2 = L1W1, respectively, and output of layers are L1 = f

(
Z1

)
and L2 = f

(
Z2

)
where f

(
·
)

is an element-wise
activation function and f ′

(
·
)

is its element-wise derivative and T o1,aln[k] reads (see Methods)

T o1,aln[k] = η
{
f ′
(
W0[k − o]TX[k]T

)
� η{f ′

(
Z1[k − o]

)
�BT δ2[k − o]T }X[k − o]X[k]T

}
δ2[k] (5)

where δ2[k] = E � f ′
(
Z2[k]

)
and � denotes element-wise matrix multiplication. The difference of a nonlinear network with a

linear one is element-wise matrix multiplications and they can be considered as a distortion in the linear T o1,aln[k] (equation
4). In this regard, assuming B and Z are two independent random matrices with i.i.d. elements from N (0, 1) and proper
dimensions, and considering rectified linear unit (ReLU) as activation function, by statistical expectation {f ′

(
Z
)
� B}]B is

45◦ (Z,B ∈ R100×100, SD = ±0.66◦, one sample t-test, p > 0.5, n = 1000).

To give an intuition about the impact of these element-wise matrix multiplications on the amount of alignment and compare
it with the linear case, we re-plotted the histograms of angles in shallow linear cases (Fig. 2C) by applying nonlinearity (Fig. 2D)
with considering ReLU as activation function, which can be roughly considered as the relationship between input current and
output firing rate of a biological neuron regardless of saturation, and for each element-wise matrix multiplications of the

4

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 13, 2021. ; https://doi.org/10.1101/2021.06.12.447639doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.12.447639
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3 | Autocorrelation of error and input matrix elements
leads to alignment. Some hypothetical input and error matrices are
imposed on an open-loop nonlinear two-layer ANN.
(A) Angle between forward and backward weights. (B) Angle between
BP-TRW weight update direction and gradient direction computed by
BP (W0 is updated by ∆W0,FA, and ∆W0,BP is only calculated at
each iteration for comparison). Legend of (B) is the same as (A).
(blue traces) Elements of E and X are initialized with N (0, 1) and left
constant during iterations. According with persisting input and error
analysis, alignment occurs.
(orange traces) Elements of E and X are initialized with N (0, 1), and
E is reinitialized at each iteration. Alignment does not occur in this
case since elements of E are not autocorrelated.
(green traces) Elements of E and X are initialized with N (0, 1), and
E is reinitialized at every two iterations. Thus its elements are auto-
correlated in half of the iterations, and alignment occurs.
(cyan traces) Elements of E and X are initialized and reinitialized at
each iteration with N (0.5, 1). Thus, their elements are autocorrelated
and alignment occurs.

equation 5, we independently generated random matrices corresponding to f ′
(
·
)

in a way that their elements were either 0 or
1 with an equal probability of 0.5. Compared to the linear case, the amount of alignment decreased in this particular nonlinear
case but it still happened (Fig. 2C vs. D).

To verify the analysis above and investigate the effect of statistical properties of error and input matrix elements on FA, we
imposed some hypothetical input and error matrices (according with update directions of BP-TRW method) on an open-loop
nonlinear two-layer ANN in four different cases (Fig. 3). In the first case we initialized elements of E and X with N (0, 1)
and kept them constant during iterations. According with persisting E and X analysis, alignment happened (Fig. 3A,B blue
traces). In the second case we initialized the network like the first case but reinitialized E after each iteration. In this case,
elements of E are not autocorrelated (i.e., E(E[k]i,jE[k + o]i,j) = 0, o 6= 0) and no alignment is expected (Fig. 3A,B orange
traces). Compared to the second case, in the third case, we reinitialized E at every two iterations. Thus E[k − 1] and E[k]
are identical, and consequently, their elements are autocorrelated in half of the iterations and alignment happens (Fig. 3A,B
green traces). In the fourth case, we initialized all elements of both E and X with N (0.5, 1) and also reinitialized them at
each iteration (with N (0.5, 1)). Alignment occurred in this last case (Fig. 3A,B cyan traces) while elements of E and X were
independent yet autocorrelated during iterations.

2.3 ACFs of error and input matrix elements and limiting norm of weights affect
alignment

In a two-layer ANN, ACFs of both error and input matrix elements play a decisive role in the final amount of alignment and
its occurrence since values of them in each nonzero lag o affect the amount of alignment attained and injected to W1 by T o1,aln.
Without putting any constrain, during learning process of ANNs, Frobenius norm of weight matrices can take any value and
growth continuously, so-called blow-up, since each aligned T o1,aln inject a component along with BT into W1 in each iteration
and accumulation of these aligned components leads to the continuous growth of ‖W1‖F . But mechanisms like homeostatic
and heterosynaptic plasticity in the brain prevent such an event from happening. For instance, synaptic scaling has been
suggested as a form of homeostatic plasticity which acts at the cellular level and regulates firing rate of neurons by scaling
the strength of their input synapses proportionally [Turrigiano, 2012]. Even regardless of synaptic scaling, strong synapses
tend to lose their ability of future potentiation, which suggests an upper bound or saturation level for synaptic strengths
[Bi and Poo, 1998].

To investigate if accumulation of these aligned components is essential for FA and how limiting norm of weights affects FA,
we proposed a strict WN method as an intervention in BP-TRW formula by which we proportionally scale the input weights
to each neuron (separately from weights to other neurons) at each iteration so that the Frobenius norm of them became fixed
to a non-learnable hyperparameter γ (see Methods). In fact, with this normalization method, we keep all the input weights to
each neuron on a hypersphere with radius γ and neglect the weight update direction component that drives out the weights
from these neuron-wise hyperspheres. We took γ as a non-learnable hyperparameter since homeostatic processes in the brain
act in a non-associative manner compared to other forms of plasticity like Hebbian (see Discussion).

In order to investigate the effect of ACFs of input and error matrix elements and also proposed WN method on FA, we
modeled error and input matrix elements with two Gaussian first-order autoregressive stochastic processes and imposed them
on forward and backward pass of an open-loop nonlinear two-layer ANN as follows

E[k] = E[k − 1]β +N [k − 1](1− β) (6)

X[k] = X[k − 1]βX +NX [k − 1](1− βX) (7)

where all elements of NX [k], X[0], N [k] and E[0] are i.i.d. from N (0, 1) and the expansion of ACFs of input and error matrix
elements can be controlled by βX and β, respectively (Fig. 4E).
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Figure 4 | ACFs of input and error matrix elements and proposed WN method affect alignment. Error and input matrices are
modeled with two Gaussian first-order autoregressive stochastic processes (Equ. 6 and 7 ) in which the expansion of ACF of the input and
error matrix elements along lags is controlled by changing βX and β, respectively, and these input and error matrices are fed to the forward
and backward pass of a two-layer nonlinear ANN. In (A,B) βX = 0 (X is constant) and in (C,D) β = 0.8. Solid and dashed traces relate to
the cases with and without applying the proposed WN method, respectively.
(A,C) Alignment between forward and transpose of backward weights.
(B,D) Alignment between BP-TRW and BP weight update directions.
(E) Autocorrelograms of single elements of X (or E) for different values of βX (or β). In extreme cases of βX = 0 and βX = 1, ACFs
are Kronecker delta function and constant function, respectively. For βX = 0 or β = 0, alignment does not occur. Proposed WN method
considerably improves FA except for β = βX = 1, where ACFs of input and error matrix elements are constant function.

In the first case, we kept X constant (βX = 1) and changed β from 0 to 1 (Fig. 4A,B dashed-traces). In the second case,
we kept β = 0.8 and changed βX from 0 to 1 (Fig. 4C,D dashed-traces). In these two cases, βX and β, had a significant effect
on the final amount of alignment.

We re-performed the two previous cases by applying the proposed WN method and fixed the Frobenius norm of input
weights of each neuron to γ = 1 at each iteration. Although it prevents unlimited accumulation of aligned components in
W1, it improved alignment (Fig. 4A,B,C,D solid traces) except where the ACFs of both error and input matrix elements are
constant in all lags ( βX = β = 1), and all orders of alignment terms contribute to the alignment equally (Fig. 4A,B cyan
traces). For 0 < β < 1 and 0 < βX < 1, although the ACFs of elements of E and X do not have limited support, their values
decay in higher lags; hence higher orders of alignment terms have less contribution to the alignment, which makes WN capable
of improving the final amount of alignment (see Supplementary Note 1).

2.4 FA in deep networks and its potential decline in performance

For processing of sensory information in biological neural networks, input signals pass through multiple layers from lower to
higher cortical areas. Furthermore, solving complex problems using ANNs also often requires using deep networks. Previously
discussed shallow ANN analysis can be generalized to deep nonlinear ANNs where W`, B` , Z` = Z`−1W`−1, L` = f

(
Z`
)
,

and δ`,FA[k] = δ`+1,FA[k]B` � f ′
(
Z`[k]

)
are respectively forward and backward weight matrix, internal activity, output,

and error matrix of neurons in layer `. Similar to shallow ANNs, alignment terms can be extracted from ∆W`,FA[k] ≈
T 1
`,aln[k] + T 2

`,aln[k] + · · · (see Methods). Each T o`,aln can propel W` towards B` depending on ACFs of elements of δ`+1,FA

and L`−1 in o-step lag, as well as the effect of nonlinearity (element-wise matrix multiplications).

If statistical properties of layers are regulated to be similar, we can expect that W`]BT` be consistent in different layers. But
even if this consistency holds for W`]BT` in different layers, ∆W`,FA]∆W`,BP potentially increases as error backpropagates
towards earlier layers. For alignment of ∆W`,FA with ∆W`,BP we can write

∆W`,FA = ηLT` δ`+1,FA (8)

and in comparison with equation 8 for BP we have

∆W`,BP = ηLT` δ`+1,BP . (9)

The matrix LT` is identical in both ∆W`,FA and ∆W`,BP , and the factors which determine the angle between them is
δ`+1,BP]δ`+1,FA. Alignment between δ`+1,BP and δ`+1,FA is a limiting factor for the efficiency of BP-TRW learning method
compared to BP in deep networks and needs more careful consideration.
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Figure 5 | Successive parallel matrix multiplication of backward and forward weights in deep ANNs, results in a potential
increase in deviation of update directions computed by BP-TRW compared to BP.
In a single step of successive parallel matrix multiplication (Equ. 10 vs. 11) where product matrices are B2B1 and WT

2 W
T
1 , B2 and WT

2 are

mutual matrix pairs as well as B1 and WT
1 , and their mutual cross-angles θ1 = B1]W

T
1 and θ2 = B2]W

T
2 , affects the angle between two

product matrices, i.e., θ3 = B2B1]W
T
2 W

T
1 in linear case and θnonlin

3 (Equ. 12) in the nonlinear case. For plotting histograms and heatmaps

corresponding to θ3 and θnonlin
3 , the matrices B1 and B2 are independently and uniformly drawn from unit hypersphere (n = 1000000) and

corresponding to each B1 and B2, two random matrices WT
1 and WT

2 are drawn from unit hypersphere such that θ1, θ2 ∼ U(0◦, 180◦). In

the nonlinear case (θnonlin
3 ), elements of Z1 and Z2 (in Equ. 12) are i.i.d. from N (0, 1) and f

(
·
)

= ReLU(·).
(A) Histogram of the difference between θ3 and minimum of θ1 and θ2 in different conditions. Final product matrices are potentially less
aligned than the most aligned mutual matrix pairs. If one of the mutual cross-angle of matrices (θ1 or θ2) is close to 0◦ or 90◦, min(θ1, θ1)
does not have much contribution in θ3 (A dotted lines).
(B) Histogram of the difference between θ3 and maximum of θ1 and θ2 in different conditions. In conditions shown with solid lines, final
product matrices are potentially less aligned than the least aligned mutual matrix pairs. If one of the mutual cross-angle of matrices (θ1 or
θ2) is close to 0◦ or 90◦, max(θ1, θ1) dominantly determines θ3 (dotted lines).

(C) Histogram of the difference between θnonlin
3 and θ3. The means of these symmetric histograms are approximately zero; therefore, this

applied nonlinearity only increased the variance of angles compared to the linear case.
(D,E) θ1θ2-plane is divided to 5◦ by 5◦ bins and heatmap of the average (D) and variance (E) of θ3 in each bin is plotted.
(F,G) The panels (D) and (E) are re-plotted with applying nonlinearity. This applied nonlinearity does not have a significant effect on the
mean of angles compared to linear case (F vs. D) but increases the variance of angles (E vs. G).

To investigate this, for simplicity, consider a d-layer linear ANN where for the last layer (` = d) we have δ`,FA = δ`,BP
but for 0 < ` < d it does not hold; rather, we have

δ`,FA = δd,FABd−1Bd−2 · · ·B`+1B` (10)

δ`,BP = δd,BPW
T
d−1W

T
d−2 · · ·WT

`+1W
T
` . (11)

Therefore, owing to this parallel and successive multiplication of forward and backward weights, as error backpropagates to-
wards the initial layers, depending on the mutual cross-angles between corresponding forward and backward weights (B`]WT

` ),
deviation of δ`,BP from δ`,FA potentially increase in earlier layers and consequently deviation of ∆W`,FA from ∆W`,BP increase
as well and it reduces the efficiency of BP-TRW learning method compared to BP in deep ANNs.

To give an intuition about this, we plotted heat map and histograms of θ3 = B2B1]WT
2 W

T
1 under various conditions

(Fig. 5), where we draw two independent random matrices B2 ∈ R30×15 and B1 ∈ R15×40 uniformly from unit hypersphere
(‖B2‖F = ‖B1‖F = 1) and corresponding to each B1 and B2, we draw two independent random matrices W2 ∈ R15×30 and
W1 ∈ R40×15 from unit hypersphere in a way that the angles θ2 = B2]WT

2 and θ1 = B1]WT
1 are uniformly distributed

between 0◦ and 180◦ (see Methods). In general, there is no explicit inequality between θ1, θ2 and θ3; that is, the amount of θ3
can be between, more than or less than θ1 and θ2 (Fig. 5A,B), but θ3 being less than both θ1 and θ2 is less likely and in here
only occurred in the case of 85◦ < θ1, θ2 < 90◦ (Fig. 5A, left tail of red histogram). In other words, the amount of alignment
between two product matrices B2B1 and WT

2 W
T
1 , tends to be less than the minimum amount of alignment between each WT

`

and B`. There are also two special cases where if one of the mutual cross angles of matrices, for instance θ1, is close to 0◦

or 180◦, θ3 dominantly determines by θ2 and if one of the mutual cross-angles of matrices, for instance θ1, is close to 90◦,
θ3 tends to be about 90◦ regardless of θ2 (Fig. 5A,B,D). In addition to the alignment of δ`,FA with δ`,BP , this intuition also
justifies alignment of ∆W`,BP with ∆W`,FA (Equ. 8 and 9) from an statistical point of view by considering θ1 = LT` ]L

T
` = 0

and θ2 = δ`+1,BP]δ`+1,FA.

This statistical intuition can be generalized to nonlinear networks. Nonlinearity, and in particular, element-wise matrix
multiplications can be considered as a distortion in the linear case. In this regard, we generated Z1 ∈ R30×40 and Z2 ∈ R30×15

with i.i.d. elements from N (0, 1) and considered f
(
·
)

= ReLU(·). Comparing

θnonlin3 = {B2 � f ′
(
Z2

)
}B1 � f ′

(
Z1

)
]{WT

2 � f ′
(
Z2

)
}WT

1 � f ′
(
Z1

)
(12)
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with θ3 (corresponding to the linear case) showed that the main effect of this applied nonlinearity is on the variance of final
product angles and it has no significant effect on the means of them (t-test, p > 0.1) (Fig. 5C,F,G).

2.5 Proposed WN method can improve alignment in the learning process of a practical
deep ANN

Figure 6 | Increasing network depth or width deteriorates, and proposed WN method improves FA in the learning process
of a deep ANN by BP-TRW for handwritten digits classification.
(A,B) A five-layer ANN with 50 neurons in output and hidden layers (network width) is trained by BP-TRW. (solid traces) According
to proposed WN method, input weights to each neuron are normalized at every iteration. (dashed traces) The whole weight matrices are
normalized at each iteration.
(C,D) A five-layer ANN with 50 neurons in output and hidden layers is trained by BP-TRW. (solid traces) No WN is applied. (dashed
traces) ‖B`‖F is matched with ‖W`‖F at every iteration (B`[k]← B`[k] · ‖W`[k]‖F /‖B`[k]‖F ).
(E,F) A five-layer ANN with 100 neurons in output and hidden layers is trained by FA. (solid traces) No WN is applied. (dashed traces)
Input weights to each neuron are normalized at every iteration. Compared to the network with a width of 50, without WN, the amount of
alignment decreased and WN overcame the effect of increasing the width to some extent.
(B,D,F) The decrease in alignment between ∆W`,FA and ∆W`,BP , as error propagates backward in successive layers, is evident.
(G) Frobenius norm of forward weight matrices corresponds to the learning process of the network with a width of 50 and no WN (C,D solid
traces). (H) Test errors of training a network with a width of 50 in different cases. (I) Layout of ANN of this experiment.

In order to study the FA mechanism, the effect of proposed WN method, and potential decline of BP-TRW in practical
deep ANNs, as a baseline, we trained a five-layer nonlinear ANN (Fig. 6I) with BP-TRW on MNIST dataset where we
divided the training set to 60 mini-batches (Fig. 6C,D solid-traces). To be able to compare alignment in different layers, we
matched the number of neurons in hidden and output layers, which we call this number network width, and set it 50 in this
baseline ANN. In the last layer, we coded the labels of classes with mutually exclusive 5-hot coding (see Methods). According
with previous analysis, as error backpropagates towards earlier layers, successive reduction in accuracy of update directions
computed by BP-TRW compared to BP is evident (Fig. 6D solid-traces). The Frobenius norm of forward weight matrices
continuously grows, although it is subtle and saturates in earlier layers, it is evident in the last layer (Fig. 6G) and mismatch
between the Frobenius norm of forward weights in different layers compared to the Frobenius norm of backward weights,
which are constant during the learning process, appears as a distortion in the BP-TRW learning process. In this regard, we
matched norm of backward weights with forward weights in each iteration (B` ← B`‖W`‖F /‖B`‖F ) and with this measure,
FA improved (Fig. 6C,D dashed-traces).

Next, we applied proposed weight normalization mechanism to the previous baseline experiment by which Frobenius norm
of input weights of each neuron is fixed to γ = 1 at each iteration (we also applied this WN to B` at the beginning) and it
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Figure 7 | Taking a closer look at FA in the learning process of a practical ANN on handwritten digits dataset. The behavior
of alignment terms depends on the statistical properties and ACFs of error signals ((δ`,FA)i,j) and outputs of neurons ((L`)i,j).
(A,B) Autocorrelograms of some randomly selected elements of L` (A) and δ`,FA (B) in the learning process of an ANN. In lags that are a
multiple of 60, they show more autocorrelation since we used 60 mini-batches.
(C,D) The Behavior of alignment terms of order 1 and 60, sup-alignment term of order 1 (T 1

`,sup = T 2
`,aln + T 3

`,aln + · · · ), and ∆W` with

(C) and without (D) applying proposed WN method. At the beginning of the learning process, when neurons are not well trained and do
not discriminate between different categories, their error signals have autocorrelation; hence alignment term of order 1 (T 1

`,aln[k]) shows
alignment in k < 250, but after this initial period, only alignment terms with the order of 60 and its multiples show alignment owing to
autocorrelograms of error signals that just show significant autocorrelation in lags that are a multiple of 60.

improved FA (Fig. 6A,B solid-traces). To see if the effect of proposed WN method is only about limiting Frobenius norm
of forward weight matrices or not, in another attempt, we normalized the whole weigh matrices (W` ← γ`W`/‖W`‖F with
γ` = 7.07) at each iteration. Compared to the proposed (neuron-wise) WN method, with this (layer-wise) normalization the
alignment between ∆W`,FA and ∆W`,BP slightly decreased (Fig. 6A,B dashed-traces).

To investigate the effect of network width on alignment, we re-performed the baseline experiment with 100 neurons in
hidden and output layers. Increasing the width of the network without WN, decreased amount of alignment (Fig. 6E,F
solid-traces) and applying proposed WN method with γ = 1 improved alignment, and to some extend, overcame the effect of
increasing the width of the network (Fig. 6E,F dashed-traces).

In addition, we trained the baseline network (with a width of 50) by BP with and without WN to compare final test
errors. Although the test accuracy of BP without WN is less than other cases (Fig. 6H dashed-traces), BP-TRW test error
is more robust to the proposed WN method (WN decreased test error of BP-TRW, but it increased test error of BP). It has
been reported that BP-TRW test error can reach to that of BP in shallow networks for handwritten digits classification task
[Lillicrap et al., 2016], but in deep ANNs, potential reduction in the performance of BP-TRW in the sense of ∆W`,BP]∆W`,FA,
and also test error, is evident and expected (at least without any further consideration) base on our previous analysis.

According to our previous analysis of two-layer ANNs, statistical properties and, in particular, ACFs of outputs and error
signals of neurons play a crucial role in FA. Hence, we randomly chose a number of elements of L` and δ`,FA matrices in
the learning process of a five-layer nonlinear ANN on MNIST dataset and plotted autocorrelograms of their activity during
iterations (Fig. 7A,B). Since we used 60 mini-batches, elements of δ`,FA only showed considerable autocorrelation in the lags
that were a multiple of 60 (Fig. 7B). Therefore, although T 1

`,aln showed alignment in the initial phase of learning (k < 250),
when neurons were not trained well and did not discriminate different categories, after that, it did not show significant
alignment (Fig. 7C,D green dots) (this holds for all alignment terms which their order is not a multiple of 60). T 60

`,aln, which
captures autocorrelation of elements of L` and δ` in lag = −60, showed considerable amount of alignment during all iterations
(Fig. 7C,D orange dots), and also T 1

`,sup = T 2
`,aln + T 3

`,aln + · · · , which is the resultant of all alignment terms with order 2 and
higher (Fig. 7C,D red dots), showed alignment. Proposed WN method improved amount alignment between ∆W`,FA and BT` ,
and also T 1

`,sup and BT` (Fig. 7C vs. D)

Amount of alignment and test error are relatively robust for a range of γ and we did not make much effort to choose a good
γ; however, network is relatively sensitive to it, for example, with small amounts of γ performance of the network is severely
reduced (see supplementary Fig. S2 for sensitivity analysis). Even in biological networks, hyperparameters play a crucial role
and many diseases, like Alzheimer, are believed to occur owing to the deflection in synaptic strengths [Verret et al., 2012,
Frere and Slutsky, 2018, Styr and Slutsky, 2018].
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Figure 8 | Proposed WN method improves flexibility of net-
work. Label coding of data is changed after 100 epochs and net-
work should revise the previously learned labels and learn the new
ones. (A) Proposed WN method improves the test accuracy after
label changing. The network is also trained with both BP-TRW and
BP and in this particular case, by applying WN, test accuracy of
BP-TRW reached that of BP after changing the label coding. (B)
Histogram of the internal state of neurons in the last layer at epoch
100. Proposed WN method regulates distribution of internal states
of neurons and it preserves network flexibility for revising. If activ-
ity of a neuron saturates, then error signal of that neuron becomes
zero ((δ5)i,j = 0) and input weights to that neuron are no longer
updated.

2.6 Proposed weight normalization can improve network flexibility

One of the most prominent features of our brain is its flexibility; that is, it can continuously learn new things or revise wrong
concepts that have already been learned. In the field of artificial intelligence, the goal of ANNs is to achieve high test accuracy
on a specific dataset in which true labels are known from the beginning of the learning process. But if an ANN is trained with
wrong labels or in cases where labels can change in time, there is a question of whether the network can learn the new labels
as well as the first ones.

To study this, we trained a five-layer nonlinear ANN on MNIST dataset with BP and BP-TRW for 100 epochs (first phase),
then changed the coding of labels (see Methods) and trained it for another 100 epochs (second phase). Without applying the
proposed WN method, test accuracy of the second phase did not reach that of the first phase. Therefore, it looks like the
network has diminished the ability to revise previously learned labels and learning new ones (Fig. 8A). Interestingly, applying
the proposed WN method recovers this ability of the network for both BP and BP-TRW. The effect of WN is evident in
the histogram of the internal state of neurons in the last layer at epoch 100 (Fig. 8B). The reason for this is that without
WN, activity of most of the neurons saturates (f ′

(
(Z5)i,j

)
= 0) and error signal of them becomes zero ((δ5)i,j = 0); thus,

input weights to those neurons are no longer updated (so-called gradient vanishing). Note that while without WN, BP-TRW
test accuracy after label changing is inferior to BP, applying WN made performance of BP-TRW comparable to that of BP
(Fig. 8A). Although we did not too much effort to optimize γ and a range of it can improve network flexibility, yet it is
relatively sensitive to network parameters and measures like label smoothing can make it more robust (see supplementary
Fig. S3 for sensitivity analysis).

3 Discussion

Statistical basis of FA. Artificial neural networks and their learning paradigms have similarities and differences with
biological neural networks. Specifically, backpropagation method needs a biologically implausible matching between feedfor-
ward and feedback synaptic strengths. The BP-TRW learning method [Lillicrap et al., 2016] showed that an ANN can be
trained with constant random feedback weights distinct from feedforward weights. In BP-TRW, forward and backward weights
partially align together during iterations which leads to alignment between update directions of BP-TRW and BP at each
iteration (reduction of ∆W`,BP [k]]∆W`,FA[k]) and provides an approximation of BP.

In this work, we investigated the mathematical and statistical basis of BP-TRW learning method and showed that alignment
itself is not due to the learning process or reduction of any loss function; rather, it works as a statistical expectation under
certain conditions hence statistical properties of network activities (f

(
·
)
, Z`, L`, δ`) as well as distribution of weights, affect

the occurrence of alignment and its amount. Specifically, in our case studies, ACFs of outputs of neurons ((L`)i,j) and their
errors ((δ`)i,j) played a crucial role in FA. For instance if the elements of L` or δ` were not autocorrelated (their ACF resembled
Kronecker delta function), alignment did not occur and if the elements of L` and δ` were autocorrelated, alignment happened
(Fig. 2, 3, 4). Autocorrelated neural activity is biologically plausible as individual biological neurons are reported to have
intrinsic (regardless of stimulus) spike-count autocorrelation which is significant in relatively low time lags and decays with
increasing time lag [Cirillo et al., 2018, Murray et al., 2014, Ogawa and Komatsu, 2010]

A weakness of the BP-TRW learning method as an approximation of BP, which is studied in this work, is the poten-
tial decline in accuracy as the depth of the network increases. Indeed, as error backpropagates towards early layers, the
angle between ∆W`,BP and ∆W`,FA increases as a consequence of deviation of δ`,BP from δ`,FA (Equ. 11 vs. 10, Fig. 5,
Fig. 6B,D,F). However, we note that poor FA in early layers may enhance the capability of the system for unsupervised
learning. Indeed, many aspects of the activity of neurons in lower areas of the visual system are demonstrated to be com-
patible with unsupervised learning models [Olshausen and Field, 1996, Barlow et al., 1961] and also there are suggestions
of efficient network architectures where an ANN trained in an unsupervised manner is followed by a supervised classifier
[Kheradpisheh et al., 2018].
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Figure 9 | Visualization of the feedback alignment for-
mula. Two scenarios that can be imagined for occurrence of
FA in the brain are illustrated. In these two scenarios, green
arrows can be justified by homosynaptic (Hebbian or activity-

dependent) plasticity. In BP, B` is equal to WT
` which is not

biologically plausibles since axons convey information unidirec-
tionally [Shepherd, 2004].
(A) Illustrates the scenario where a distinct parallel feedback
network carries the error signals and conveys them to the feed-
forward network in an interactive way that needs one-to-one
reciprocal projections between the neurons of feedforward and
feedback network (dashed arrows) and seems biologically im-
plausible.
(B) Illustrates the scenario where distinct parallel feedback
weights backpropagate the error signals and convey them
through the same feedforward network. This suggests an ap-
proximation of operators in purple boxes may be performed in
biological neurons with some processes like heterosynaptic plas-
ticity.

Normalization can improve alignment and network flexibility. Normalization is an integral part of the current
state of the art ANNs and the correspondence of normalization methods in ANN and biological ones is previously discussed
[Shen et al., 2020] and in the context of BP-TRW, the utility of using batch normalization [Ioffe and Szegedy, 2015], is reported
[Liao et al., 2016]. There are also numerous reports of normalization mechanisms in biological neural networks working
to regulate the activity of neurons and limit synaptic weights dynamic ranges [Turrigiano, 2012, Chistiakova et al., 2015,
Bi and Poo, 1998].

Accordingly we proposed a strict WN method, which is done by constraining the Frobenius norm of input weights of each
neuron to a limited amount at each iteration, and it improved FA (Fig. 6, Fig. 4) and also flexibility of network (Fig. 8) by
enhancing the network capability of revising previously learned labels. We showed that this improvement is due to keeping
the neuronal activations away from the extremes of activity range (Fig. 8B) and avoiding the gradient vanishing problem that
can otherwise hamper new learning. We also considered the amount to which norm of weights is fixed (γ) a non-learnable
hyperparameter of the network as homeostatic plasticity in the brain acts in a non-associative manner with the goal of network
stabilization which can interfere with associative (Hebbian) plasticity [Turrigiano, 2017]. In addition to homeostatic plasticity,
which acts at a slower rate than Hebbian plasticity [Turrigiano, 2017], other faster forms of plasticity like heterosynaptic
plasticity are reported which regulate the total synaptic weights in a non-associative and competitive manner, i.e., potentiation
of a synapse can result in depression of another synapse [Chistiakova et al., 2015].

The impact of nonlinearity on the FA depends on the activity of neurons as well as the distribution of weights. Not only
in BP-TRW, but also in BP f ′

(
Z`
)

is important. For instance if most of the neurons are inactive or saturated (in the case of
using activation functions like tanh(·)), then for them we have f ′

(
(Z`)i,j

)
' 0 and the error signals do not backpropagate well

(so-called gradient vanishing) and if most of them are regulated such that f ′
(
(Z`)i,j

)
' c, where c is a constant value, then

nonlinearity impose little distortion compared to the linear case. Therefore in both BP-TRW and BP, regulation of activity of
neurons is important. Even in the biological neurons, homeostatic mechanisms which regulate activity of neurons and prevent
them from high or low firing rates have been reported [Murthy et al., 2001, Surmeier and Foehring, 2004, Turrigiano, 2012].

Approximation of BP in biological networks Weight transport problem is only one of the biological implausibilities
of BP formula which can be avoided by using BP-TRW methods. There are a bunch of other biological implausibilities in
both BP and BP-TRW [Marblestone et al., 2016, Stork, 1989]. For instance, firing rate as output of each biological neuron is
nonnegative while error signals in BP and BP-TRW are signed. In addition, error signals in BP and BP-TRW are distinct
from output of artificial neurons. Indeed they are internal attributes of neurons that backpropagate to other neurons through
some putative feedback synapses, whereas in biological networks, the only attribute of each neuron that is conveyed explicitly
to other neurons by axons and synapses is its output spike while other internal attributes of each neuron are believed to be
local [Stork, 1989, Song et al., 2020]. Therefore, it has been suggested that feedforward and feedback signals may be generated
as output of neurons separately at different times [Lillicrap et al., 2016]. Furthermore, there is a debate about whether the
computational atoms in the neural coding are spike timings or firing rates [Brette, 2015]. Obviously, the current formulation
of BP-TRW (or BP) is only compatible with the rate-based models rather than the spike-based models.

Despite the biological implausibilities of BP-TRW and BP, it has been suggested that an approximation of them may occur
in the biological networks on the basis of synaptic plasticity [Whittington and Bogacz, 2019, Whittington and Bogacz, 2017,
Lillicrap et al., 2020]. According to this, we visualized the BP-TRW formula and imagined two different scenarios for the
occurrence of FA in the brain (Fig. 9). In the first one, the error signals backpropagate through some other neurons (or a
parallel network) distinct from feedforward ones (Fig. 9A) similar to what has been proposed previously [Akrout et al., 2019,
Guerguiev et al., 2017]). In this scenario, there should be one-to-one cross-projections between the neurons in the forward and
backward path (Fig. 9A dashed arrows) which does not seem biologically plausible. In the second scenario, the error signals
backpropagate to the same neurons of the forward path through some other axons and synapses distinct from feedforward
ones (Fig. 9B). If we assume that an approximation of BP-TRW occurs in the brain, this latter proposed scenario suggests
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that an approximation of the calculation of internal δ`+1 may occur locally [Guerguiev et al., 2017] (Fig. 9B purple boxes),
and the operation of ∆W` = ηLT` δ`+1 can be justified by homosynaptic (Hebbian or activity-dependent) plasticity.

In the BP-TRW learning method, the B` matrices are constant, but if we consider them as matrices of synaptic feedback
weights, synaptic plasticity also applies to them and their strength is not constant during iterations. Accordingly, it can be
imagined a state in which not only forward weights are propelled towards feedback weights but also feedback weights are
propelled towards forward weights. In this state, it may that, instead of calculation of an approximate δ`+1 as an internal
attribute of biological neurons, the operation of ∆W` = ηLT` δ`+1 is performed approximately as heterosynaptic plasticity
between forward and backward synapses afferent to neurons.

Highly nonrandom features of local cortical circuits and its possible relation to FA. FA in the sense of
reducing the angle between W` and BT` is equivalent to having positively correlated reciprocal connections between neurons
in the consecutive layers (

∑
i,j(W`)i,j(B`)j,i > 0, supposing two consecutive artificial neural layers, (W`)i,j is a feedforward

connection from neuron i in the first layer to neuron j in the second layers and (B`)j,i is its reciprocal connection from neuron
j in the second layer to neuron i in the first layer). Furthermore, in a sparse network where most of the elements of W` and
B` are zero, achieving greater alignment requires reciprocal connections to occur more than nonreciprocal ones.

Interestingly, such a non-random reciprocal connectivity, is reported among pyramidal cells [Song et al., 2005,
Markram et al., 1997, Holmgren et al., 2003, Sjöström et al., 2001]. Although these non-random features are reported in local
cortical circuits, if we consider synaptic plasticity as their origin [Song et al., 2005] and generalize them to the connections
between neurons in different cortical layers and areas, these features can provide a favorable condition for FA. In this regard,
by applying timing-dependent synaptic plasticity rules, the emergence of dominant reciprocal strong connections has been
reported in a recurrent ANN of spiking neurons under rate-coded input [Clopath et al., 2010].

FA may be just a piece of the brain puzzle In summary, the analysis done in this study and the provided intuitions
portray a clearer picture of the FA mechanism when BP-TRW learning method is used and paves the way for further research
on the relationship between learning methods used in ANNs and learning mechanisms in the nervous system. While BP-TRW
equipped with WN was capable of approximating the optimal weight changes proposed by BP in simple feedforward networks,
it remains to be seen how the addition of other biological considerations such as lateral connections, sparsity, synaptic pruning
and formation, and segregation of excitatory and inhibitory neurons affect the comparative performance of BP vs. BP-TRW.
In addition to the fully connected architectures considered here, BP-TRW in convolutional or recurrent networks that are
both biologically relevant remains to be examined in the future.

4 Methods

4.1 BP and BP-TRW learning methods

For conventional d layer ANNs, we denoted weight matrices, internal state of neurons, and output of neurons byW` ∈ Rn`×n`+1 ,
Z` ∈ Rnb×n` , and L` = f

(
Z`
)
, respectively, where nb is batch size, n` is number of neurons in layer ` (network dimensions),

and f
(
·
)

is an element-wise activation function. For 0 < ` ≤ d, we calculated internal state of neurons in layer ` according with
Z` = L`−1W`−1. In a more general case a bias vector b` ∈ R1×n` can be added to Z` (Z` = L`−1W`−1 + b`) where addition
of a matrix with a row vector is defined as adding the vector to each row of the matrix, but for simplicity, we did not consider
b` in our experiments and also analysis since it can be embedded in W`−1 by adding a corresponding all-ones column to the
L`−1. We denoted input, output, and desired output matrix (true labels) of ANNs by X = L0 ∈ Rnb×ni , Y = Ld ∈ Rnb×no ,
and Y ∗ ∈ Rnb×no , respectively, where ni = n0 is number of neurons in the input layer, and no = nd is number of neurons in
the output layer. For two-layer ANNs we denoted number of neurons in the only hidden layer by nh = n1.

In the experiments where we trained an ANN on a specific task (MNIST dataset for handwritten digits classification,
Fig. 6, Fig. 7, Fig. 8), we calculated error matrix at each iteration k according with E[k] = Y ∗[k]− Y [k] and the loss function
was L = 1

2

∑
i

∑
j E

2
i,j where Ei,j is the element in ith row and jth column of matrix E.

In BP learning method, we updated weights at each iteration as below

W`[k + 1] = W`[k] + ∆W`[k] (13)

where the direction of the gradient for updating weight matrices computed by BP at each iteration k is

∆W`,BP [k] = −η ∂L
∂W`

∣∣∣∣
k

= ηL`[k]T δ`+1,BP [k], 0 ≤ ` < d (14)

where
δd,BP [k] = E[k]� f ′

(
Zd[k]

)
(15)

δ`,BP [k] = δ`+1,BP [k]W`[k]T � f ′
(
Z`[k]

)
, 0 < ` < d (16)

and � denotes element-wise matrix multiplication (in the order of operations, it has less priority than matrix multiplication),
f ′
(
·
)

is element-wise derivative of activation function and η is learning rate [Rumelhart et al., 1985].
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In BP-TRW [Lillicrap et al., 2016], the error backpropagates by constant random matrices different from forward weights
which we denoted by B` ∈ Rn`+1×n` (in two-layer ANNs we denoted B = B1), and calculated update directions at each
iteration as follows (WT

` in equation 16 is replaced with B`)

δd,FA[k] = δd,BP [k] = E[k]� f ′
(
Zd[k]

)
(17)

δ`,FA[k] = δ`+1,FA[k]B` � f ′
(
Z`[k]

)
, 0 < ` < d (18)

∆W`,FA[k] = ηL`[k]T δ`+1,FA[k], 0 ≤ ` < d. (19)

In the experiments where we intended to investigate statistical basis of FA, we imposed hypothetical random X and E on
an open-loop network regardless of loss function.

The final goal of BP-TRW is providing a good approximation of ∆W`,BP [k], i.e., reduction in ∆W`,FA[k]]∆W`,BP [k].
According to this, in the context of training a network with BP-TRW, ∆W`,BP [k] is a direction that we only calculated at
each iteration for the purpose of comparison with ∆W`,FA[k], which we actually used for updating forward weight matrices.

4.2 Derivation of alignment terms and their corresponding transformation matrices

To see why BP-TRW works and providing an intuition about its statistical basis without imposing any unrealistic assumption
(e.g., XXT = I, zero initialized weights, or constant error and input matrices), we expanded ∆W`,FA[k] by taking successive
steps backward along the iterations and substituting every W0[k− o] for 0 ≤ o < k, and by applying Taylor approximation as
below

∆W`,FA[k] = ηL`[k]T δ`+1,FA[k] = ηf
(
W`−1[k]TL`−1[k]T

)
δ`+1,FA[k]

= ηf
(
{W`−1[k − 1]T + ηδ`,FA[k − 1]TL`−1[k − 1]}L`−1[k]T

)
δ`+1,FA[k]

≈ η
{
f
(
W`−1[k − 1]TL`−1[k]T

)
+

f ′
(
W`−1[k − 1]TL`−1[k]T

)
� ηδ`,FA[k − 1]TL`−1[k − 1]L`−1[k]T

}
δ`+1,FA[k]

= T 1
`,aln[k] + T 1

`,sub[k]

≈ T 1
`,aln[k] + T 2

`,aln[k] + · · ·+ f
(
W`−1[0]TL`−1[k]T

)
δ`+1,FA[k], 0 < ` < d

(20)

where for 1 ≤ o ≤ k and 0 < ` < d we define

T o`,aln[k] = η
{
f ′
(
W`−1[k − o]TL`−1[k]T

)
� ηδ`,FA[k − o]TL`−1[k − o]L`−1[k]T

}
δ`+1,FA[k] =

η
{
f ′
(
W`−1[k − o]TLT`−1[k]

)
� η{f ′

(
Z`[k − o]

)T �BT` δT`+1,FA[k − o]}L`−1[k − o]L`−1[k]T
}
δ`+1,FA[k]

(21)

as alignment term of order o in layer `, and for 1 ≤ o < k and 0 < ` < d we define

T o`,sup[k] = ηf
(
W`−1[k − o]TL`−1[k]T

)
δ`+1,FA[k]

≈ T o+1
`,aln[k] + T o+2

`,aln[k] + · · ·+ f
(
W`−1[0]TL`−1[k]T

)
δ`+1,FA[k]

(22)

as sup-alignment term of order o in layer ` which itself contains alignment terms of order 2 and higher (we defined it for the
purposes of summarizing and illustration).

Depending on the number of layers, and whether or not nonlinearity is applied, alignment terms can be summarized and
represented. For a linear network, where f

(
·
)

is an all-ones matrix, element-wise matrix multiplications are eliminated and
(without Taylor approximation) we have

∆W`,FA[k] = T 1
`,aln[k] + T 2

`,aln[k] + · · ·+W`−1[0]TL`−1[k]T δ`+1,FA[k] (23)

where alignment term of order o in layer ` is

T o`,aln[k] = η2BT` δ`+1,FA[k − o]TL`−1[k − o]L`−1[k]T δ`+1,FA[k] (24)

In two-layer (shallow) nonlinear ANNs with B = B1, alignment term of order o is

T o1,aln[k] = η
{
f ′
(
W0[k − 1]TX[k]T

)
� ηδ1[k − 1]TX[k − 1]X[k]T

}
δ2[k] =

η
{
f ′
(
W0[k − o]TX[k]T

)
� η{δ2[k − o]B � f ′

(
Z1[k − o]

)
}TX[k − 1]X[k]T

}
δ2[k]

(25)

which can be summarized in two-layer linear ANNs as below

T o1,aln[k] = η2BTE[k − o]TX[k − o]X[k]TE[k]. (26)

Accordingly, the transformation matrix which applies to BT in two-layer linear ANNs is

Mo[k] = E[k − o]TX[k − o]X[k]TE[k] (27)

In general Mo[k] is not symmetric but we can split it into two symmetric and skew-symmetric terms

Mo[k] = Mo
sym[k] +Mo

skew[k] (28)
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where

Mo
sym[k] =

1

2
(Mo[k] +Mo[k]T ). (29)

and

Mo
skew[k] =

1

2
(Mo[k]−Mo[k]T ) (30)

The skew-symmetric term (or any real skew-symmetric matrix), totally deviates BT (or any real matrix) after matrix multi-
plication since

〈BT , BTMo
skew[k]〉F = tr(BTMo

skew[k]B) = tr(BTMo
skew[k]TB)

= −tr(BTMo
skew[k]B) = 0

(31)

where tr(·) denotes matrix trace, and as a result BT]BTMo
skew[k] = 90◦.

4.3 Network parameters, dimensions, and initialization

For plotting histograms of Fig. 2 we chose network dimensions ni = nh = 100, nb = 20, and no = 50.

In experiments on two-layer ANNs (Fig. 3 and Fig. 4) we chose network dimensions ni = nh = nb = 100 and no = 10,
and set learning rate to η = 0.003. We chose no relatively small for illustrative reasons since increasing it without increase ni,
decreases the amount of alignment (Fig. 1). In these experiments, we initialized elements of B, W0 and W1 with i.i.d. random
variables from N (0, 1) and used ReLU(·) as activation function (f

(
·
)

= ReLU(·) and for its element-wise derivative f ′
(
·
)

we
considered f ′

(
0
)

= 1 by convention). For proposed WN method we set γ = 1 in these experiments.

For training deep ANNs on handwritten digits dataset (MNIST), in the experiments of Fig. 6 and Fig. 7 we set learning
rate to η = 0.005, and in the experiment of Fig. 8 we set learning rate to η = 0.003. In these experiments we initialized
elements of B, W0 and W1 with i.i.d. random variables from N (0, 0.1) and for nonlinearity we used f

(
·
)

= tanh(ReLU(·)) as
activation function. Number of input neurons in these experiments was 225 since we resized all handwritten digits to 15× 15
and then vectorized them. We also normalized intensity of their pixels (output of each input neuron) to lay between 0 and 1
(dividing them by 255). For proposed WN method we set γ = 1 in the experiments of Fig. 6 and Fig. 7, and γ = 0.6 in the
experiments of Fig. 8. In the experiments of Fig. 7 and Fig. 8 width of the network (number of neurons in each hidden and
output layer) was 50.

4.4 Proposed weight normalization mechanism

We kept the Frobenius norm of input weights to each neuron constant by the following operation

W`[k]∗,i ← γ
W`[k]∗,i

‖(W`[k])∗,i‖F
(32)

which performs at each iteration of learning process for every column of all weight matrices (W`[k]∗,i denotes a matrix consist
of ith column of W`[k] which corresponds to the all input weights to the neuron i in the layer `+ 1). Whenever we used
proposed WN method, we also normalized every columns of B` with γ at the beginning of learning process(after network
initialization).

4.5 Angle between two matrices.

We calculated the angle between two arbitrary matrices W and B with the same dimensions as follows:

W]B = cos−1(
〈W,B〉F
‖W‖F ‖B‖F

) (33)

where 〈W,B〉F is the Frobenius inner product of W and B and ‖.‖F is Frobenius norm. This is identical to the vector angle
between vectorized W and B in the euclidean space. The angle between two matrices is indeed a measure for the similarity
between the normalized version of two matrices (regardless of ‖W‖F and ‖B‖F ).

4.6 Calculating ACF for correlograms.

In figures 4E and 7A,B we calculated the ACF of a signal S[k] with length N (1 ≤ k ≤ N) in each lag −N < τ < N by

ACF (τ) =
1

N − |τ |

N−|τ |∑
k′=1

S[k′]S[k′ + |τ |]. (34)
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4.7 Plotting the results.

In all figures where traces corresponding to ∆W`,FA]∆W`,BP is illustrated, owing to the noise of the original traces, we first
passed traces from a moving average filter with a length of 60 and then plotted them. In all figures, shaded areas are ±SEM
(standard error of the mean). In figures 3 and 4 each trace is average of 30 repetitions. In figures 6 and 8 each trace is average
of 10 repetitions.

4.8 Generating two random matrices from unit hypersphere with uniform angle.

In figure 5, for generating two random matrices from the unit sphere with uniform angle (B`]WT
` ∼ U(0◦, 180◦)), we drew

random matrix B` from the unit sphere by drawing elements of B`, i.i.d. from N (0, 1) and normalized it (B` ← B`/‖B`‖F ).
Analogously, we drew an auxiliary random matrix A from the unit sphere and by the Gram-Schmidt process we made it
orthogonal to B` (A← A−〈A,B`〉FB`). Then we generated two independent random variables r1, r2 ∼ N (0, 1) and produced
WT
` = r1A+ r2B` and finally normalized it (WT

` ←WT
` /‖WT

` ‖F ).

4.9 Generating mutually exclusive n-hot coding.

In training deep ANNs on handwritten digits dataset (MNIST) (Fig. 6 and Fig. 8) where network width was 50 we used
mutually exclusive 5-hot coding and where network width was 100 we used mutually exclusive 10-hot coding. Suppose the
number of categories is C and number of output neurons is m (n · C ≤ m). For generating mutually exclusive n-hot code
vectors of size m for each category, we started from the first category to the last one and successively for each category
c ∈ {0, 1, · · · , C − 1} we initialized its code vector with zero elements and then randomly selected n out of m− c · n elements
that were not equal to 1 in any of the c previously coded category vectors and set them equal to 1. For network flexibility
analysis (Fig. 8) we repeated this procedure at the epoch 100 and generated new coding vectors.

5 Author Contributions

AR, AG and FM conceived the general ideas and the research plan. AR did the derivations and simulations in discussions
with and under supervision of AG. AR and AG wrote the paper under FM supervision.
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Supplementary Information

Supplimentory Note 1. Behavior of alignment and sup-alignment terms in FA with applying proposed
WN method in Shallow Nonlinear ANNs

Based on our analysis, if ACFs of error matrix elements resemble a Kronecker delta function, alignment does not occur. By
expansion of its support to further lags, more orders of alignment terms contribute in alignment. Assume that in a two-layer
ANN, input matrix is constant and ACFs of error matrices elements have limited support of lag ∈ [−s, s] and show significant
(positive) autocorrelation for −s ≤ lag ≤ s. With this assumption, T oaln with o ≤ s contribute in alignment and

T s`,sup[k] = ηf
(
W`−1[k − o]TL`−1[k]T

)
δ`+1,FA[k] (S1)

does not contribute in alignment. In a two-layer network, with an increasing activation function, ‖W0‖F directly affects
‖T s1,sup‖F while if we neglect its indirect effect on ‖E‖F (assuming that the neurons maintain the magnitude of their error
signals regardless of ‖W0‖F and ‖W1‖F ), and if we use an activation function like ReLU, ‖W0‖F does not have too much
effect on ‖T o1,aln‖F with o ≤ s (Fig. S1) since unlike T s1,sup, in T o1,aln, f ′

(
·
)

participates instead of f
(
·
)
.

In this respect, if ‖W0‖F is limited, T s1,sup is less dominant in the equation

∆W1,FA[k] ≈ T 1
1,aln[k] + T 2

1,aln[k] + · · ·+ T s1,sup[k] (S2)

and the amount of alignment is expected to increase. Note that this analysis is more complicated in deep ANNs since ‖W`‖F
affects ‖L`+1‖F , and in this case, efficiency of network, in the sense of achieving more ‖L`+1‖F with less ‖W`‖F , is important
for achieving more alignment (more ‖T o`,aln‖F , o ≤ s and less ‖T s`,sup‖F ).

In this regard, we applied proposed WN method and imposed some hypothetical constant random input matrix and
variable error matrix with noisy autocorrelated elements on an open-loop nonlinear shallow network according to five cases
below in order for investigating expansion of support of ACFs of error matrix elements from one step lag to two-step lag and
also investigating effect of applying proposed WN method. In addition, we investigated the effect of these measures on the
behavior of T 1

1,aln , T 1
1,sup and summation of them from beginning to each current iteration (

∑
T 1
1,aln and

∑
T 1
1,sup).

In all of the following cases, we set network dimensions ni = nh = nb = 100, no = 10 and learning rate η = 0.003 and
initialized W0, W1, B, X and E with i.i.d. elements from N (0, 1).

Case 1 In this case (Fig. S1A,B), we reinitialized E at every two iterations. As expected, T 1
1,aln is partially aligned

with the BT in half of the iterations and T 1
1,sup does not align. Consequently,

∑
T 1
1,sup does not provide any alignment and∑

T 1
1,aln provides alignment even more than each individual T 1

1,aln since there is a noise in T 1
1,aln terms that cancels out in

summation. The final amount of alignment of W1 with BT is the resultant of
∑
T 1
1,sup and

∑
T 1
1,aln while at each iteration,

∆W1 does not provide any considerable amount of alignment, yet its accumulative effect on W1]BT becomes apparent during
iterations. In this case, Frobenius norms of feedforward weights continuously increase, which is so-called blow-up (Fig. 4B)

Case 2 In this case (Fig. S1C,D), case 1 is re-performed with the difference that we expanded the support of error
matrix elements ACF from one-step to two-step by reinitializing E at every three iterations. The notable change compared
to the case 1 is that in this case

∑
T 1
1,sup shows some amount of alignment, although it is subtle in each individual T 1

1,sup. In
this case blow-up happens for weight matrices Frobenius norm (Fig. S1D).

Case 3 In this case (Fig. S1E,F) we repeated the previous case with the proposed WN method with γ = 1. This
normalization results in more alignment compared to previous case. Although the T 1

1,aln does not represent further alignment,
the impact of normalization is notable on T 1

1,sup. In addition, ∆W1 provides considerable amount of alignment which was
subtle in the two previous cases.

Case 4 In this case (Fig. S1G,H), we re-performed the first case of this experiment with the proposed normalization
with γ = 1 . Compared with the first case ∆W1 shows more alignment and W1]BT almost reaches T 1

1,aln]B
T whereas T 1

1,sup

shows no alignment.

Case 5 To show the impact of weight matrices Frobenius norm on the final amount of alignment, In this case (Fig. S1I,J)
we re-performed the fourth case of this experiment with the difference of γ = 0.7. Compared to the previous case ‖T 1

1,sup‖F
is reduced; thus, W1 and ∆W1 show slightly more alignment, yet the effect of reducing Frobenius norm of weight matrices
finally saturates since this normalization method does not affect T 1

1,aln]B
T .

In summary, expanding the support of ACFs of error matrix elements along lags and limiting Frobenius norm of forward
weights, both improved alignment in this experiment.
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Figure S1 | Weight normalization and expanding support of ACF of error matrix elements affect the amount of alignment.
Top row shows the behavior of T 1

1,aln, T 1
1,sup, the summation of them from the beginning to each current iteration (

∑
T 1
1,aln and

∑
T 1
1,sup),

and their effect on the final amount of alignment. Bottom row shows the behavior of Frobenius norm of alignment term of order 1,
sup-alignment term of order 1, their summations and forward weight matrices.
(A,B) E is reinitialized at every two iterations and T 1

1,sup does not align.

(C,D) E is reinitialized at every three iterations and T 1
1,sup slightly aligns.

(B,D) Show Frobenius norm of forward weight matrices increase continuously and consequently ‖T 1
1,sup‖F increases while ‖T 1

1,aln‖F is
relatively low and constant.
(E,F) E is reinitialized at every three iterations and normalization mechanism applied with γ = 1 hence ‖T 1

1,sup‖F is limited and leads to
more alignment.
(G,H) E is reinitialized at every two iterations and normalization mechanism applied with γ = 1.2 hence ‖T 1

1,sup‖F is limited and leads to
more alignment.
(I,J) The case of (G,H) is re-performed with the difference that γ = 0.7. Further reduction of Frobenius norm of forward weights leads to
a slight increase of alignment. The effect of reducing Frobenius norm of forward weight matrices finally saturates since it does not increase
the amount of alignment of T 1

1,aln.

Supplimentory Note 2. FA in an open-loop Linear Shallow ANN with constant error and input
matrix

Consider a conventional two-layer linear neural network (d = 2 and f
(
·
)

is an identity function). Update directions computed
by BP are

∆W1,BP [k] = ηL1[k]TE[k] (S3)

∆W0,BP [k] = ηX[k]TE[k]W1[k]T (S4)

Update direction calculated by FA for W1 is the same as BP (Equ. S4), but for updating W0 error backpropagates by a
constant random matrix B

∆W0,FA[k] = ηX[k]TE[k]B (S5)

Assume that FA learning process is performing in batch-mode and X is constant during iterations. Additionally, to give
an initial intuition about FA, at first we assumed that E is constant and non-zero during iteration (this is not a realistic
assumption in learning process). Indeed with this assumption, we intended to show that no learning process or decrease in
loss function is required for alignment to happen and it occurs under certain conditions even if we break the feedback loop
and feed the backward pass with a constant random E. According to these assumptions, after k iterations we have

W0[k] = W0[k − 1] + ∆W0,FA[k − 1] = W0[0] + kηXTEB (S6)

and direction of W0 converges to the direction of XTEB

lim
k→+∞

W0[k]

‖W0[k]‖F
= lim
k→+∞

W0[0] + kηXTEB

‖W0[0] + kηXTEB‖F
=

XTEB

‖XTEB‖F
. (S7)
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Therefore, for large enough k we have
W0[k � 1] ' c1XTEB (S8)

where c1 is a constant coefficient. Then

∆W1,FA[k � 1] = ηLT1 E = η(XW0)TE ' ηc1BTETXXTE. (S9)

Like the convergence of W0, for W1 we have

W1[k � 1] ' c2BTETXXTE = c2(ETXXTEB)T . (S10)

In order that W1[k � 1] aligns with BT , we should have

W1[k � 1]]BT ' cos−1(
〈(ETXXTEB)T , BT 〉F
‖BTETXXTE‖F ‖B‖F

) < 90◦. (S11)

Supplimentory Note 3. A semidefinite matrix as a transformation matrix

Consider E ∈ Rnb×no , X ∈ Rnb×ni , and B ∈ Rnh×no . The main factor for alignment of

W1[k � 1] ' c2BTETXXTE = c2(ETXXTEB)T . (S12)

with BT is ETXXTE as a transformation matrix which is applied to B (or BT depending on the notation in equation S12)
and if it does not completely deviate B after transformation, alignment happens. Indeed it have some special properties that
preserves the direction of BT after matrix multiplication; otherwise, assuming A and B are two independent random matrix
with i.i.d. elements from N (0, 1) and proper dimensions, by statistical expectation, A totally deviates B and AB]A is 90◦

(A,B ∈ R100×100, SD = ±0.82◦, one sample t-test, p > 0.5, n = 1000).

But ETXXTE can be considered as the estimated autocorrelation matrix of data matrix
√
niX

TE and has some special
properties which leads to alignment. First, it is an no × no symmetric matrix and have no mutually orthogonal eigenvectors
that totally span Rno [Strang et al., 1993]. Secondly, it is positive semidefinite [Strang et al., 1993]. It can be even positive
definite if columns of XTE are linearly independent [Strang et al., 1993].

The impact of ETXXTE as a transformation matrix on any arbitrary vector v after vector-matrix multiplication can be
seen by decomposing v to the basis of orthonormal eigenvectors of ETXXTE. After multiplication, each of these components
scales in its direction by a nonnegative eigenvalue (if it could be negative, the corresponding component would be able to totally
change direction by 180◦). Therefore this transformation does not totally deviate v, yet the arrangement of its eigenvalues
plays an essential role in the amount of deviation (Fig. 1D).

This analysis also holds in the case of matrix-matrix multiplication in equation S12 since transformation applies to every
column of B independently. Columns of B are vectors in mutually exclusive subspaces of the whole space of vectorized matrix
B. Therefore, if each column partially deviates in its own subspace, consequently so is the B.

Supplimentory Note 4. Sensitivity analysis

Learning process for handwritten digits classification is slightly sensitive to hyperparameters of network (width, η, γ and ...).
The amount of learning rate is important for the convergence of network and with high η it may not converge (η > 0.0005).
In the following figures, we re-performed training of nonlinear five-layer ANNs for handwritten digits classification in different
conditions (η < 0.0005 and η < 0.0003 and different γ) to analysis sensitivity of network with respect to networks parameters.
In addition, in the following figures we used label smoothing (LS), by which for every code vectors ones are replaced with
0.95 and zeros are replaced with 0.05. Label smoothing improved flexibility of network and made it less sensitive to network
hyperparameters.
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Figure S2 | Sensitivity analysis for final amount of alignment and final test accuracy. In training process of a five-layer ANN
on MNIST dataset, final amount of alignment in different layers (upper panel) and final test accuracy (lower panel) is plotted in different
conditions. Markers demonstrate median and error bars demonstrate minimum and maximum (n=10). Circle markers correspond to
η = 0.0005 (learning rate) and triangle markers correspond to η = 0.0003. LS: label smoothing, WN: weight normalization
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Figure S3 | Sensitivity analysis for final test accuracy after label changing. In training process of a five-layer ANN on MNIST
dataset, where true labels of data is changed at epoch 100, final amount of test accuracy at epoch 200 is plotted in different conditions.
Markers demonstrate median and error bars demonstrate minimum and maximum (n=10). Circle markers correspond to η = 0.0005 (learning
rate) and triangle markers correspond to η = 0.0003. LS: label smoothing, WN: weight normalization
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