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Summary 
 

Recent spatial transcriptomics experiments utilize slides containing thousands of spots with spot-specific barcodes 

that bind mRNA. Ideally, unique molecular identifiers at a spot measure spot-specific expression, but this is often 

not the case owing to bleed from nearby spots, an artifact we refer to as spot swapping. We propose SpotClean to 

adjust for spot swapping and, in doing so, to increase the sensitivity and precision with which downstream analyses 

are conducted.  

  

The 10x Genomics Visium (10x) platform1 is a powerful and widely-used approach for profiling 

genome-wide gene expression across a tissue.  In a 10x spatial transcriptomics experiment, fresh-

frozen (or FFPE) tissue is sectioned and placed onto a slide containing 4992 spots, with each spot 

containing millions of capture oligonucleotides with spatial barcodes unique to that spot. The tissue is 

imaged, typically via Hematoxylin and Eosin (H&E) staining. Following imaging, the tissue is 

permeabilized to release mRNA which then binds to the capture oligonucleotides, generating a cDNA 

library consisting of transcripts bound by barcodes that preserve spatial information.  Data from a 10x 

spatial transcriptomics experiment consists of the tissue image coupled with RNA-sequencing data 

collected from each spot. A first step in processing spatial transcriptomics data is tissue detection, 

where spots on the slide containing tissue are distinguished from background spots without tissue. 

Unique molecular identifier (UMI) counts at each spot containing tissue are then used in downstream 

analyses (Supplementary Figure 1).  

 

Ideally, a gene-specific UMI at a given spot would represent expression of that gene at that spot, and 

spots without tissue would show no UMIs. This is not the case in practice. Messenger RNA bleed 

from nearby spots causes substantial contamination of UMI counts, an artifact we refer to as spot 

swapping. Evidence for spot swapping is shown in Figure 1 in a tissue sample from postmortem 
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human brain profiled as part of spatialLIBD, a project aimed at defining the spatial topography of 

gene expression in the six-layered human dorsolateral prefrontal cortex (DLPFC)2.  Specifically, 

Figure 1a shows that UMI counts at background spots (which are zero in the absence of 

contamination) are relatively high compared with counts in tissue spots; and the counts decrease with 

increasing distance from the tissue (Figure 1b). Figure 1c shows the distribution of UMI counts for 50 

genes in a tissue region, a nearby background region, and a distant background region. As a result of 

expression similarity between the tissue and nearby background, tissue and background spots are not 

easily distinguished (Figure 1d). This is emphasized again in Figure 1f, where spots on the slide are 

colored by membership in the graph-based clusters shown in Figure 1e. Supplementary Figures 2-4 

show similar results from 13 additional datasets; and Supplementary Table 1 shows that the 

proportion of UMI counts in background spots ranges between 5% and 20% in most datasets.  

 

Figure 1, Supplementary Figures 2-4, and Supplementary Table 1 demonstrate that spot swapping 

occurs from tissue to background, but evaluating the extent of spot swapping from tissue spot to 

tissue spot is more challenging. While the SpotClean model provides an estimate (Supplementary 

Table 2), we also consider tissue-specific marker genes identified in the spatialLIBD project. In the 

absence of spot swapping, expression for a layer-specific marker should be high within that layer, and 

low (or off) in other layers. When spot swapping occurs, marker expression is relatively high in 

nearby layers. This is evident with GFAP, for example, a marker known to be up-regulated in white 

matter (WM) and in the first annotated layer of the DLPFC (Layer1). Supplementary Figure 5 shows 

high expression of GFAP in WM and Layer1 spots, as expected, but also relatively high expression in 

tissue spots adjacent to WM and Layer1, with GFAP expression decreasing as distance from WM (or 

Layer1) increases. While it is possible that some increase in marker expression in adjacent tissue 

spots may be due to the presence of WM (or Layer1) cells at those spots, we note that the rate of 

expression decay into the background spots (where no cells are present) is similar to the rate of decay 

into adjacent tissue regions. Consequently, the possible presence of WM (or Layer1) cells in adjacent 

tissue spots is not sufficient to fully explain the observed expression pattern. Similar results are 

shown for a WM marker, MOBP (Supplementary Figure 5), as well as 13 additional markers 

(Supplementary Figure 6). 

  

To more directly quantify the extent of spot swapping, we conducted chimeric experiments where 

human and mouse tissues were placed contiguously during sample preparation. For each experiment, 
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we annotated the H&E images to identify species-specific regions, and we calculated the proportion 

of spot-swapped reads (mouse-specific reads in human spots, human-specific reads in mouse spots, 

and reads in background spots). This is a lower bound on the proportion of spot-swapped reads 

(LPSS) as it does not account for spot swapping within species (e.g. reads from human spot t bound 

by probes at human spot t'); LPSS ranges between 26-37% in these experiments (Supplementary 

Table 1).  Taken together, results from a comparison of tissue and background expression (Figure 1 

and Supplementary Figures 2-4), analysis of marker genes (Supplementary Figures 5-6), and the 

chimeric experiment (Supplementary Table 1 and Supplementary Figure 7) demonstrate that spot 

swapping affects UMI counts in spatial transcriptomics experiments. This nuisance variability 

decreases the power and precision of downstream analyses (Figure 2b, Supplementary Figure 8). 

 

The statistical methods developed to adjust for known sources of contamination in RNA-seq 

experiments3,4 do not accommodate the spatial dependence inherent in spot swapping, and, 

consequently, are not sufficient in this setting (Supplementary Section S1).   To adjust for the effects 

of spot swapping in 10x spatial transcriptomics experiments, we developed SpotClean. The approach 

is implemented in the R package R/spotClean. SpotClean was evaluated on simulated and case study 

data. In SimI, contaminated counts are generated assuming that local contamination follows a 

Gaussian kernel; SimII-IV relax the Gaussian assumption. In SimV, contaminated counts are 

simulated for genes having average expression that varies systematically across the slide. 

Supplementary Tables 3-6, which show the mean squared error (MSE) between true and 

decontaminated gene expression in simulated datasets, indicate that SpotClean provides improved 

estimates of expression; and Supplementary Figure 9 demonstrates that these improved estimates of 

expression increase the precision for identifying spatially varying genes. 

 

Improved estimates of expression and increased precision are also observed in case study data. Figure 

2a shows that SpotClean improves the specificity of GFAP in the spatialLIBD data by maintaining 

expression levels in WM and Layer1 and reducing spurious expression in the other layers.  

Supplementary Figure 10 shows similar results for the 15 markers shown in Supplementary Figure 6. 

Figure 2b and Supplementary Figure 8 consider genes known to be differentially expressed (DE) 

between WM and Layer6 in raw and SpotClean decontaminated data; SpotClean results in increased 

fold-changes and smaller p-values for the majority of known DE genes. The chimeric datasets 

provide additional examples. In particular, Figure 2d shows that SpotClean reduces the proportion of 
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spot-swapped UMI counts in the chimeric datasets. Similar results are shown in Figure 2e where we 

consider expression for human-specific and mouse-specific genes at human-specific and mouse-

specific spots. Data decontaminated via SpotClean shows reduced expression of human genes in 

mouse tissue, with no reduction in human tissue, and vice versa.  

 

The 10x Genomics Visium platform provides unprecedented opportunity to address biological 

questions, but artifacts induced by spot swapping must be adjusted for to ensure that maximal 

information is obtained from these powerful experiments. SpotClean provides for more accurate 

estimates of expression, thereby increasing the power and precision of downstream analyses. 
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Figure 1: Data from the human dorsolateral prefrontal cortex profiled in the spatialLIBD experiment, 
sample LIBD_151507. (a) UMI count densities for tissue and background spots show relatively high counts 
in the background. (b) UMI total counts in the background decrease with increasing distance from the tissue; 
the perimeter delineating tissue and background is shown in white. (c) Counts of the top 50 genes from a 
select tissue region (upper), from a nearby background region (middle), and from a distant background 
region (bottom) show the similarity between expression in tissue spots and nearby background spots due to 
spot swapping from tissue to background, an effect that decreases as distance from the tissue increases. The 
positions of the three regions are shown in Supplementary Figure 2. (d) Tissue and background spots are 
not distinguished visually via UMAP. (e) Graph-based clustering of all spots identifies 9 clusters. (f) Spots 
on the slide are colored by their cluster membership shown in (e). Black arrows highlight areas of spot 
swapping of signal from tissue to background. Spots on the perimeter (shown in white) have been removed 
from the summaries shown here to ensure that the effects shown are not due to spots on the tissue-
background boundary. The H&E image for this dataset is shown in Supplementary Figure 2.    
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Figure 2: Data from the spatialLIBD experiment, sample LIBD_151507, and the chimeric experiment, 
sample HM-1.  (a) Known annotation of different layers of the human dorsolateral prefrontal cortex (left); 
layer-specific marker gene expression in the raw (middle) and SpotClean decontaminated (right) data show 
that SpotClean provides improved specificity of marker gene expression for GFAP, a marker for WM and 
Layer1, and for SNAP25, a neuronal marker up-regulated in Layer2-Layer6. (b) An analysis of genes 
known to be differentially expressed (DE) between WM and Layer6 in raw and SpotClean decontaminated 
data shows that SpotClean results in increased fold-changes and smaller p-values for the majority of known 
DE genes. (c) Species annotation of sample HM-1, a chimeric tissue of human skin and mouse duodenum. 
Spots annotated as mixtures were removed prior to calculating the summaries in panels (d) and (e) in an 
effort to ensure that the effects shown are not due to spots containing a mixture of the two species. (d) The 
proportion of spot-swapped UMI counts from all human genes (human-specific UMIs in background or 
mouse spots) are shown left for raw (salmon) and SpotClean decontaminated (turquoise) data; the 
proportion of spot-swapped UMI counts from all mouse genes (mouse-specific UMIs in background or 
human spots) are shown right. Note that there may be spot swapped UMIs within species (e.g. reads from 
human spot t bound by probes at human spot t'), but they cannot be identified in this experiment. (e) Scaled 
expression (UMIs are scaled so that each row sums to 1) for the top 100 human genes and top 100 mouse 
genes in the top 100 human spots and top 100 mouse spots. The top 100 human or mouse genes (spots) 
are those genes (spots) with highest total UMI counts. Data decontaminated via SpotClean shows reduced 
expression of human genes in mouse tissue, with no reduction in human tissue; and vice versa.  
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ACCESSION CODES   

Raw sequence data for the human-mouse chimeric experiments are available at GEO (ID in progress). 

Links to public datasets are available in Supplementary Table 7. The R package SpotClean is available 

at https://github.com/zijianni/SpotClean and will be submitted to Bioconductor. Codes for simulation 

and real data analyses as well as processed data can be found at 

https://github.com/zijianni/codes_for_SpotClean_paper. 
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ONLINE METHODS 
 
Versions: The following R packages were used in the analysis: R-4.0.2; R/SpotClean-0.99.0; 

R/SoupX-1.5.0; R/celda-1.5.11; R/Seurat-3.2.2; R/scran-1.17.20; R/reticulate-1.16; Python-3.7.4; 

Python/spatialde-1.1.3; FastQC-0.11.7; MultiQC-1.9; Space Ranger-1.2.2; Loupe Browser-4.2.0.  

 

SpotClean:  Let 𝐾𝐾 be the total number of spots, 𝐺𝐺 be the set of genes, 𝐼𝐼𝑡𝑡 be the set of tissue spots 

with cardinality |𝐼𝐼𝑡𝑡| = 𝐾𝐾𝑡𝑡, and 𝐼𝐼𝑏𝑏 be the set of background spots with cardinality |𝐼𝐼𝑏𝑏| = 𝐾𝐾𝑏𝑏 where 

𝐾𝐾𝑡𝑡 + 𝐾𝐾𝑏𝑏 = 𝐾𝐾. The true (i.e., uncontaminated) UMI counts are given by {𝑌𝑌𝑔𝑔,𝑡𝑡}𝑔𝑔∈𝐺𝐺,𝑡𝑡∈𝐼𝐼𝑡𝑡  and observed 

counts by 𝒟𝒟 = {𝑋𝑋𝑔𝑔,𝑗𝑗}𝑔𝑔∈𝐺𝐺,𝑗𝑗∈𝐼𝐼𝑡𝑡∪𝐼𝐼𝑏𝑏.  As our interest here is to characterize the extent of spot swapping, 

we introduce the missing variable 𝐵𝐵𝑔𝑔,𝑡𝑡,𝑗𝑗 to be the UMI count for gene g leaving tissue spot t and 

binding to tissue (or background) spot 𝑗𝑗.  Likewise we define 𝑆𝑆𝑔𝑔,𝑡𝑡 to be the UMI count arising from 

gene g in tissue spot t that remain at that spot and thus are not subject to bleeding.  We decompose  

𝑌𝑌𝑔𝑔,𝑡𝑡 into a sum: 𝑌𝑌𝑔𝑔,𝑡𝑡 = 𝑆𝑆𝑔𝑔,𝑡𝑡 + 𝐵𝐵𝑔𝑔,𝑡𝑡, where 𝐵𝐵𝑔𝑔,𝑡𝑡 = ∑ 𝐵𝐵𝑔𝑔,𝑡𝑡,𝑘𝑘𝑘𝑘∈𝐼𝐼𝑡𝑡  counts all bleed-outs from spot 𝑡𝑡 to other 

spots 𝑘𝑘 ≠ 𝑡𝑡.  Extending notation, we set 𝑌𝑌𝑔𝑔,𝑏𝑏 = 𝑆𝑆𝑔𝑔,𝑏𝑏 = 𝐵𝐵𝑔𝑔,𝑏𝑏 = 0 for background spots 𝑏𝑏 ∈ 𝐼𝐼𝑏𝑏 since 

background spots do not express mRNA.  With these missing variables defined, we note that the 

measured count 𝑋𝑋𝑔𝑔,𝑗𝑗 = 𝑆𝑆𝑔𝑔,𝑗𝑗 + 𝑅𝑅𝑔𝑔,𝑗𝑗 where 𝑅𝑅𝑔𝑔,𝑗𝑗 = ∑ 𝐵𝐵𝑔𝑔,𝑘𝑘,𝑗𝑗𝑘𝑘∈𝐼𝐼𝑡𝑡   represents UMI counts received at spot 𝑗𝑗 

due to spot swapping.  We leverage this missing-data formulation by flexibly modeling the 

component counts with independent Poisson distributions, which are known to be effective for UMI 

counts5.   

 

For a collection of spot and gene-specific parameters, as well as global parameters controlling the 

swapping rates, we parameterize the distributions as:  𝑆𝑆𝑔𝑔,𝑡𝑡 ∼ Poisson �𝜇𝜇𝑔𝑔,𝑡𝑡�1 − 𝑟𝑟𝛽𝛽�� and 𝐵𝐵𝑔𝑔,𝑡𝑡,𝑗𝑗 ∼

Poisson �𝜇𝜇𝑔𝑔,𝑡𝑡𝑟𝑟𝛽𝛽 ��1 − 𝑟𝑟𝛾𝛾�𝑤𝑤𝑡𝑡,𝑗𝑗 +  𝑟𝑟𝛾𝛾
1
𝐾𝐾
� � where 𝑟𝑟𝛽𝛽 is the bleeding rate; 𝑟𝑟𝛾𝛾 is a distal and 1 − 𝑟𝑟𝛾𝛾 is a 

proximal contamination rate.  By taking the global bleeding rate 𝑟𝑟𝛽𝛽 ∈ [0,1],  it follows that the 

uncontaminated counts follow: 𝑌𝑌𝑔𝑔,𝑡𝑡 ∼ Poisson�𝜇𝜇𝑔𝑔,𝑡𝑡� for target parameters 𝜇𝜇𝑔𝑔,𝑡𝑡 whose estimates 

constitute statistical estimates of the uncontaminated counts. Likewise for measured counts,  𝑋𝑋𝑔𝑔,𝑗𝑗 ∼

Poisson�𝜂𝜂𝑔𝑔,𝑗𝑗�, for induced gene and spot parameters. We define 𝑤𝑤𝑡𝑡,𝑗𝑗  by a weighted Gaussian kernel:  

𝑤𝑤𝑡𝑡,𝑗𝑗 = 𝐾𝐾�𝑑𝑑𝑡𝑡,𝑗𝑗,𝜎𝜎�/∑ 𝐾𝐾�𝑑𝑑𝑡𝑡,𝑗𝑗′,𝜎𝜎�𝑗𝑗′   where 𝑑𝑑𝑡𝑡,𝑗𝑗 is the physical Euclidean distance between spots 𝑡𝑡 and 𝑗𝑗 
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measured in pixels in the slide image, σ is the kernel bandwidth, and 𝐾𝐾(𝑑𝑑,𝜎𝜎) = 𝑒𝑒�−𝑑𝑑2/2𝜎𝜎2� is a 

Gaussian kernel6.  

 

Parameter estimation: Plug-in estimates obtained by minimizing the residual sum of squares (RSS) 

between observed total counts and their expected values are used to estimate 𝑟𝑟𝛽𝛽 , 𝑟𝑟𝛾𝛾, and 𝜎𝜎. 

Specifically,  

 �𝑟𝑟𝛽𝛽� , 𝑟𝑟𝛾𝛾� ,𝜎𝜎�, {𝜇𝜇⋅𝑡𝑡�}𝑡𝑡∈𝐼𝐼𝑡𝑡� = argmin
𝑟𝑟𝛽𝛽 ,𝑟𝑟𝛾𝛾,𝜎𝜎,{𝜇𝜇⋅𝑡𝑡}𝑡𝑡∈𝐼𝐼𝑡𝑡

� �𝑋𝑋 ⋅𝑗𝑗 − 𝜂𝜂 ⋅𝑗𝑗�
2

𝑗𝑗∈𝐼𝐼𝑡𝑡∪𝐼𝐼𝑏𝑏
 

where 𝑋𝑋⋅𝑗𝑗, 𝜂𝜂⋅𝑗𝑗 , 𝜇𝜇⋅𝑗𝑗 are the summations of 𝑋𝑋𝑔𝑔,𝑗𝑗 , 𝜂𝜂𝑔𝑔,𝑗𝑗, 𝜇𝜇𝑔𝑔,𝑗𝑗 among all genes, respectively. To reduce 

computational complexity, 𝜎𝜎� is taken as the minimum RSS calculated over a grid of candidate values. 

Explicit gradients are calculated for 𝑟𝑟𝛽𝛽 and 𝑟𝑟𝛾𝛾 and estimates are obtained by L-BFGS-B gradient 

descent7. Details are provided in Supplementary Section S2.  Since this optimization problem is not 

necessarily convex, it is important to choose appropriate initial values. For the initial values {𝜇𝜇⋅𝑡𝑡
(0)}𝑡𝑡∈𝐼𝐼𝑡𝑡  

of {𝜇𝜇⋅𝑡𝑡}𝑡𝑡∈𝐼𝐼𝑡𝑡, we use the observed total UMI counts {𝑋𝑋⋅𝑡𝑡}𝑡𝑡∈𝐼𝐼𝑡𝑡  in tissue spots and scale them up so that 

they sum to the total UMIs in the data. The initial bleeding rate, 𝑟𝑟𝛽𝛽
(0), is the average expression in 

background spots divided by the average expression in all spots; and the initial distal contamination 

rate, 𝑟𝑟𝛾𝛾
(0), is defined by average expression in the 25th-50th percentile of all background spots divided 

by average expression in all background spots.  

 

With estimates 𝑟𝑟𝛽𝛽� , 𝑟𝑟𝛾𝛾� ,𝜎𝜎� of the global parameters, true expression levels �𝜇𝜇𝑔𝑔,𝑡𝑡�𝑔𝑔∈𝐺𝐺,𝑡𝑡∈𝐼𝐼𝑡𝑡
 are readily 

estimated using an expectation-maximization (EM) algorithm8. Details are provided in 

Supplementary Section S3. For the initial values of true expressions {𝜇𝜇𝑔𝑔,𝑡𝑡
(0)}𝑔𝑔∈𝐺𝐺,𝑡𝑡∈𝐼𝐼𝑡𝑡 , we use the 

observed UMI counts {𝑋𝑋𝑔𝑔,𝑡𝑡}𝑔𝑔∈𝐺𝐺,𝑡𝑡∈𝐼𝐼𝑡𝑡  and scale up each gene so that their summations are equal to the 

gene summations in all spots.  

 

Estimation of spot-level contamination rate: For tissue spot 𝑡𝑡, let 𝑐𝑐𝑡𝑡 be the proportion of 

contaminated UMIs from total observed UMIs. We estimate 𝑐𝑐𝑡𝑡 using the estimated contamination 

received in 𝑡𝑡 over its estimated contaminated total counts from model fitting: 𝑐𝑐𝑡𝑡� =

𝐸𝐸��∑ ∑ 𝐵𝐵𝑔𝑔,𝑡𝑡′,𝑡𝑡𝑔𝑔𝑡𝑡′∈𝐼𝐼𝑡𝑡−{𝑡𝑡} �

𝐸𝐸�(𝑋𝑋⋅𝑡𝑡)  . Validation of this estimate is provided in Supplementary Figure 11. 
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Analysis of publicly available case study datasets: We downloaded UMI count matrices for 11 

publicly available datasets; links are provided in Supplementary Table 7. For each dataset considered, 

the count matrix was normalized via scran9, following the Seurat10 pipeline for dimension reduction, 

clustering, and visualization. Seurat functions FindVariableFeatures(nfeatures = 4000), ScaleData(), 

RunPCA(), RunUMAP(), FindNeighbors(), and FindClusters() were applied under default settings.  

 

Application of SoupX, DecontX, SpotClean, and SpatialDE: Default parameters were used for 

SpotClean and DecontX. Since SoupX requires manual input of clusters, we first applied the Seurat10 

pipeline on the raw tissue UMI count matrix to get cluster labels, with functions NormalizeData(), 

FindVariableFeatures(), ScaleData(), RunPCA(), FindNeighbors(), FindClusters() applied under 

default settings. Parameters for SoupX (soupRange in estimateSoup(), tfidfMin and soupQuantile in 

autoEstCont()) were manually tuned when the default settings failed. Some datasets did not run even 

after parameter tuning; results from these datasets are marked as NA.  SpotClean decontaminates 

genes with average expression above 1, high variance as determined by Seurat's 

FindVariableFeatures function, or both. All methods were applied to these same set of genes. In the 

simulated data, we force all methods to decontaminate all genes since there are relatively few (1000 

or 3000 genes depending on the simulation). 

 

Identification of marker genes and DE genes: The spatialLIBD project presented in Maynard et 

al.2 consists of spatial expression in the six-layered dorsolateral prefrontal cortex (DLPFC).  The 

authors identified a number of marker genes for distinct layers of the DLPFC. In addition to these, we 

also considered marker genes from a single-cell RNA-seq study of Alzheimer's disease11where 

markers differentiating between known cell types were identified. The markers shown here were 

selected from these papers if they were highly expressed (in the upper 25th percentile) in the 

spatialLIBD datasets.  We also evaluate the genes reported as DE between WM and Layer6 in 

Maynard et al.2. We filtered their list of DE genes and considered those genes having FDR<=10-4.  

From those, we chose the top 100 highest expressors in the raw data, sorted by fold change, and 

selected the top 10 for each dataset. For the DE analysis, raw and decontaminated tissue matrices 

were normalized using scran9; for each gene, p-values were obtained from a two-sample two-sided t-

test between WM and Layer6 spots.  
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Human-mouse chimeric experiment: Fresh sections of normal human skin tissue were obtained 

during routine dermatologic surgery under University of Wisconsin School of Medicine and Public 

Health Institutional Review Board (Approval #2010-0367). On the same day, fresh mouse tissue was 

harvested. Three mixed species tissue blocks were then prepared under cold conditions as follows and 

frozen over a bed of dry ice and stored at - 80°C in optimal tissue cutting (OCT) medium until they 

were ready to use:  

 

HM-1: Duodenum from a 10-week-old C57BL/6J mouse as casing to a 4 mm punch section 

“cylinder” of human skin  

HM-2: Colon from a 10-week-old C57BL/6J mouse as casing to a 4 mm punch section “cylinder” of 

human skin  

HM-3: Heart from a 10-week-old C57BL/6J mouse encasing a 4 mm punch section “cylinder” of 

human skin  

 

Visium Spatial Transcriptomics: The Visium Spatial Tissue Optimization Slide & Reagent kit 

(10X Genomics) was used to optimize permeabilization conditions for the chimeric tissue according 

to manufacturer’s protocol and yielded an optimal tissue permeabilization time of 12 minutes. The 

Visium Spatial Gene Expression Slide & Reagent kit (10X Genomics) was used to generate 

sequencing libraries. Sections were cut at 10 μm thickness and mounted onto Visium slide capture 

areas, stained with H&E, digitally imaged, and then permeabilized for library preparation. 

Sequencing libraries were prepared following the manufacturer’s protocol. Initial quality control of 

the libraries was by analysis of 2x150 MiSeq data for each sample. The libraries were then sequenced 

on a NovaSeq 6000 (Illumina), with 29 bases from read 1 and 101 from read 2, at a depth of 500k-

600k reads per spot. The actual depth was 455652, 440024, 538709 reads per spot for sample HM-1, 

HM-2, HM-3, respectively. 

 

Alignment and pre-processing in the chimeric experiment:  The sequencing quality of each 

sample was evaluated using FastQC12 and MultiQC13. All FastQ files passed quality control. Tissues 

were manually aligned using the Loupe Browser. Reads were aligned to the GRCh38+mm10 

reference genome (refdata-gex-GRCh38-and-mm10-2020-A  from 

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest) and gene 

expression was quantified using Space Ranger under default parameters.  Following alignment, we 
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considered only those reads labeled confidently mapped by SpaceRanger; confidently mapped reads 

are reads that map uniquely to a gene. We refer to a gene as a human gene if it has prefix GRCh38; a 

mouse gene has prefix mm10. UMI counts were normalized for differences in total counts across 

species by scaling total UMI counts in mouse to match total UMI counts in human.   

Genes having average expression <0.01 were removed. 

 

Human and mouse tissue spot annotation in the chimeric experiment:  Tissue spots are labelled 

as human, mouse, or pathological mixture based on visual inspection of the H&E images. A 

pathological mixture spot is one with tissue contributions from both species that can be visually 

verified in the H&E image. A pure human or pure mouse spot was relabeled as a computational 

mixture spot if the spot label differs from the majority of UMIs. Specifically, a human (mouse) spot 

is labelled as a computational mixture if the total UMI counts from mouse (human) exceeds the 

median of total UMI counts across all mouse spots (human spots). Mixture spots were removed prior 

to analyses in an effort to ensure that the effects shown are not due to spots containing a mixture of 

the two species. 

 

Lower bound on the proportion of spot swapped reads (LPSS): Spot swapped reads include reads 

from one tissue spot binding background probes (tissue-to-background) as well as reads at one tissue 

spot binding probes at another tissue spot (tissue-to-tissue). It is not possible to directly measure 

tissue-to-tissue swapping in most cases. However, the chimeric experiment provides some insight 

into the extent of spot swapping tissue-to-tissue. We define LPSS in the chimeric experiment as the 

proportion of misclassified reads (mouse reads in human spots, human reads in mouse spots, and 

reads in background spots). This is a lower bound as it does not account for spot swapping within 

species (e.g. reads from human spot t bound by probes at human spot t'). 

 

Simulations:  SimI simulates the spot swapping effect to get contaminated UMI counts given an 

input dataset. Specifically, starting from an input UMI count matrix of real data, 3000 genes with 

highest total UMI counts were selected. Expression for these genes was scaled to target the same 

average UMI total counts (average taken over spots) across input datasets. Denote the resulting 

matrix by {μ𝑔𝑔,𝑡𝑡}𝑡𝑡∈𝐼𝐼𝑡𝑡 . The bleeding rate 𝑟𝑟𝛽𝛽 and distal contamination rate 𝑟𝑟𝛾𝛾 were estimated from the 

input data, using the same approach as described for obtaining initial values in SpotClean. The spot 
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distances �𝑑𝑑𝑡𝑡,𝑗𝑗�𝑡𝑡∈𝐼𝐼𝑡𝑡,𝑗𝑗∈𝐼𝐼𝑡𝑡∪𝐼𝐼𝑏𝑏
were calculated based on the spot coordinates in the H&E image of the 

input dataset; the contamination radius, 𝜎𝜎,  was set to 10; and the weights which describe the 

proportion of UMIs swapping locally from tissue spot t to any spot j, 𝑤𝑤𝑡𝑡,𝑗𝑗, is given by a Gaussian 

kernel. The expected contamination of gene 𝑔𝑔 from tissue spot 𝑡𝑡 to spot 𝑗𝑗 is then given by 

𝜇𝜇𝑔𝑔,𝑡𝑡𝑟𝑟𝛽𝛽 ��1 − 𝑟𝑟𝛾𝛾�𝑤𝑤𝑡𝑡,𝑗𝑗 +  𝑟𝑟𝛾𝛾
1
𝐾𝐾
�. Summing contamination from all tissue spots to spot 𝑗𝑗 and adding the 

UMIs that stay at j,  𝜇𝜇𝑔𝑔,𝑗𝑗(1 − 𝑟𝑟𝛽𝛽), gives the expected observed expression 𝜂𝜂𝑔𝑔,𝑗𝑗. Simulated counts for 

gene 𝑔𝑔 in spot 𝑗𝑗 are sampled from Poisson�𝜂𝜂𝑔𝑔,𝑗𝑗�. 

 

Additional simulations are similar, but proximal contamination weights are not given by a Gaussian 

kernel. Rather, SimII, SimIII, and SimIV assume proximal contamination weights are given by a 

Linear, Laplace, and Cauchy kernel, respectively.  

 

For SimV, starting from a UMI count matrix of real data, we select the top 5000 most highly 

expressed genes; any gene having average expression less than 0.1 is removed. SpatialDE14 is then 

applied using default settings; the top 500 highest expressed genes with q-value <=0.01 are identified 

as true spatially variable (SV) genes. For each SV gene, we simulate a matched non-SV gene by 

sampling independent Poisson counts parameterized by the average expression of the SV gene.  
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