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ABSTRACT  

Purpose. We sought to exploit the heterogeneity afforded by patient-derived tumor xenografts 

(PDX) to optimize robust radiomic features associated with response to therapy in the context of 

a co-clinical trial and implement PDX-optimized image features in the corresponding clinical study 

to predict and assess response to therapy using machine-learning (ML) algorithms.   

 

Methods. TNBC patients and subtype-matched PDX were recruited into a co-clinical FDG-PET 

imaging study to predict response to therapy.  One hundred thirty-one imaging features were 

extracted from PDX and human segmented tumors.  Robust image features were identified based 

on reproducibility, cross-correlation, and volume independence. A rank importance of predictors 

using ReliefF was used to identify predictive radiomic features in the preclinical PDX trial in 

conjunction with ML algorithms: classification and regression tree (CART), Naïve Bayes (NB), 

and support vector machines (SVM). The top four PDX-optimized image features, defined as 

radiomic signatures (RadSig), from each task were then used to predict or assess response to 

therapy. Performance of RadSig in predicting/assessing response was compared to SUVmean, 

SUVmax, and lean body mass normalized SULpeak measures.  

 

Results. Sixty-four out of 131 preclinical imaging features were identified as robust. NB-RadSig 

performed highest in predicting and assessing response to therapy in the preclinical PDX trial.  In 

the clinical study, the performance of SVM-RadSig and NB-RadSig to predict and assess 

response was practically identical and superior to SUVmean, SUVmax, and SULpeak, measures. 

 

Conclusions. We optimized robust FDG-PET radiomic signatures (RadSig) to predict and assess 

response to therapy in a context of a co-clinical imaging trial.  

 

 

 

KEYWORDS:  triple negative breast cancer (TNBC); FDG-PET; radiomics; co-clinical imaging; 
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INTRODUCTION 

Triple Negative Breast Cancer (TNBC) is a highly heterogeneous and aggressive cancer 

characterized by poor outcome and higher relapse rates compared to other subtypes of breast 

cancer. Pathological complete response (pCR) is often used as a critical endpoint in the treatment 

of TNBC following NAC as it is often associated with favorable long-term outcome. Therefore, it 

is critical to identify patients who will respond to NAC therapy to avoid the use of ineffective 

treatments. Intratumoral heterogeneity is regarded as a major factor in tumor progression and 

resistance to NAC [1].  Towards that end, advanced quantitative imaging (QI) strategies, including 

extraction of image features, or radiomics, have been employed to characterize tumor 

heterogeneity and to predict/assess response to therapy [2, 3].   

We designed a co-clinical trial to assess the efficacy of docetaxel/carboplatin therapy in patients 

with TNBC and patient-derived tumor xenografts (PDX) generated from TNBC patient biopsies. 

Co-clinical trials are an emerging area of investigation in which a clinical trial is coupled with a 

corresponding preclinical trial to inform the corresponding clinical trial [4-10].   The emergence of 

PDXs as co-clinical platforms is largely motivated by the realization that established cell-lines do 

not recapitulate the heterogeneity of human tumors and the diversity of tumor phenotypes [11]. 

Indeed, numerous investigations have demonstrated that PDX accurately reflect patients’ tumors 

in terms of the histomorphology, gene expression profiles, and gene copy number alterations [12-

16], as well as ability to predict therapeutic response in patients, especially when a clinically 

relevant drug dosage is used [17-19]. To that end, the National Cancer Institute’s (NCI) Patient-

Derived Models Repository (https://pdmr.cancer.gov), EuroPDX (https://www.europdx.eu), 

academic institutions, and numerous commercial entities have launched wide-ranging PDX and 

repositories to advance the use of PDX in oncologic applications.   

One of the objectives of the co-clinical trial, which is still underway, is to predict response to 

therapy using [18F]fluorodeoxyglucose (FDG) with positron emission tomography (PET).  We 

previously identified six TNBC subtypes including 2 basal-like (BL1 and BL2), an 

immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like (MSL), and a luminal 

androgen receptor (LAR) subtype through molecular signatures of TNBC subtypes [20].  The use 

of PDX in preclinical imaging offers numerous advantages in translational imaging research, chief 

among them is retention of human tumor heterogeneity  [12, 16, 21], which can be exploited to 

develop image metrics of response to therapy.  Thus, the primary objective of this work was to 

utilize PDX to optimize robust radiomic features of tumor heterogeneity indicative of response to 

therapy in preclinical PDX trials.      
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The scheme outlined in Figure 1 highlights the paradigm we undertook in this effort.  We used the 

co-clinical imaging trial to define, for the first-time, parallels in radiomic features between 

preclinical and clinical imaging.  To address the primary objective, we characterized the 

reproducibility, cross correlation (auto-correlation), and volume dependency of FDG-PET 

radiomic features in PDX.  Optimal radiomic features were then used in ML algorithms to define 

radiomic signatures (RadSig) of response to therapy in the preclinical PDX trial.  With the RadSig 

at hand, we performed an interim analysis to implement radiomic signatures optimized in the 

preclinical PDX trial to predict response to therapy in the clinical arm.  Our findings suggest that 

RadSig performed significantly better than standardized uptake value (SUV) measures to predict 

(using baseline metrics) and assess (difference in image metrics) response to therapy.  

 

METHODS 

Co-clinical protocol 

The co-clinical design is outlined in the scheme of Figure 2A and described below.  TNBC PDX 

subtypes were identified as described previously [22] based on molecular signature analysis.  

TNBC subtypes include:  basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal 

(M), and a luminal androgen receptor (LAR) subtype. 

Preclinical imaging. Small animal PET/CT was performed on the Inveon microPET/CT scanner 

as described previously [22]. Briefly, four hours prior to imaging session, food was removed from 

metabolism cages while water was given ad libitum. Mice were anesthetized with 2-2.5% 

isoflurane by inhalation via an induction chamber. Anesthesia was maintained throughout the 

imaging session by delivering 1%–1.5% isoflurane via a custom-designed nose cone. A heat lamp 

was used to maintain body temperature. TNBC PDX were injected with 18FDG (6.66 – 8.14 MBq) 

by tail vein immediately before a 0-60 min dynamic small animal PET acquisition.  Images were 

reconstructed with a 3D OSEM algorithm with a Ramp filter at 0.5 cutoff and voxel size of 

~0.08mm.  In therapeutic studies, TNBC PDX (N=29) were imaged at baseline (BL) and four days 

(4D) following start of therapy (Figure 2A).  Docetaxel (20mg/kg IP)/carboplatin (50mg/kg IP) was 

administered following BL imaging and weekly for a period of four weeks.  Tumor volumes were 

measured bi-weekly. All animal experiments were conducted in compliance with the Guidelines 

for the Care and Use of Research Animals established by Washington University’s Animal Studies 

Committee.  
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Clinical imaging. Twenty stage II or III TNBC patients were recruited into an ongoing co-clinical 

trial (ClinicalTrial.gov ID # NCT02124902).  A secondary goal of the co-clinical trial was to assess 

the performance of FDG-PET in predicting/assess response to therapy.  Simultaneous FDG-PET 

and MR imaging protocols were implemented on the Siemens Biograph mMR.  Subjects were 

imaged at baseline (BL) prior to therapy and between the first cycle (C1) and second cycle of 

docetaxel/carboplatin for a total of 6 cycles (21 days per cycle).  At each imaging time point, 

patients fasted for ~4hrs prior to injection of ~10mCi of FDG.  After an uptake period, patients 

were positioned prone on the PET/MR scanner.  FDG-PET imaging was performed starting at 

30min to 70min post FDG administration.  Default Dixon sequence was used for attenuation 

correction. Images were reconstructed to produce four 10min frames. In parallel with FDG-PET 

acquisition, T1-weighted (T1w) and T2-weighted (T2w) MR acquisitions were performed.  The co-

clinical trial is ongoing; however, we performed an interim analysis to assess the performance of 

PDX-optimized FDG-PET image features to predict/assess response to therapy in the clinical 

arm.  Quantification of clinical MR data is not included at this stage since preclinical imaging did 

not include MR acquisition.   

 

Image analysis and extraction of radiomic features  

Preclinical imaging:  Static 10min PET/CT images obtained 50min post-administration of FDG 

(representative image in Figure 2B) were processed in two-steps. In the first step, co-registered 

PET/CT images were analyzed using the Inveon Research Workplace (IRW) software (Siemens 

Healthcare). Volumes of interest (VOIs) were manually drawn on co-registered PET/CT images 

to include tumor(s).  Second, VOIs and individual voxels were normalized to SUV in MATLAB 

using the relation: SUV = [activity (Bq / mL)] x [animal weight (g)] / [injected dose (Bq)].   

Clinical imaging: Tumor VOIs were manually drawn on 20min static PET images obtained by 

averaging two 10min frames 50-70min post-administration of FDG (representative image in 

Figure 2C).  To ensure harmonization of preclinical and clinical pipelines, IRW was used to 

segment tumors on PET/MR images.  Mean SUV (SUVmean) for the entire tumor was calculated 

as per above.  Peak SUV was normalized to lean body mass (SULpeak) based on positron emission 

tomography response criteria in solid tumors (PERCIST) [23]. 

Extraction of imaging features.  One hundred thirty-one imaging features were extracted from 

preclinical and clinical tumors.  These include: one hundred twenty radiomic features, tumor 

volume, metabolic tumor volume, and nine SUV metrics as tabulated in Supplemental Table S1.  
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Radiomic features were determined per the image biomarker standardization initiative (IBSI) 

guidelines [24, 25]. Equal-probability quantization algorithms to quantize raw data into gray level 

(Ng) were implemented using histeq MATLAB function. Resampling to isotropic voxel size in all 

three directions was applied to all higher order features. Thirty-seven first order features were 

extracted directly from raw data. All higher order features were extracted after applying fixed 

quantization of gray level Ng=64.  

Robustness of radiomic features 

We evaluated the robustness of radiomic features in terms of reproducibility (test-retest), cross-

correlation, and the dependency on tumor volume.  Robust radiomic features were then used as 

predictors of response to therapy. 

Test-retest.  A preclinical test-retest protocol was implemented to optimize the reproducibility of 

radiomics features.  PDX (N=40) were imaged on consecutive days (Day 1 and Day 2) in identical 

conditions.     

Cross-correlation.  The cross-correlation between features was determined using Spearman 

correlation. A threshold Spearman correlation of ρ≥0.9 and significance value P<0.001 were 

chosen as significantly high correlation between features. 

Volume-dependent radiomic features. Radiomic features were regressed against their 

corresponding tumor volumes. Linear or nonlinear functional forms were used to fit all significant 

volume-dependent features.   

 

Prediction and assessment of response to therapy 

Prediction vs. assessment of response to therapy.  We make a distinction between predicting and 

assessing response to therapy.  In predicting response to therapy, BL imaging features were used 

to predict response to therapy in either the preclinical or the clinical arm.  In assessing response 

to therapy, the change (Δ) in imaging feature between on-treatment (4D in preclinical and post 

C1 in clinical) and BL was used to predict response to therapy in either the preclinical or the 

clinical arm. 

Classification of response to therapy.  In preclinical studies, end-point caliper volume change from 

start of treatment was considered as surrogate of response to therapy with response to therapy 

corresponding to >20% decrease in volume; partial response corresponding to ≤|20|% change in 

volume, and no response corresponding to >20% increase in volume. Baseline radiomic features 
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and change in radiomic features between 4D post-treatment and baseline scans were used as 

the predictive criterion for ML algorithms.  In clinical studies, pCR was used to determine response 

to therapy.   

Feature selection. In preclinical studies, the Relief-based algorithm (RBA) [26] was used to select 

a subset of features as inputs to the ML algorithms.  A relevance threshold (τ=0.05) [27] was used 

to select most relevant weighted features to facilitate in expansive modeling, reduce overfitting, 

and make the task tractable for inputs in ML algorithms. These optimal features were used to 

predict response or assess response to therapy using BL and difference between on-treatment 

and BL optimal features, respectively.  

Machine learning for outcome prediction. The ML algorithms used in this study include CART [28], 

SVM [29], and NB [30].  In CART, Gini index was used at each partition to determine splitting 

criteria with a binary threshold of CART.  In implementing SVM, radial Basis Function (RBF) kernel 

was used to make the hyperplane decision boundary between the classes.  Objective function 

L2-norm regularization was used to overcome overfitting problem.  CART, SVM, and NB work 

well with datasets as low as N=20 [31]. Ten-fold cross-validation was used to avoid overfitting the 

ML model [32].  

 

Statistical Analyses 

Robustness of features.  Lin’s concordance correlation coefficient (LCC) [33] was used to assess 

reproducibility using Stata version 12.1.  LCC≥0.7 was considered as a threshold of reproducible 

radiomic feature [34, 35]. As indicated above, cross-correlation between features was evaluated 

using the Spearman correlation ρ≥0.9 at significance value P<0.001.  To display clusters of 

correlations, hierarchical clustering of the Spearman correlation heatmap was performed. In 

evaluating volume-dependency of features, the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) were calculated for each functional form, and the appropriate model 

was selected based on the minimum value of AIC and BIC.  The Spearman correlation (ρ) was 

used to determine the correlation between each feature and tumor volume.   

Performance metrics of response to therapy prediction.  Common performance metrics including 

accuracy, F-score, sensitivity, specificity, precision, and negative predictive value (NPV) were 

used to assess performance of response to therapy [20].  The performance of the radiomic 

features was additionally compared with SUVmean, SUVmax, and SULpeak based on PERCIST [23].   
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RESULTS 

Reproducibility of preclinical radiomic features 

Test-retest was performed to assess the reproducibility of radiomic features using LCC as a 

measure of reproducibility.  Ninety-four out of 129 radiomic features (72.9%) were identified as 

reproducible with LCC≥0.7. The frequency of correlations along with the cumulative percent is 

displayed in Figure 3A.  Approximately 22% of features were highly reproducible with LCC≥0.9.  

The reproducibility by class of features is depicted in Figure 3B. Figures 3C depicts the LCC 

values of all reproducible radiomic features. Supplemental Table S1 summarizes the 

reproducibility of all 131 features. 

 

Cross-correlation between features (preclinical and clinical) 

We ascertained the cross-correlation between 129 features using the Spearman correlation (ρ).  

Highly correlated features (ρ≥0.9) were removed and reduced to 94 features from 129 features. 

Hierarchical clustering of the Spearman correlation heatmap is shown Figure 4. Twenty-one 

clusters were identified in the preclinical heatmap (Figure 4A) and similarly 21 clusters were 

identified in the clinical cross-correlation heatmap (Figure 4B).  Membership of features to clusters 

is available in Supplemental Table S2.  The distribution of Spearman correlations is available in 

Figure 4C and 4D for preclinical and clinical cross-correlations, respectively. 

 

Volume-dependent radiomic features (preclinical and clinical) 

In total, 10 radiomic features were highly correlated to volume (ρ>0.9; P<0.001). The functional 

form of the volume dependency and corresponding goodness-of-fit measures for preclinical and 

corresponding clinical images is shown in Figure 5, which was similar for both preclinical and 

clinical features. Supplemental Table S3 summarizes the statistical analyses for the correlations.  

 

Prediction and assessment of response to therapy 

At the intersection of robustness analyses, 62 of the 129 (48.06%) features were found to be 

optimal and were passed to ReliefF feature selection followed by ML.  ReliefF rank importance 

identified top performing 15 features for prediction (based on BL features) and assessment (based 

on 4D-BL features) of response to therapy (Figures 6B and 6C, respectively).  The rank 

importance of radiomics features is given in Supplemental Table S4.   
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Preclinical PDX studies 

The accuracy of ML in predicting/assessing response to therapy as a function of the number of 

radiomic features is depicted in Figures 6D and 6E for BL and 4D-BL, respectively. The number 

of radiomic features to maximize prediction accuracy saturated at 4 features (Figure 6D) with NB 

exhibiting the highest accuracy at 86.21 %, followed by SVM, and CART.  In contrast, the 

accuracy of assessing response to therapy (4D-BL) increased with increasing number of radiomic 

features; the accuracy of NB is 86.9% followed by SVM and CART (Figure 6E).  We opted to 

compare performance between prediction and assessment (i.e., BL versus 4D-BL) using the least 

number of robust features.  For this reason, Table 1 tabulates the performance of the ML 

algorithms to predict/assess response prior to and following optimization for robust features using 

only the top 4 radiomic features for each classification (prediction versus assessment of 

response).  The set of 4 radiomic features from each task (prediction and assessment of 

response) make up the Radiomic Signature (RadSig).  As tabulated in Table 1, RadSig performs 

as well as, or marginally better than, non-optimized features (all features) in predicting response.  

The performance of prediction/assessment of response to therapy stratified by TNBC subtype is 

tabulated in Supplemental Table S5 and highlights differences in prediction by TNBC subtype. 

 

Table 1: Accuracy of predicting (BL) and assessing (4D-BL) response to therapy 

using top 4 radiomic features. 

 All features RadSig 

Methods Prediction Assessment Prediction Assessment 

CART 80.34 74.86 78.48 72.57 

Naïve Bayes 82.62 82.76 86.21 78.26 

SVM 78.48 78.45 81.14 75.13 

 

The performance of RadSig in comparison to SUVmean, SUVmax, and SULpeak for the top two 

performing ML algorithms (NB and SVM) is summarized in Figure 7.  NB performed marginally 

better than SVM in predicting/assessing response to therapy (Figure 7A) in the preclinical PDX 

trial.  The percent increase in predicting/assessing response to therapy relative to SUVmean, 

SUVmax, and SULpeak is depicted in Figure 7B for NB.  NB-RadSIG improved prediction of response 

by over 60% in all performance measures.  In assessing response to therapy, RadSig performed 

better than SUVmean in most performance criteria and marginally better than SULpeak and SUVmax 
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(Figure 7B).  Thus, RadSig has greater impact in predicting response to therapy than assessing 

response to therapy.  Full performance data is available is Supplemental Table S6.  We then 

performed an interim analysis of the ongoing clinical trial to implement PDX-optimized RadSig to 

predict/assess response to therapy using ML. 

Table 2 summarizes patient characteristics, pathological response, SUV metrics at BL, and 

percent change in SUV metrics between on-treatment (post C1) and BL for the interim analyses.  

Of the twenty patients, ten patients exhibited pCR; however, all patients exhibited reduction in 

SUV.  Average percent (±1SD) reduction in the non-pCR group was -46.94±21.56, -53.20±19.91, 

and -51.33±19.78 for SUVmean, SULpeak, and SUVmax, respectively; and -57.70±14.83, -

60.32±16.47, and -66.16±13.74 for SUVmean, SULpeak, and SUVmax, respectively.  Figure 7 also 

depicts the performance of the ML algorithms in predicting and assessing response to therapy in 

the clinical arm (Figure 7C).  The performance of SVM and NB with RadSig as a predictor were 

marginally similar, although overall SVM performed better than NB when using SUV metrics as 

predictors (Supplemental Table S6).  SVM-RadSig exhibited higher prediction rates of response 

to therapy relative to SUVmax, SUVmean and SULpeak in all performance measures (20-40% higher), 

as well as in assessing response to therapy (15-75% higher) (Figure 7D). Overall, RadSig 

performed better than SUV metrics in predicting and assessing response to therapy. 

Table 2: Patient characteristics, pathologic response, and SUV metrics 

Stage at 
Diagnosis 

Grade at 
Diag. 

pCR 
BL 

SUVmean 
BL 

SULP 
BL 

SUVmax 
%Δ 

SUVmean 
%Δ 

SULpeak 
%Δ 

SUVmax 

IIB (T2N1) 2 No 1.86 1.57 4.03 NA NA NA 

IIB (T2N1) 3 Yes 6.59 4.58 11.27 -60.97 -68.11 -57.82 

IIIA (T3N1) 3 No 10.55 12.34 26.41 NA NA NA 

IIA (T2N0) ? Yes 8.77 7.80 21.48 -75.49 -82.21 -86.77 

IIB (T2N1) 3 No 3.18 1.64 5.31 -4.32 -13.19 -9.40 

IIB (T2N1) 3 No 
2.92 1.29 4.54 -38.67 -41.17 -41.77 

8.01 6.43 15.55 -40.82 -44.37 -42.90 

IIB (T2N1) 3 No 
8.58 6.20 17.02 -64.92 -70.33 -73.40 

8.91 6.62 20.11 -62.72 -68.17 -61.72 

IIA (T2N0) 3 Yes 2.49 1.61 5.25 NA NA NA 

IIA (T2N0) 3 Yes 4.17 3.06 12.45 -48.84 -48.53 -64.23 

IIA (T2N0) 3 Yes 3.89 3.12 8.62 -57.76 -59.91 -73.72 

IIB (T2N1) 3 No 
2.85 2.59 6.28 -41.45 -55.68 -55.97 

2.48 2.03 5.03 -27.04 -37.81 -49.88 

IIA (T2N0) 3 No 8.66 7.56 21.87 -75.82 -82.48 -81.35 

IIB (T2N1) 3 Yes 10.29 8.32 28.33 -74.14 -76.39 -81.07 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2021. ; https://doi.org/10.1101/2021.06.11.448077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.448077


3.64 2.02 5.65 -58.93 -57.11 -55.17 

8.00 5.60 16.06 -71.75 -77.22 -77.14 

IIA (T2N0) 3 Yes 1.86 1.65 4.18 -30.42 -36.91 -53.02 

IIA (T2N0) 3 No 9.80 7.74 17.69 -67.65 -64.44 -54.15 

IIA (T2N0) 3 Yes 7.19 5.21 14.57 -46.36 -42.49 -43.23 

IIA (T2N0) 3 No 7.98 7.26 18.46 -45.99 -54.32 -42.74 

IIA (T2N0) 3 Yes 2.91 2.03 5.24 -40.23 -40.04 -58.66 

IIB (T2N1) 3 Yes 6.19 5.53 11.28 -69.81 -74.57 -76.91 

IIB (T2N1) 3 No 2.44 1.99 5.53 NA NA NA 

 

DISCUSSION 

The emergence of co-clinical models is largely motivated by the realization that established cell-

lines do not recapitulate the heterogeneity of human tumors and the diversity of tumor phenotypes 

[11] and that better oncology models are needed to support high-impact translational cancer 

research [12, 16, 21].  An underlying premise in the co-clinical study design is that the 

heterogeneity of the human tumor is retained in PDX.  Indeed, tumor genomic and pathological 

investigations have confirmed that PDX recapitulate the heterogeneity of human tumors [12-16] 

and that these can be used to a better inform cancer biology, therapeutic design [17-19], and 

therefore by extension imaging studies, albeit with some limitations [21].  With that in mind, in this 

this work, we exploited the heterogeneity of TNBC PDX subtypes to 1) identify robust radiomic 

features in preclinical TNBC PDX; 2) optimize RadSig-ML algorithms to predict response to 

therapy in PDX; and 3) implement PDX-optimized RadSig to predict/assess response to therapy 

in the corresponding clinical trial. 

To our knowledge, this study represents the first such effort to optimize radiomic features in 

preclinical PET imaging to predict/assess response to therapy in TNBC PDX.  We recently 

characterized the dependency of preclinical MR radiomic features on tumor volume [36]. In this 

work, we confirmed dependency of preclinical PET radiomic features on tumor volume with 

strikingly similar clinical parallels.  This is particularly relevant in longitudinal studies during which 

tumor volumes will change with the course of the disease or following therapy.  Ideally volume-

independent features should be used as to not bias image features longitudinally.  We further 

evaluated the cross-correlation of preclinical and clinical radiomic features with the goal of 

reducing the dimensionality of features.  Finally, we evaluated the repeatability of radiomic 

features in preclinical PET imaging to identify robust features for inclusion in ML-based prediction 

of response to therapy.  At the thresholds defined within to screen for volume-dependency, 
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repeatability, and cross-correlation, we identified 62 optimal features to predict/assess response 

to therapy. 

RBF [26] was used to rank image features using three ML algorithms as to their relevance in 

predicting/assessing response to therapy.  Our data suggests that overall SVM performed better 

than NB and CART in predicting response to therapy.  We used the top four ML-RBF-optimized 

radiomic features—referred to as radiomic signature (RadSig)—from each task (prediction vs. 

assessment) to either predict or assess response to therapy.  RadSig performed significantly 

better in predicting response to therapy in the preclinical and clinical arm, as well as in assessing 

response to therapy in the clinical arm.  Antunovic et al. [37] reported the utility of FDG-PET 

radiomic features to assess response to therapy using four different models in 79 patients with 

heterogenous breast cancer subtypes.  The reported area-under the curve of an ROC analysis 

ranged from 0.70 to 0.73.  Li et al. [38] recently assessed the utility of both PET and CT radiomic 

features to predict response to therapy in a retrospective study that included 100 heterogenous 

breast cancer patients.  The PET/CT radiomic predictors achieved a prediction accuracy of 87% 

on the training split set and 77% on the independent validation set.    

In the small, albeit homogenous, dataset of TNBC patients where PDX-optimized radiomic 

features were implemented in the clinical imaging arm, we observed an impressive accuracy of 

72% and 71% when predicting and assessing response, respectively, compared to SUV metrics.  

We were unable to perform a validation test on an independent dataset; however, the primary 

objective was to compare the performance of all predictive metrics in the training phase. In 

addition, we did not report MR radiomic features in this work.  However, prediction of response to 

therapy can be further enhanced through integration of MR imaging features [39], liquid biopsies 

such as circulating tumor DNA (ctDNA) analyses [40], and molecular/genomic features of tumors 

[41], all of which are an active area of investigation.  Finally, numerous recent studies have 

documented that pCR rates varied with breast cancer molecular subtypes.  TNBC and HER2-

positive molecular subtypes have shown to have higher pCR rates after NAC [42]. Importantly, 

several studies have demonstrated an association between imaging features and molecular 

phenotypes, risk of recurrence, and prognosis [43-45]. Interestingly, our PDX studies similarly 

suggest that response to therapy (and prediction thereof) is a function of the TNBC subtype, 

however further studies are needed to support this hypothesis and the utility of radiomic features 

in classifying TNBC subtypes.  With that in mind, one of the most critical aspects in practical 

implementation of radiomics is a consensus on the most effective features and their 

standardization.   
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CONCLUSIONS 

We identified robust FDG-PET radiomic features from an ongoing co-clinical (PDX and human) 

trial to predict and assess response to therapy. The number of radiomic features to maximize 

accuracy was further optimized in the preclinical PDX trial to yield ML radiomic signatures 

(RadSig) of response to therapy.  We then implemented RadSig in an interim analysis of the 

corresponding clinical trial.  The performance of SVM-RadSig in predicting/assessing response 

to therapy was superior to SUVmax, SUVmean and SULpeak metrics in the clinical setting; however, 

given the small sample size additional studies are warranted to further validate RadSig and 

potentially integrate with multi-scale features to enhance prediction/assessment of response to 

therapy.  
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FIGURE LEGENDS 

 

Figure 1: Overview of methodology in optimizing radiomic features in the co-clinical trial.  

TNBC PDX were generated from human tumor biopsies.  Tumor were segmented following co-

clinical imaging to extract radiomic features. Radiomic features were extracted per IBSI 

guidelines.  Repeatability, cross-correlation, and volume-dependency were performed to identify 

the robust features. ReliefF, and then ML were used to predict/assess the response to therapy in 

PDX and to identify radiomic signature (RadSig).  RadSig was implemented in the clinical trial to 

predict/assess response to therapy.  

Figure 2: Co-clinical imaging. (A) Co-clinical imaging study design.  Stage II or III TNBC patients 

were recruited into the study for 6 cycles of docetaxel/carboplatin therapy.  Imaging timepoints 

are indicated on the timeline.  PDX are generated from patient tumor biopsies to assess response 

to therapy with imaging at baseline and +4 days post-therapy.  (B) representative preclinical 

PET/CT and (C) clinical PET/MR images of response to therapy.  Tumor is indicated by white 

arrow.  

Figure 3: Repeatability of preclinical radiomic features. (A) Frequency (bar plot, left Y-axis) 

of repeatability by LCC values and cumulative percent (solid line, right Y-axis).   (B) Percent of 

repeatable features with LCC≥0.7 by class (left Y-axis labels).  (C) Reproducible radiomic features 

with LCC≥0.7 (denoted by dashed vertical black line). 

Figure 4: Cross-correlation between radiomic features. Hierarchical clustering of the 

Spearman cross-correlation heatmap for (A) preclinical and (B) clinical. The dendrogram shows 

the clustering, and each color represents a different cluster.  The frequency and cumulative sum 

at each Spearman correlation (ρ) is displayed in (C) for preclinical and (D) for clinical. 

Figure 5: Volume-dependent preclinical and clinical radiomic features.  The correlation 

between features and tumor volume was assessed for preclinical and clinical segmented tumors.  

Ten common preclinical and clinical features exhibited high correlation (ρ≥0.9) with tumor volume.  

Figure 6. ML-based selection of radiomic features.  (A) At the thresholds defined within to 

screen for volume-dependency, repeatability, and cross-correlation, we identified 62 optimal 

features.  Implementation of relief-based algorithm (RBA) to identify a subset of features as inputs 

to ML-based prediction (B) and assessment (C) of response to therapy. Accuracy of ML 

algorithms CART, SVM, and Naïve Bayes to predict (D) or assess (E) response to therapy as a 

function of number of radiomic features in PDX.   

Figure 7:  Performance of ML algorithms.  (A) Performance of RadSig in predicting/assessing 

response to therapy in the preclinical PDX trial with NB and SVM. (B) Percent improvement in 

NB-RadSig prediction/assessment of response relative to SUVmax, SUVmean and SULpeak.  (C) 

similar to (A) but for the clinical investigation. (D) similar to (B) but using SVM.  
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Supplemental Table S1: Radiomic features. Light shaded color radiomics were non reproducible features. 

Type Method Description 
Sl. 
NO 

Features short name 
Features Full 

name/description 
LCC value 

Fi
rs

t 
o

rd
e

r 
(3

3
) 

G
ra

y-
le

ve
l i

n
te

n
si

ty
, h

is
to

gr
am

, a
n

d
 s

ta
ti

st
ic

s 

Global distribution of 
intensity values in 
terms of spread, 

symmetry, flatness, 
uniformity and 

randomness 

1 SUV25 

Mean of Standardized 
Uptake Values of top 25% 
threshold 

0.87 

2 SUVmean Mean intensity 0.91 

3 SUVmax Max intensity 0.94 

4 SUVP4 
Mean intensity of sphere 
of radius 1 

0.92 

5 SUVP14 
Mean intensity of sphere 
of radius 2 

0.90 

6 SUVP33 
Mean intensity of sphere 
of radius 3 

0.87 

7 SUV_N14 
Mean intensity of top 14 
voxels 

0.93 

8 SUV_N45 
Mean intensity of top 45 
voxels 

0.91 

9 SUV_N90 
Mean intensity of top 90 
voxels 

0.89 

10 Variance - 0.89 

11 Median - 0.91 

12 Minimum - 0.86 

13 10th percentile - 0.89 

14 90th percentile - 0.92 

15 Interquartile range - 0.92 

16 Range - 0.95 

17 Mean absolute deviation - 0.93 

18 Robust mean absolute deviation - 0.93 

19 Median absolute deviation - 0.93 

20 CV Coefficient of Variance 0.90 

21 Quartile coefficient of dispersion - 0.89 

22 Energy - 0.96 

23 Root mean square - 0.91 

24 Q Mean Quartile Mean 0.70 

25 Q Variance Quartile Variance 0.74 

26 Q Mean absolute deviation 
Quartile Mean absolute 
deviation 

0.74 

27 
Q Robust mean absolute 
deviation 

Quartile Robust mean 
absolute deviation 

0.78 

28 Q Median absolute deviation 
Quartile Median absolute 
deviation 

0.73 

29 QCV Quartile CV 0.76 

30 Q Energy Quartile Energy 0.92 
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31 Q Root mean square 
Quartile Root mean 
square 

0.71 

32 Entropy - 0.80 

33 Kurtosis-hist - 0.91 

34 Q Median  0.68 

35 Q Minimum  0.67 

36 Q 10th percentile  0.65 

37 Q 90th percentile  0.66 

38 Q Maximum  0.68 

39 Q Interquartile range  0.62 

40 Q Range  0.63 

41 
Q Quartile coefficient of 
dispersion 

 0.21 

42 Global.Variance  0.61 

43 Global.Skewness  0.67 

44 Global.Kurtosis  0.62 

Se
co

n
d

 o
rd

er
 

G
ra

y-
le

ve
l c

o
-o

cc
u

rr
en

ce
 m

at
ri

x 
(G

LC
M

) 

Spatial relationship 
between pixel in a 
specific direction, 

highlighting property 
of uniformity, 
homogeneity, 

randomness and linear 
dependency of 

images. 

45 Energy - 0.90 

46 Autocorrelation - 0.72 

47 Contrast - 0.97 

48 Correlation - 0.95 

49 Cluster Prominence 
Measure of the skewness 
and asymmetry 

0.88 

50 Dissimilarity - 0.89 

51 Entropy - 0.85 

52 Homogeneity1 - 0.86 

53 Homogeneity2 - 0.86 

54 MaximumProbability 

Occurrences of the most 
predominant pair of 
neighboring intensity 
values. 

0.87 

55 SumEntropy - 0.80 

56 DifferenceVariance - 0.88 

57 DifferenceEntropy - 0.86 

58 InfoMesOfCorr1 
Information measures of 
correlation 1 

0.83 

59 InfoMesOfCorr2 
Information measures of 
correlation 2 

0.77 

60 IDN 
Inverse Difference 
Normalized 

0.90 

61 IDMN 
Inverse Difference 
Moment Normalized 

0.89 

62 Variance  0.78 

63 ClusterShade  0.68 

64 SumOfSqauresVariance  0.67 

65 SumAverage  0.68 

66 SumVariance  0.69 

H
ig

h
er

 o
rd

er
 

G
ra

y-
le

ve
l r

u
n

-l
en

gt
h

 m
at

ri
x 

(G
LR

LM
) 

Texture in specific 
direction, where fine 

texture has more 
short runs whilst 

coarse texture 
presents more long 
runs with different 

intensity values. 

67 SRE Short Run Emphasis 0.82 

68 LRE Long Run Emphasis 0.91 

69 GLN Gray-Level Non-uniformity 0.78 

70 RLN 
Run-Length Non-
uniformity 0.87 

71 RP Run Percentage 0.90 

72 LGRE 
Low Gray-Level Run 
Emphasis 0.82 

73 HGRE 
High Gray-Level Run 
Emphasis 0.77 

74 SRLGE 
Short Run Low Gray-Level 
Emphasis 0.81 

75 LRLGE 
Long Run Low Gray-Level 
Emphasis 

0.82 

76 LRHGE 
Long Run High Gray-Level 
Emphasis 

0.80 

77 SRHGE  0.63 
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78 GLV  0.46 

79 RLV  0.58 

G
ra

y-
le

ve
l s

iz
e 

zo
n

e 
m

at
ri

x 
(G

LS
ZM

) 

Regional intensity 
variations or the 
distribution of 

homogeneity regions. 

80 LZE Large Zone Emphasis 0.93 

81 GLN Gray-Level Non-uniformity 0.89 

82 ZP Zone Percentage 0.87 

83 LGZE 
Low Gray-Level Zone 
Emphasis 

0.85 

84 HGZE 
High Gray-Level Zone 
Emphasis 

0.74 

85 LZLGE 
Large Zone Low Gray-
Level Emphasis 

0.90 

86 LZHGE 
Large Zone High Gray-
Level Emphasis 

0.76 

87 GLV Gray-Level Variance 0.80 

88 ZSV Run-Length Variance 0.90 

89 SZE  0.50 

90 ZSN  0.44 

91 SZLGE  0.61 

92 SZHGE  0.35 

N
ei

gh
b

o
rh

o
o

d
 g

ra
y-

to
n

e 
d

if
fe

re
n

ce
 

m
at

ri
x 

(N
G

TD
M

) Spatial relationship 
among three or more 

pixels, closely 
approaching the 

human perception of 
image 

93 Coarseness 

Measure of average 
difference between the 
center voxel and its 
neighborhood 

0.91 

94 Contrast 

Measure of the spatial 
intensity change on the 
overall gray level dynamic 
range 

0.88 

95 Busyness 

Measure of the change 
from a pixel to its 
neighbor 

0.91 

96 Complexity 
Rapid changes within gray 
level intensity 

0.81 

97 Strength 
Measure of the 
primitiveness in an image 

0.86 

G
ra

y 
Le

ve
l D

is
ta

n
ce

 Z
o

n
e 

M
at

ri
x 

(G
LD

ZM
) 

Counts the number of 
groups of connected 
voxels with a specific 
gray level (GL) value 

and distance to region 
of interest edge. It 

contains an extra-level 
of information 

compared to GLSZM: 
it captures the relation 
between the distance 
from the edge, zone-

size, and GL. 

98 SDE Small Distance Emphasis 0.88 

99 LDE Large Distance Emphasis 0.88 

100 LGDE 
Low Gray Dependence 
Emphasis 

0.83 

101 SDLGLE 
Small Dependence Low 
Gray Level Emphasis 

0.83 

102 SDHGLE 
Small Dependence High 
Gray Level Emphasis 

0.70 

103 GLNU Gray Level Non-Uniformity 0.82 

104 GLNUN 
Gray Level Non-Uniformity 
Normalized 

0.72 

105 ZDNU Size Zone Non-Uniformity 0.86 

106 ZDNUN 
Size Zone Non-Uniformity 
Normalized 

0.88 

107 ZP Zone Percentage 0.87 

108 GLV Gray Level Variance 0.82 

109 ZDV Zone Distance Variance 0.87 

110 ZDE Zone Distance Emphasis 0.93 

111 HGLE  0.68 

112 LDLGLE  0.56 

113 LDLGLEn  0.56 

N
ei
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n
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G
re
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ve
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D
ep

en
d

en
ce

 M
at

ri
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(N
G

LD
M

) 

The coarseness of the 
overall texture.  

114 LDE 
Low Dependence 
Emphasis 

0.77 

115 HDE 
High Dependence 
Emphasis 

0.91 

116 LDLGEGL 
Low Dependence Low 
Gray Emphasis Gray Level  

0.88 

117 HDLGE 
High Dependence Low 
Gray Emphasis 

0.87 

118 GLNU Gray Level Non-Uniformity 0.92 
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119 DCNU 
Dependence counts non-
Uniformity 

0.88 

 120 LGLCE  0.10 

121 HGLCE  -0.19 

122 LDHGE  0.54 

123 HDHGE  0.49 

124 GLNUN  0.25 

125 DCNUN  0.55 

126 GLV  -0.03 

127 DCV  0.51 

128 DCE  0.38 

129 DCEn  0.33 

   130 Volume  0.92 

   131 Metabolic Tumor Volume  0.80 

 

 

Supplemental Table S2: Hierarchical clustering on cross correlation for preclinical and clinical features 

(dendrogram with distances 3 unit) 

Sl. NO Features short name 
Preclinical 

Cluster 
Clinical 
Cluster 

Sl. NO 
Features short 

name 
Preclinical 

Cluster 
Clinical 
Cluster 

1 SUV25 12 3 66 SumVariance 6 7 

2 SUVmean 5 3 67 SRE 20 21 

3 SUVmax 12 3 68 LRE 15 2 

4 SUVP4 12 3 69 GLN 19 21 

5 SUVP14 12 3 70 RLN 20 21 

6 SUVP33 12 3 71 RP 20 21 

7 SUV_N14 12 3 72 LGRE 19 19 

8 SUV_N45 12 3 73 HGRE 8 7 

9 SUV_N90 12 2 74 SRLGE 19 19 

10 Variance 13 3 75 LRLGE 15 7 

11 Median 5 3 76 LRHGE 10 13 

12 Minimum 20 9 77 SRHGE 7 2 

13 10th percentile 1 9 78 GLV 20 21 

14 90th percentile 4 3 79 RLV 20 21 

15 Interquartile range 13 3 80 LZE 14 21 

16 Range 13 3 81 GLN 19 2 

17 Mean absolute deviation 13 3 82 ZP 20 20 

18 Robust mean absolute deviation 13 3 83 LGZE 20 21 

19 Median absolute deviation 13 3 84 HGZE 1 21 

20 CV 15 6 85 LZLGE 14 18 

21 Quartile coefficient of dispersion 15 6 86 LZHGE 14 7 

22 Energy 13 2 87 GLV 20 18 

23 Root mean square 4 3 88 ZSV 20 16 

24 Q Mean 11 5 89 SZE 1 10 

25 Q Variance 11 5 90 ZSN 2 2 

26 Q Mean absolute deviation 11 5 91 SZLGE 20 21 

27 Q Robust mean absolute 
deviation 

11 5 92 SZHGE 17 21 

28 Q Median absolute deviation 11 5 93 Coarseness 20 21 

29 QCV 11 8 94 Contrast 21 17 

30 Q Energy 14 2 95 Busyness 14 2 

31 Q Root mean square 11 5 96 Complexity 21 16 

32 Entropy 13 15 97 Strength 20 21 

33 Kurtosis-hist 18 14 98 SDE 20 21 

34 Q Median 15 6 99 LDE 14 4 

35 Q Minimum 11 5 100 LGDE 20 10 

36 Q 10th percentile 11 12 101 SDLGLE 20 19 

37 Q 90th percentile 5 1 102 SDHGLE 17 10 

38 Q Maximum 11 5 103 GLNU 14 21 
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39 Q Interquartile range 11 5 104 GLNUN 3 10 

40 Q Range 11 5 105 ZDNU 14 4 

41 Q Quartile coefficient of 
dispersion 

11 5 106 ZDNUN 20 2 

42 Global.Variance 11 8 107 ZP 20 6 

43 Global.Skewness 16 15 108 GLV 20 1 

44 Global.Kurtosis 18 14 109 ZDV 14 21 

45 Energy 6 1 110 ZDE 14 21 

46 Autocorrelation 20 21 111 HGLE 17 13 

47 Contrast 20 21 112 LDLGLE 9 4 

48 Correlation 10 1 113 LDLGLEn 14 8 

49 Cluster Prominence 21 20 114 LDE 20 21 

50 Dissimilarity 8 17 115 HDE 15 2 

51 Entropy 15 21 116 LDLGEGL 20 11 

52 Homogeneity1 15 2 117 HDLGE 14 12 

53 Homogeneity2 14 1 118 GLNU 14 21 

54 MaximumProbability 8 1 119 DCNU 14 21 

55 SumEntropy 21 1 120 LGLCE 2 2 

56 DifferenceVariance 21 5 121 HGLCE 18 2 

57 DifferenceEntropy 8 5 122 LDHGE 1 2 

58 InfoMesOfCorr1 3 5 123 HDHGE 13 13 

59 InfoMesOfCorr2 15 1 124 GLNUN 20 2 

60 IDN 15 16 125 DCNUN 16 21 

61 IDMN 10 16 126 GLV 18 12 

62 Variance 16 2 127 DCV 9 2 

63 ClusterShade 1 21 128 DCE 7 1 

64 SumOfSqauresVariance 6 11 129 DCEn 2 21 

65 SumAverage 6 11 
    

 

 

Supplemental Table S3:  AIC and BIC stats for volume dependent radiomic features 

Features name rho(ρ) Stats Linear Exponential Log Power Polynomial 

Q Energy 0.98 
AIC 459.3 577.0 531.2 461.9 460.5 

BIC 477.6 595.3 549.6 480.3 485.0 

GLCM.Correlation -0.98 
AIC -1281.3 -1299.1 -1193.8 -1304.3 -1229.8 

BIC -1262.9 -1280.8 -1175.4 -1285.9 -1205.3 

GLCM.Contrast -0.97 
AIC -642.2 -648.3 -681.5 -686.7 -658.3 

BIC -623.8 -629.9 -663.1 -668.3 -633.8 

GLSZM.GLV -0.98 
AIC -945.1 -954.8 -993.0 -905.8 -811.3 

BIC -926.7 -936.4 -974.7 -887.5 -786.8 

GLSZM.ZSV -0.96 
AIC -822.1 -832.7 -868.6 -925.9 -830.2 

BIC -803.7 -814.3 -850.2 -907.5 -805.7 

NGTDM.Busyness 0.97 
AIC -68.5 -16.4 -21.3 -60.0 -60.8 

BIC -86.9 -34.8 -39.6 -78.4 -85.3 

NGTDM.Strength -0.97 
AIC -53.6 -63.2 -118.8 -156.6 -86.1 

BIC -35.3 -44.8 -100.5 -138.2 -61.6 

GLDZM.GLNU 0.97 
AIC 129.7 218.9 171.9 121.5 137.7 

BIC 148.0 237.3 190.3 139.9 162.2 

NGLDM.GLNU 0.99 
AIC 340.7 772.6 728.3 477.2 334.9 

BIC 359.1 791.0 746.7 495.6 359.4 

NGLDM.DCNU 0.99 
AIC 772.3 993.0 958.3 1079.6 752.6 

BIC 790.7 1011.3 976.7 1098.0 777.1 

* Selected model is highlighted in bold 
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Supplemental Table S4: Rank importance (Using ReliefF) of radiomic features based on treatment response 

prediction ( 94 reproducible features, tumor volume and metabolic tumor volume) 

Rank Features name for baseline (BL) Features name for difference(4D-BL) 

1 'GLDZM_GLNUN'  QRootMeanSquare'  

2 'GLDZM_SDLGLE'  'QMean' 

3 'GLDZM_LGDE' 'QMedianAbsoluteDeviation' 

4 'QRobustMeanAbsoluteDeviation'  'QMeanAbsoluteDeviation' 

5 'QMedianAbsoluteDeviation' 'QRobustMeanAbsoluteDeviation' 

6 'QMeanAbsoluteDeviation' 'Entropy'  

7 'QMean' 'QCV'  

8 'Entropy'  'QVariance' 

9 'QRootMeanSquare' 'SUV_N90'  

10 'QVariance' 'SUV25' 

11 'GLSZM_GLN' 'SUVP4' 

12 'GLSZM_GLV' 'SUV_N45' 

13 'GLSZM_ZSV' 'SUVmax' 

14 'QCV'  'SUV_N14' 

15 'GLCM_Contrast' 'GLCM_Correlation' 

16 'NGLDM_LDLGEGL'  'NGLDM_GLNU' 

17 'GLSZM_LGZE' 'Variance'  

18 'GLSZM_LZLGE' 'SUVP33' 

19 'x10thPercentile'  'SUVP14' 

20 'Minimum' 'GLDZM_GLNU' 

21 'QuartileCoefficientOfDispersion'  'GLSZM_HGZE'  

22 'GLCM_InfoMesOfCorr1'  'NGLDM_DCNU' 

23 'Median' 'NGTDM_Busyness' 

24 'GLSZM_HGZE'  'GLSZM_LZE' 

25 'QEnergy' 'GLDZM_SDLGLE' 

26 'GLCM_Entropy'  'InterquartileRange' 

27 'GLCM_MaximumProbability' 'Minimum' 

28 ‘GLCM_Energy’ 'GLDZM_ZDNU' 

29 'SUVmean' 'GLCM_DifferenceEntropy' 

30 'GLSZM_LZE' 'RobustMeanAbsoluteDeviation' 

31 'GLCM_SumEntropy' 'GLSZM_LZHGE' 

32 'RootMeanSquare' 'GLDZM_LGDE’ 

33 'GLDZM_GLV' 'Range' 

34 'Variance' 'GLCM_MaximumProbability' 

35 'GLCM_Autocorrelation' 'Kurtosis_hist'  

36 'NGTDM_Coarseness'  'Energy' 

37 'GLCM_Correlation' 'MedianAbsoluteDeviation' 

38 'GLRLM_GLN' 'MeanAbsoluteDeviation' 

39 'GLCM_Variance' 'NGTDM_Complexity' 

40 'NGTDM_Strength' 'QEnergy' 

41 'GLDZM_ZDNU' 'GLDZM_ZDV' 

42 'GLSZM_LZHGE' 'GLDZM_LDE' 

43 'InterquartileRange' 'GLCM_Entropy' 

44 'GLCM_InfoMesOfCorr2' 'NGLDM_HDE' 

45 'GLDZM_ZP' 'NGTDM_Contrast' 

46 'GLRLM_HGRE' 'GLRLM_LRLGE' 

47 'GLDZM_GLNU' 'GLCM_DifferenceVariance' 

48 'x90thPercentile' 'x90thPercentile' 

49 'GLDZM_SDHGLE' 'GLRLM_LRE' 

50 'RobustMeanAbsoluteDeviation' 'GLDZM_SDHGLE' 

51 'Energy' 'GLSZM_LZLGE' 

52 'CoefficientOfVariation' 'GLDZM_ZDNUN' 

53 'GLCM_ClusterProminence' 'GLCM_Dissimilarity' 

54 'GLSZM_ZP' 'GLCM_SumEntropy' 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 12, 2021. ; https://doi.org/10.1101/2021.06.11.448077doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.448077


55 'MedianAbsoluteDeviation' 'RootMeanSquare' 

56 'GLRLM_LRHGE' 'GLDZM_GLV' 

57 'NGLDM_GLNU' 'SUVmean' 

58 'GLRLM_LRE' 'x10thPercentile' 

59 'MeanAbsoluteDeviation' 'NGLDM_HDLGE' 

60 'GLDZM_ZDE' ‘Volume’ 

61 'SUV25' 'GLSZM_ZP' 

62 'SUV_N14' 'GLSZM_LGZE' 

63 'SUV_N45' 'GLCM_ClusterProminence' 

64 'SUV_N90' 'CoefficientOfVariation' 

65 'NGLDM_DCNU' 'GLSZM_ZSV' 

66 'NGLDM_LDE' 'Median' 

67 'GLRLM_LRLGE' ‘Metabolic tumor volume’ 

68 'GLCM_Homogeneity1' 'GLCM_InfoMesOfCorr1' 

69 'SUVmax' 'GLDZM_SDE' 

70 'Range' 'NGLDM_LDLGEGL' 

71 'GLCM_Homogeneity2' 'GLCM_Autocorrelation' 

72 'GLRLM_RP' 'NGTDM_Strength' 

73 'SUVP4' 'GLDZM_ZDE' 

74 'NGLDM_HDE' 'GLCM_Homogeneity1' 

75 'NGTDM_Busyness' 'GLRLM_RLN' 

76 'GLRLM_RLN' 'GLRLM_SRE' 

77 'Kurtosis_hist' 'GLCM_Homogeneity2' 

78 'SUVP14' ‘GLCM_Energy’ 

79 'GLRLM_SRE' 'QuartileCoefficientOfDispersion' 

80 'GLDZM_ZDNUN' 'GLCM_Variance' 

81 'SUVP33' 'GLRLM_HGRE' 

82 'GLDZM_SDE' 'GLCM_Contrast' 

83 'GLDZM_ZDV' 'GLDZM_ZP' 

84 'GLDZM_LDE' 'GLSZM_GLV' 

85 ‘Volume’ 'NGLDM_LDE' 

86 'NGLDM_HDLGE' 'GLRLM_LGRE' 

87 'GLCM_DifferenceEntropy' 'GLDZM_GLNUN' 

88 'GLRLM_SRLGE' 'GLRLM_SRLGE' 

89 'GLCM_IDN' 'GLRLM_LRHGE' 

90 'GLCM_Dissimilarity' 'GLRLM_RP' 

91 'GLCM_IDMN' 'GLSZM_GLN' 

92 'GLRLM_LGRE' 'GLCM_IDN' 

93 ‘Metabolic tumor volume’ 'GLCM_InfoMesOfCorr2' 

94 'GLCM_DifferenceVariance' 'GLCM_IDMN' 

95 'NGTDM_Contrast' 'NGTDM_Coarseness' 

96 'NGTDM_Complexity' 'GLRLM_GLN' 

 

 

 

Supplemental Table S5: Accuracy by TNBC Subtyp (%) 

 CART Naïve Bayes SVM 

Subtype Baseline Difference Baseline Difference Baseline Difference 

IM 84.37 77.75 91.25 78.5 86.5 76.25 

BL2 72.72 70.4 83.5 73.25 75.55 71.72 

M 81.25 71.25 81.25 82.5 83.75 75 

BL1 87.7 68.25 96.25 85.25 91.25 82.5 

LAR 62.5 75.00 72.5 82.5 65 75 
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Supplemental Table S6: Performance of ML algorithms 

  Preclinical Clinical 

  Prediction Assessment Prediction Assessment 

  NB SVM NB SVM NB SVM NB SVM 

RadSig 

F-score 86.93 82.62 78.78 75.30 66.67 72.00 64.94 70.00 

TPR 85.81 83.33 78.00 77.38 75.00 75.00 56.82 63.64 

TNR 86.67 78.59 78.57 72.94 53.85 69.23 80.00 80.00 

PPV 88.08 81.92 79.59 73.33 60.00 69.23 75.76 77.78 

Accuracy 86.21 81.14 78.26 75.13 64.00 72.00 67.86 71.43 

SUVmean 

F-score 53.24 62.30 58.82 76.47 51.06 61.54 50.00 56.41 

Sensitivity (TPR) 52.00 63.33 76.92 86.67 50.00 66.67 45.45 50.00 

Specificity (TNR) 53.57 57.14 31.25 57.14 57.69 53.85 60.00 70.00 

Precision (PPV) 54.55 61.29 47.62 68.42 52.17 57.14 55.56 64.71 

Accuracy 52.76 60.34 51.72 72.41 54.00 60.00 52.38 59.52 

SULpeak 

F-score 48.28 64.41 78.26 76.54 52.17 55.32 53.66 55.42 

Sensitivity (TPR) 50.00 65.52 84.38 83.22 50.00 54.17 50.00 52.27 

Specificity (TNR) 46.67 62.07 61.54 63.83 61.54 61.54 60.00 60.00 

Precision (PPV) 46.67 63.33 72.97 70.86 54.55 56.52 57.89 58.97 

Accuracy 48.28 63.79 74.14 73.79 56 58 54.76 55.95 

SUVmax 

F-score 60.00 63.64 77.43 75.36 48.00 59.26 40.00 42.11 

Sensitivity (TPR) 60.00 63.23 86.67 86.67 50.00 66.67 36.36 36.36 

Specificity (TNR) 57.14 59.26 60.14 53.57 46.15 46.15 50.00 60.00 

Precision (PPV) 60.00 64.05 69.97 66.67 46.15 53.33 44.44 50.00 

Accuracy 58.62 61.38 73.86 70.69 48.00 56.00 42.86 47.62 
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