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Understanding the relationship between the brain’s structural anatomy and neural activity is essential in identify-
ing the structural therapeutic targets linked to the functional changes seen in neurological diseases. An implicit
challenge is that the varying maps of the brain, or atlases, used across the neuroscience literature to describe
the different regions of the brain alters the hypotheses and predictions we make about the brain’s function of
those regions. Here we demonstrate how parcellation scale, shape, and anatomical coverage of these atlases
impact network topology, structure-function correlation (SFC), and the hypotheses we make about epilepsy dis-
ease biology. Through the lens of our disease system, we propose a general framework to evaluate the validity
of an atlas used in an experimental system. This framework aims to maximize the descriptive, explanatory, and
predictive validity of these atlases. Broadly, our framework strives to augment neuroscience research utilizing
the various atlases published over the last century.
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Introduction1

How we define anatomical brain structures and relate those2

structures to the brain’s function can either constrain or en-3

hance our understanding of the biology of behavior and neuro-4

logical diseases 1–4. Discoveries by scientists like Carl Wernicke5

and Pierre Paul Broca who mapped specific brain regions6

to speech function, in addition to case studies from Phineas7

Gage and H.M. who lost specific brain regions with resultant8

changes in brain function and behavior, exemplify how brain9

structure and function are fundamentally linked 5–7. Proper10

labeling of brain structures is paramount for effective com-11

munication amongst scientists about the variability between12

healthy individuals and about the regions involved in neuro-13

logical disorders 8. Yet no consensus has been reached on the14

most appropriate labeling and delineations of these regions, as15

manifest in the wide variety of brain maps or atlases defining16

neuroanatomical structures 9.17

In common usage, an atlas refers to a “collection of maps” 10
18

that typically defines geo-political boundaries and may include19

coarse borders (continental), fine borders (city), and anything20

in between (country; Fig. 1a, left). Borders 11 are usually21

consistent across atlases of the world. In contrast, atlases of22

the brain are not consistent. Four separate atlases (Fig. 1a,23

right) may define the superior temporal gyrus differently. For24

example, over ninety percent of the anterior superior temporal25

gyrus in the Harvard-Oxford atlas 12 overlaps with the pos-26

terior superior temporal gyrus in the Hammersmith atlas 13.27

Atlases may also differ in other ways, including the parcella-28

tion size, neuroanatomical coverage, and complexity of brain29

region shapes. For instance, the Yeo atlas 14 contains 7 or 17 30

parcels while the Schaefer atlases 15 may have between 100 31

and 1000 parcels. Complicating matters further, atlases can 32

differ in their intended use. The MMP atlas 16 was intended 33

for surface-based analyses 17, yet a volumetric version (without 34

subcortical structures) was independently created and used 35

in connectivity studies 18. The plethora of available atlases 36

poses a problem for reproducibility in the study of healthy 37

and diseased populations and for metanalyses describing the 38

involvement of different regions of the brain in various diseases. 39

This has been termed the Atlas Concordance Problem 4. 40

In the present study, we perform a comprehensive evaluation 41

of the available atlases in the neuroscience literature (Table 1) 42

by examining the effect of varying features such as parcellation 43

size, coverage, and shape (Fig. 1b) on structural connectivity 44

(Fig. 1c) and structure-function correlation (SFC; Fig. 1d). 45

Note the important distinction between the terms atlas, tem- 46

plate, and stereotactic space 9 (see Fig. S1). In the context 47

of our disease system, we propose a new framework outlining 48

the validity of atlas used across experimental neuroscience 49

systems. In our experimental design, we measure structural 50

connectivity using high angular resolution diffusion imaging 51

(HARDI) to capture the underlying anatomical connections 52

between brain regions. We then measure neural activity using 53

stereoelectroencephalography (SEEG) in epilepsy patients to 54

capture real-time changes in seizure activity with finer tempo- 55

ral and spatial resolution than other functional neuroimaging 56

modalities20–22. Finally, we utilize a total of 52 brain atlases 57

freely available in common neuroimaging software to inves- 58
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Fig. 1. The Atlas Concordance Problem and SFC. | a, In common usage, an atlas refers to a “collection of maps” 10 that
defines geo-political boundaries. They may include coarse continental borders, fine state borders, or mesoscale country borders.
Although borders 11 are usually consistent across atlases of the world, they are typically not consistent across atlases of the brain.
Four separate atlases (left-to-right: CerebrA, AAL, Hammersmith, Harvard-Oxford) may define the superior temporal gyrus
differently. The lack of consistency across these labels poses a problem for reproducibility in cognitive, systems, developmental,
and clinical studies, as well as metanalyses describing the involvement of different regions of the brain of various diseases 4.
This challenge has been previously referred to as the Atlas Concordance Problem. b, Atlases can have varying features (see
also Table 1). c, The varying definitions of anatomical areas decreases confidence that all current connectivity studies reflect
some fundamentally “true” architecture. d, When combined with white matter tracts reconstructed from diffusion MRI, atlases
can be used to measure how different regions of the brain are structurally connected (i). Similarly, intracranial EEG (iEEG)
implants can record neural activity to measure how different regions of the brain are functionally connected (ii). The statistical
similarity between structural and functional connectivity measurements can be calculated (e.g., structure-function correlation;
SFC), and such estimates have recently been used to better understand the pathophysiology of disease.

tigate hypotheses about the structure-function relationship59

in epilepsy patients. We found parcellation scale affects the60

measurement of resting-state SFC (rsSFC) and the change in61

SFC (ΔSFC) at seizure onset, potentially altering conclusions 62

about how seizures harness the underlying structural scaffold 63

in the brain supported in prior research 23–26. 64
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Table 1. Atlases. | Refer to Table S1 for atlas sources. NIfTI files converted to STL files with Slicer and 3D rendered in
Blender. S: Structurally defined atlas; F: Functionally defined atlas; M: Multi-modally defined atlas; V: A variably defined
atlas that may be structural, functional, multi-modal; rsFMRI: resting-state fMRI; ROI: region of interest; HCP: Human
connectome project dataset 19; DKT: Desikan-Killiany-Tourville protocol 1; MS: multiple sclerosis.

Through the lens of our disease system, we conclude with a65

new framework for evaluating atlases by expanding historical66

foundations for assessing the validity and effectiveness of ani-67

mal models27, network models28, and psychometric tests 29.68

A one-size-fits-all approach may not nor should exist 30. In-69

stead, we hope to critically evaluate an atlas by maximizing its 70

(1) descriptive, (2) explanatory, and (3) predictive validity 28
71

in relation to the experimental system at hand. In epilepsy 72

specifically, we aim to select an atlas that resembles the sys- 73

tem in which we work (descriptive validity). Importantly, 74
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Fig. 2. Atlas morphology: sizes and shapes. | a, Volume distribution of atlas parcellations or region of interests (ROIs)
demonstrating the diversity of parcellation sizes. Some atlases have wide distributions, while others have low variability in
parcellation sizes. b, Parcellation sphericity distributions illustrating how the shapes of different parcellations may not be
uniform. Colors denoting atlases are the same in a. c, Volumes versus sphericity showing how some atlas parcellations may be
small and spherical, while others may be large and non-spherical. This illustrates the non-uniformity in atlas parcellations. We
hypothesize that this variability contributes to altered network structure and measurement of SFC. d, Volumes and sphericity
of random atlases showing the uniformity of sphericity with changing volumes. This allows us to study the effect of parcellation
scale on network characteristics and SFC without the confound of shape effects. Numbers in legend represent the number of
parcellations for each random atlas. Remaining atlases are in Fig. S2. See Table S1 for atlas descriptions.

it should include coverage of subcortical structures typically75

involved in epilepsy networks with a parcellation scale that is76

not too coarse nor fine to model connectivity at the appropri-77

ate scale (given the resolution limits of HARDI and SEEG).78

Next, we want to select an optimal atlas that can be used79

for hypothesis testing (explanatory validity). It should in-80

clude the capability to test how functional changes seen in81

epilepsy are related to the underlying structural connectivity.82

Explanatory validity thus requires assessment of both the atlas 83

features (a form of descriptive validity) and its ability to test 84

for causal relationships. Finally, we strive to maximize the pre- 85

dictive capability of an atlas (predictive validity). We aim 86

to optimally predict functional changes seen in epilepsy using 87

noninvasive structural neuroimaging, lessening the need for 88

costly and invasive implantations in epilepsy patients. Later, 89

we show some atlases at a particular scale are not able to pre- 90
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Fig. 3. Network differences between atlases. | a, Density, mean degree, mean clustering coefficient, characteristic path
length, and small worldness were calculated for all atlases. A subset of atlases is shown. Remaining atlases studied are shown
in Fig. S3. The average parcellation volume was calculated for each atlas and the corresponding network measure was graphed
as the mean of all subjects (N=41; 13 controls, 28 patients). Because many basic network measures change as a function of
parcellation volume, we hypothesized that SFC would also change based on parcellation volume. b, Controls and patients were
not significantly different in density for the AAL2 atlas (Mann-Whitney U test) illustrating global structural network measures
are similar between cohorts. Specific connectivity differences between cohorts were not explored (e.g. to explore if connections
from the hippocampus to the cingulate gyrus are changed in temporal lobe epilepsy) and out of the scope of this manuscript.
Controls and patients were separated and shown in Fig. S4. See Table S1 for atlas descriptions.

dict structure-function changes with seizure onset. With this91

framework, the present study demonstrates the set of atlases92

with specific features such as parcellation size, shape, and93

coverage that meet our goal of predicting functional changes94

seen in epilepsy. Not all atlases are valid for a specific study.95

Our generalized framework provides a valuable resource for96

others to make an educated decision in regards to atlas choice97

when designing their study.98

Results99

Clinical Data. Forty-one individuals (mean age 34 ± 11; 16100

female) underwent High Angular Resolution Diffusion Imaging101

(HARDI), composed of thirteen controls (mean age 35 ± 13;102

6 female) and twenty-eight drug-resistant epilepsy patients103

(mean age 34 ± 11; 12 female) evaluated for surgical treatment.104

Of the twenty-eight patients, twenty-four were implanted with105

stereoelectroencephalography (SEEG) and four with electro-106

corticography (ECoG). Ten SEEG patients (mean age 34 ± 8;107

4 female) had clinical seizure annotations, and the first seizure108

from each patient (mean duration 81s) without artifacts was109

selected for SFC analyses. Patient and control demographics110

are included in Table S2.111

Atlas Morphology: Sizes and Shapes. We hypothesized that 112

atlas morphological properties, including size and shape, affect 113

SFC. To test this hypothesis, we first quantified the distribu- 114

tions of parcellation sizes and shapes in various atlases (Fig 2). 115

Some atlas parcellations have narrow volume distributions 116

(Fig 2a, e.g. Craddock 200 and 400 atlases), while others have 117

wider parcellation volume distributions (e.g. Schaefer 1000). 118

Several atlases that have larger parcellation volumes may have 119

lower sphericity values (Fig 2b). These results exemplify the 120

diversity of atlas parcellation morphology. Fig 2c shows a 121

comparison of individual parcellation volumes and sphericities. 122

The remaining atlases are shown in Fig. S2. In contrast to 123

standard atlases, random atlases have constant sphericity with 124

respect to a change in volume size. Although random atlases 125

may not represent true anatomical or functional boundaries, 126

the benefit is that the shape of a parcellation is uniformly 127

biased regardless of parcellation size; random atlases allow 128

us to study how parcellation scale affects network structure 129

and SFC while keeping the effect of shape constant. They 130

also allow us to explore if accurate and precise anatomical 131

boundaries are crucial for our experimental system. 132
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Fig. 4. Structure-Function correlation in a single adjacency matrices. b,
Functional adjacency matrices are produced from terictal, preictal, ictal, and
postictal periods. Broadband cross correlation matrices hours before seizure onset,
90 seconds before seizure onset, 40s after seizure onset (t 40), (seizure duration = 89 seconds),
and 180 seconds after seizure onset (or 91 seconds after seizure termination). c, Each functional adjacency matrix is correlated
to a structural adjacency matrix of a given atlas. A plot of the structural edge weights and corresponding functional edge
weights is shown for the example time points of b. Spearman Rank Correlation is measured between all time points and all
atlases for each patient. d, SFC is graphed at each time point for four example standard atlases (Hammersmith, Craddock400,
AAL2, and CerebrA), and four example random whole-brain atlases (30, 100, 1000, and 10000 parcellations). SFC increases
during seizure state for some standard atlases – Craddock 400, AAL2, and CerebrA atlases. This result follows previous SFC
publications with ECoG 23,24. However, SFC does not increase for the Hammersmith atlas. These findings highlight inference
from one type of atlas may suggest that seizure activity is not correlated to brain structure, contradicting previous studies.
Similarly, SFC increases for a subset of random whole-brain atlases. See Table S1 for atlas descriptions.

Anatomical definitions affect network topology. Although the133

morphology of atlas parcellations is diverse, we aimed to inves-134

tigate how these morphological characteristics affect network135

topology, particularly how parcellation scale affects network136

structure Fig. 3. Networks are the basis upon which we com-137

pute SFC, and not necessarily morphological characteristics, 138

therefore, we measured how network density, mean degree, 139

characteristic path length, mean clustering coefficient, and 140

small worldness change parcellation scale 141

(Fig. 3a). We found that network mea- 142
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Fig. 5. Structure-Function Correlation in multiple patients. | SFC for ten standard atlases and five random atlases
using SEEG broadband cross-correlation metrics averaged across all patients with clinically annotated seizures (N = 10).
Resting state SFC (rsSFC) is the SFC during the interictal period. We observe that rsSFC increases with decreasing parcellation
volume (see also Fig. 6a). The AAL2 atlas shows a statistically significant increase in SFC from preictal to ictal periods
(p = 0.02 by Wilcoxon signed rank test after Bonferroni correction for 52 tests). The change from preictal to ictal SFC is
ΔSFC. This finding supports the hypothesis that seizure activity harnesses the underlying structural connectivity of the brain.
SFC was similarly calculated for random whole-brain atlases. These findings may be concerning given that the inherent
structure-function relationship in the brain is not necessarily changing at resting state, but its measurement is greatly affected
by atlas choice alone. These results highlight the crucial need for critically evaluating the appropriate atlas to understand
SFC across the neuroscience literature, especially in an SEEG setting given the rise of SEEG implantations30. xcorr: cross
correlation. See Table S1 for atlas descriptions.

sures are congruent between standard and random atlases and143

previous studies31. For example, density and mean clustering144

coefficient increase as a function of increasing average parcella-145

tion volume for both the standard and random atlases, while146

characteristic path length and small worldness decrease. We147

also show that mean density, a global network measure, is sim-148

ilar between our control (N=13) and patient (N=28) cohorts149

(Fig. 3b). As a result of these findings, we hypothesized that150

SFC would also change based on parcellation volume.151

Anatomical definitions affect SFC. Fig. 4 illustrates an152

overview of how SFC is calculated. Structure is measured153

with high angular resolution diffusion imaging (HARDI) and154

function is measured with SEEG electrode contacts. Struc-155

tural adjacency matrices are generated based on the atlas156

chosen (Fig. 4a) and functional adjacency matrices are gen-157

erated based on broadband (1 – 128 Hz) cross-correlation of 158

neural activity between the electrode contacts (Fig. 4b). The 159

adjacency matrices shown are example data from a single pa- 160

tient, RID0278. Functional adjacency matrices for RID0278 161

are shown for 6 hours before seizure onset, 90 seconds before 162

seizure onset (t = -90), 40 seconds after seizure onset (t = 40), 163

88 seconds after seizure onset (seizure duration = 89 seconds), 164

and 180 seconds after seizure onset (91 seconds after seizure 165

termination). Each functional adjacency matrix was correlated 166

to each structural adjacency matrix, yielding a SFC at each 167

time point (Fig. 4c). Each point represents the normalized 168

structural edge weight between two brain regions and their 169

corresponding functional connectivity edge weight in broad- 170

band cross-correlation. A line of best fit is shown, and r values 171

represent Spearman rank correlation for that time point. SFC 172

was graphed for all time points during the interictal, preictal, 173
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Fig. 6. A trade-off between resting-state SFC (rsSFC) and the change in SFC (ΔSFC) with neuroanatomical
scale. | a, rsSFC increases at smaller parcellation scales. Random atlases are shown in blue and standard atlases are shown
in red. Bands represent 95% confidence intervals. b, ΔSFC decreases at smaller parcellation scales. Broadly, ΔSFC may be
interpreted as the change in SFC with respect to disease (e.g. seizure, schizophrenia, major depressive disorder) and non-disease
states, and this change has been used to characterize and make inferences on many neurological diseases. These results exemplify
that either too coarse or too fine parcellations may not adequately capture the underlying SFC of the brain or its dynamics
with relation to neurological disease. c, A subset of atlases capture the dynamical change in SFC. The Harvard-Oxford (HO)
and DKT atlases show a significantly different SFC between preictal and ictal periods (p < 0.05 by Wilcoxon signed rank
test after Bonferroni correction for 52 tests) while the Brainnetome and MMP atlases do not ( p > 0.05). Larger parcellation
volumes (e.g. N = 30) increase in ΔSFC from smaller parcellation volumes (e.g. N = 1,000), indicating that larger parcellation
volumes adequately capture ΔSFC. However, parcellation volume is not the only factor in adequately capturing ΔSFC. The
Hammersmith atlas with large parcellation volumes and larger electrode coverage is not able to capture a significant ΔSFC (p
> 0.05). Asterisks represent atlases with statistically significant differences in SFC between ictal and preictal periods after
Bonferroni Correction. See Table S1 for atlas descriptions.

ictal, and postictal periods for this patient in Fig. 4d.174

Four example standard and random atlases are graphed.175

We show that SFC increases during the ictal state for many176

atlases (CerebrA, AAL2, Craddock 400), but not all atlases177

(Hammersmith). The increase in SFC during seizures follows178

previous SFC publications with ECoG 23,24. Similarly, SFC179

increases for a subset of random whole-brain atlases. The ran-180

dom whole-brain atlases were created to change parcellation181

scale while preserving shape, therefore, these data support that182

SFC is affected by parcellation scale. However, parcellation183

scale is not the only feature affecting SFC – the Hammersmith184

and AAL2 atlases have similar parcellation scales yet diverging185

neuroanatomical properties and SFC dynamics. These findings186

highlight inference from one type of atlas may suggest that187

seizure activity is not correlated to brain structure, contradict-188

ing previous studies23. Broadly, structural network studies 189

and conclusions may be affected by the atlas chosen, and thus 190

care must be taken when interpreting the structure-function 191

relationship of the brain with respect to neuroanatomical defi- 192

nitions. 193

Structure-Function Correlation at a Population Level. Fig. 5 194

shows SFC for ten standard atlases and five random atlases 195

using SEEG broadband cross-correlation metrics averaged 196

across all patients with clinically annotated seizures (N = 10). 197

Functional connectivity measurements were also calculated for 198

coherence, zero time-lag Pearson, and Spearman rank corre- 199

lations across multiple frequency bands. They are included 200

in the freely available, curated, and opensource dataset for 201

all readers of this manuscript (see methodology section for 202
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Fig. 7. Framework for selecting a brain atlas. | a, Descriptive validity of an atlas addresses the “face value” of an atlas
(it resembles the experimental system). In epilepsy, an atlas should cover subcortical structures involved in seizure generation.
It should have a parcellation scale not too coarse nor fine to model connectivity at the appropriate scale given the resolution
limits of HARDI and SEEG. b, Explanatory validity of an atlas addresses whether an atlas can be used for testing causal
relationships. In epilepsy, it includes the capability to test how functional changes seen in epilepsy are related to structural
connectivity. c, Predictive validity addresses the predictive capability of an atlas. In epilepsy, we want to be able to predict
functional epileptic changes using noninvasive neuroimaging, lessening the need for costly and invasive implantations. d,
Non-mutually exclusive atlas features related to descriptive validity. Atlases may be derived from structural, functional, or
multimodal datasets; parcellations can be random. Atlases may be volumetric or surface-based, made from connectivity data
(structural/functional), derived from microscopic datasets such as cytoarchitecture, molecular, and genetic. Parcellations may
range from voxels to entire lobes, have different brain coverages (cortical, “grayordinate”, white matter, or whole brain), may
be combined, and have symmetric labeling. Atlases may be non-human, incorporate highly detailed maps of specific regions,
and be made from the study participants. Parcellations may include liberal/conservative and hard/soft boundaries. Atlases
can be derived and further parcellated from other atlases. Finally, atlases may be developed through different methodologies
with further details in the text.

links); however, they were not used in directed hypothesis203

testing about specific frequency bands nor about other func-204

tional measurements in the present study. The AAL2 atlas205

shows a statistically significant increase in SFC from preic- 206

tal to ictal periods (p < 0.05 by Wilcoxon signed rank test 207

after Bonferroni correction for 52 tests). The change from 208

This Manuscript was compiled on June 11, 2021 10 Revell and Silva et al.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 13, 2021. ; https://doi.org/10.1101/2021.06.11.448063doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.11.448063
http://creativecommons.org/licenses/by-nc/4.0/


preictal to ictal SFC is denoted ΔSFC. This finding supports209

the hypothesis that seizure activity harnesses the underlying210

structural connectivity of the brain 23,24. SFC was similarly211

calculated for random whole-brain atlases. A notable finding212

is that during the interictal period, resting state SFC (rsSFC)213

increases at larger number of parcellations (i.e. smaller parcel-214

lation volumes). We show that rsSFC is observably affected215

by parcellation scale when inspecting the random atlases in216

Fig. 5 (bottom row).217

These findings may be concerning given that the inherent218

structure-function relationship in the brain is not necessarily219

changing at resting state, but its measurement is greatly af-220

fected by atlas choice alone. These results highlight the crucial221

need for critically evaluating an appropriate atlas, particularly222

by maximizing explanatory validity. We aim to maximize223

our ability to test hypothesises and draw conclusions about224

structure-function relationship within the brain at seizure on-225

set. This is especially important in an SEEG setting given the226

rise of SEEG implantations worldwide; it allows for sampling227

of cortical and subcortical structures across both hemispheres228

with reduced morbidity and higher tolerance for patients 32.229

rsSFC vs ΔSFC. Resting state SFC (rsSFC) and the change in230

SFC (ΔSFC) from preictal to ictal periods are differentially231

affected by parcellation scale (Fig. 6). Fig. 6a shows how232

rsSFC increases at smaller parcellation scales. In contrast,233

Fig. 6b shows how ΔSFC decreases at smaller parcellation234

scales. Broadly, ΔSFC may be interpreted as the change235

in SFC with respect to disease (e.g. seizure, schizophrenia,236

major depressive disorder) and non-disease states. This change237

metric has been used to characterize and make inferences in238

many neurological disorders 33,34. These results exemplify that239

either overly coarse or fine parcellations may not adequately240

capture the underlying SFC of the brain or its dynamics with241

relation to neurological disease (low explanatory validity in242

our framework below).243

A subset of atlases can capture the dynamical change in244

SFC (Fig. 6c). For example, the Harvard-Oxford (HO) and245

DKT atlases show a significantly different SFC between preic-246

tal and ictal periods (p < 0.05 by Wilcoxon signed rank test247

after Bonferroni correction for 52 tests) while the Brainnetome248

and MMP atlases do not ( p > 0.05). Larger parcellation vol-249

umes (e.g. N = 30) result in an increase in ΔSFC compared to250

smaller parcellation volumes (e.g. N = 1,000), indicating that251

larger parcellation volumes adequately capture ΔSFC. How-252

ever, parcellation volume is not the only factor in optimally253

capturing ΔSFC. The Hammersmith atlas with large parcel-254

lation volumes and larger electrode coverage (Supplementary255

Fig. 4) is not able to capture a significant ΔSFC (p > 0.05).256

Discussion257

In this study, we performed a comprehensive evaluation of258

the available structural, functional, random, and multi-modal259

atlases in the neuroscience literature (Table 1). We detailed260

morphological and network differences between these atlases261

and showed the effect of varying neuroanatomical definitions262

on the measurement of structure-function correlation (SFC)263

in epilepsy patients. We showed how the various atlases may264

alter conclusions about seizure dynamics. This work has265

wide implications for neuroscience labs utilizing such atlases266

because some atlases produce different results and may alter 267

predictions and conclusions we draw about the brain’s function. 268

Based on our study, we propose a general framework below 269

for evaluating and selecting atlases (Fig. 7a-c) to direct future 270

neuroscience work. 271

A New Framework for Brain Atlases. Various publications have 272

highlighted the atlas concordance problem 2–4,9, curated sev- 273

eral atlases in freely accessible databases 35,36, and have made 274

arguments for why specific atlas features (Fig. 7d) may be 275

valid or superior in certain situations 17,30,37–41. Clearly, there 276

have been great efforts to publish accurate and precise parcel- 277

lations both in individuals and across populations as seen with 278

an exponential rise in atlas-related publications over the last 279

three decades (Fig. S6). However, none have found a general 280

solution to the underlying problem: Does atlas choice matter? 281

If so, how much? And are there atlas features important in 282

certain situations or experimental designs? An argument can 283

be made that in some cases, atlas choice may not matter to a 284

great extent. For example, many atlases show similar results 285

in Fig. 6. Interestingly random whole-brain atlases, which 286

do not follow accurate anatomical or functional boundaries, 287

show SFC changes at seizure onset in concordance with other 288

common atlases used across neuroscience studies. We provide 289

a general framework that allows us to determine if an atlas is 290

valid, avoid testing large numbers of atlases at one extreme, 291

and gives credence to the current standard of publishing results 292

in the main text using a single atlas and, if deemed necessary, 293

provide supplementary results using a different atlas (prefer- 294

ably one with different features). A one-size-fits-all standard 295

parcellation may not nor should exist 30. 296

Our framework evaluates the validity of an atlas to max- 297

imize its (1) descriptive, (2) explanatory, and (3) predictive 298

validity 28 in relation to the experimental system. This frame- 299

work is borrowed from the logic of assessing network mod- 300

els, and historically, animal models 27,42 and psychometric 301

tests29,43, where assessment of these models with standard 302

statistical model-selection methods is particularly challenging. 303

Descriptive validity of an atlas refers to an atlas that 304

appropriately resembles the system in which we work. In 305

other words, it has “face value” 27. This includes atlas features 306

(Fig. 7d) relevant to the study, for example, the inclusion of 307

subcortical structures relevant to epilepsy. Without the inclu- 308

sion of relevant features, an atlas may not allow for hypothesis 309

testing or determination of causality (explanatory validity be- 310

low). Importantly, descriptive validity of an atlas also relates 311

to the modality scale we use to measure the brain – for exam- 312

ple, DWI and fMRI at the macroscale 44, iEEG and tracers 313

at the meso scale 45, and microscopy at the microscale 46. It 314

is important to select a parcellation scale that resembles the 315

measurement modality resolution (Fig. 7a). When correlat- 316

ing DWI with iEEG in our study at larger parcellations, we 317

lose our ability to discern precise anatomical locations that 318

are structurally and functionally related. Furthermore, rest- 319

ing state structure-function relationship increases at larger 320

parcellations even though the inherent structure-function rela- 321

tionship should remain constant (Fig. 5 and Fig. 6a). At the 322

other end of the scale, we lose our ability to discriminate the 323

differences in structure-function relationship at seizure onset 324

at smaller parcellations (tending to the size of voxels). At 325

voxel scales, other notable limitations include problems with 326
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multiple comparisons, computational costs, (near) collinearity,327

and the introduction of noise with inaccurate alignment of328

individual subjects’ data. Recommendations for performing329

voxel-level analyses versus larger node-based approaches are330

discussed in Bijsterbosh et al. 2017 47.331

Two additional atlas features highlighted here include (1)332

surface versus volumetric based atlases and (2) atlas devel-333

opment. Surface based registration may improve accuracy334

over traditional volumetric based approaches 17, however, a335

limitation is that a large proportion of brain activity involves336

communication between cortical and subcortical regions and337

thus a surface-based approach is unlikely to provide a complete338

understanding of the brain 47. Although the brain including339

the cortex, with six cytoarchitecturally defined layers, is fun-340

damentally not a surface, we showed how surface based atlas341

features may not be as vital for consideration as features such342

as scale (Fig. 6c; Yeo, and DKT being surface-based and AAL343

and Harvard-Oxford being volumetric-based). A combination344

of surface cortical and sub-cortical gray matter regions, or345

“grayordinate” 19 atlases may be appropriate in some cases.346

Thus the atlas chosen relies on consideration of the exper-347

imental system. Finally atlases may have been developed348

through three non-mutually exclusive axes (Fig. 7d, bottom349

right): (1) using a single representative individual (Talairach)350

to a group of individuals (e.g. Hammersmith) 3; (2) using a351

human labeling protocol (AAL) to a data-driven approach352

(e.g. Yeo); and (3) using a standard space representation353

such as in MNI coordinate space (Harvard-Oxford) to using354

a probabilistic mapping of the study participants (DKT in355

Freesurfer). The last approach where atlas labels are manually356

annotated and used as training classifiers to label the study357

participant brains is notably time consuming and is limited in358

use across studies38,48.359

Explanatory validity of an atlas requires an assessment360

of both an atlas’ architecture (a form of descriptive validity)361

and its ability to test for causal relationships 28. In epilepsy, it362

includes the capability to test hypotheses on how functional363

changes are related to the underlying structural connectivity,364

if at all. Statistical testing, such as tests to determine if spe-365

cific brain regions are significantly different from each other in366

controls and patients, and subsequent conclusions drawn from367

the use of an atlas is the focus of explanatory validity. With368

explanatory validity, the biases introduced into our results369

from using an atlas must also be acknowledged, which can370

alter our conclusions about neurobiology and pathophysiology.371

For example, some structural atlases have different anatomical372

labeling protocols (DKT, AAL, Hammersmith) which may373

introduce biases resulting from how large, small, or the ex-374

act anatomical landmarks were used to create such atlases.375

Data-driven atlases 14,16,47, namely those created through func-376

tionally related brain regions, may also introduce biases based377

on the measurement modality or nodal definitions used (clus-378

tering, decomposition, gradient-based methods) and alter Type379

I or Type II error rates. In our study, we investigate whether380

seizures spread through the underlying connectome of the381

brain at the macro-scale level and if structural connectivity382

can be used to predict seizure spread. If seizures spread along383

the human connectome, but an atlas with >1,000 parcellations384

shows no change in SFC at seizure onset, we may introduce a385

Type II statistical error.386

Predictive validity of an atlas indicates the ability of a 387

certain measure to predict some other criterion measure 49. For 388

example, it can be incorporated into an analysis pipeline to 389

predict a change in response to a perturbation, such as a drug, 390

electrical or chemical stimulation, or a dynamical disease state. 391

In our study, the perturbation is the change in brain state 392

at seizure onset. Predicting functional changes in epilepsy 393

using noninvasive structural neuroimaging is particularly use- 394

ful clinically and will lessen the need for costly and invasive 395

implantations in patients. An atlas that adequately captures 396

ΔSFC with seizure onset will allow us to form network models 397

to predict seizure related activity in areas without implanta- 398

tions. We have shown that not all atlases allow us to predict 399

this change in the structure-function relationship within the 400

brain. 401

Limitations. Our study is not without limitations. A major 402

limitation is that we did not evaluate atlases in a diverse set of 403

experimental systems, but rather limited our analysis to a con- 404

temporary topic in epilepsy linking two diverse measurement 405

modalities of the brain to solve a clinical problem. We did 406

not perform a feature selection analysis post-hoc to maximize 407

ΔSFC at seizure onset; rather, we performed a comprehen- 408

sive evaluation of many atlases to set a general framework 409

and describe the nuances between the different atlases and 410

their features. We hope this framework can be applied to 411

many experimental designs. Ideally in our study, we required 412

a whole-brain, volumetric atlas that covered the implanted 413

SEEG electrode contacts. No such atlas existed. We opted for 414

combining different atlases or developing randomly parcellated 415

atlases used in previous publications 31,50, however, no general 416

framework existed to determine which atlas should be used 417

or clearly outlined the feature space of these atlases. We had 418

no formal basis for how changing an atlas could change our 419

results and eventual goal for translating network models to 420

better treat epilepsy patients. 421

Another limitation is that we assume a change in SFC 422

supports the hypothesis that seizures harness the underlying 423

structural connectome of the brain (along with support from 424

prior literature 23,24,51). We may be biasing our results to select 425

an atlas that maximizes ΔSFC. However, we wish to select a 426

methodology that allows us to measure any change in brain 427

state that accompanies seizure onset (explanatory validity), 428

permitting us to probe epilepsy biology and understand the 429

processes that govern seizure spread. 430

Finally, our analysis relies on the assumption that an atlas 431

approach must be used to quantify SFC and does not consider 432

an atlas agnostic approach nor if such an approach is appro- 433

priate. To study SFC using networks, both structure and 434

functional networks must have nodes representing the same 435

entity – neuroanatomical structures. The atlases defining 436

anatomical structures (whether they are functionally, histolog- 437

ically, genetically, procedurally, multi-modally, or randomly 438

defined) are the link between structural connectivity and func- 439

tional connectivity measurements of the brain. To study SFC, 440

we must rely on the neuroanatomical structures defined by 441

an atlas, then localize electrodes to these regions and corre- 442

late the structural measurements (e.g. streamlines, fractional 443

anisotropy, mean diffusivity) with functional measurements 444

(e.g. cross-correlation, coherence, mutual information). Fun- 445

damentally, we are defining the nodes of the brain in advance, 446
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which can alter our results; a more comprehensive discussion447

on defining the nodes of the brain are in Fornito et al. 2016448

and Bijsterbosh et al. 2017 45,47.449

In conclusion, the publication of atlases and their distribu-450

tion across neuroimaging software platforms has risen expo-451

nentially over the last three decades. We simulate a study in452

which a researcher is blind to the development or features of453

an atlas and chooses one based on the availability in common454

neuroimaging pipelines and software (e.g. Freesurfer, DSI455

studio, FSL, SPM, QSIprep, fMRIprep, MRIcron, ANTs, and456

others). We advocate that while using a minimum of two at-457

lases (one in the main text and one in the supplement) is one458

solution to understanding how results are affected by atlases459

choice, our framework provides a general solution. Researchers460

should instead justify why the atlas selected is appropriate461

using our framework above. Our study illustrates the critical462

need to evaluate the reproducibility of neuroscience research463

using atlases published alongside tools and analysis pipelines464

already established in the neuroscience community. Please465

see our GitHub for the atlases curated in this study along466

with their direct primary sources listed in Table S1. Our work467

provides a comprehensive resource for others investigating the468

brain’s structure and function.469
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Materials and Methods479

Human Dataset. MRI data was collected from forty-one individuals,480

including thirteen healthy controls and twenty-eight drug-resistant481

epilepsy patients at the Hospital of the University of Pennsylva-482

nia. Twenty-four patients underwent stereoelectroencephalogra-483

phy (SEEG) implantation and four underwent electrocorticography484

(ECoG) implantation. Ten of the SEEG patients had clinically an-485

notated seizures and were used for SFC analyses. Inclusion criteria486

consisted of all individuals who agreed to participate in our research487

scanning protocol, and (if they had implantations) allowed their488

de-identified intracranial EEG (iEEG) data to be publicly available489

for research purposes on the International Epilepsy Electrophysi-490

ology Portal (https://www.ieeg.org) 52,53. Seizure evaluation was491

determined via comprehensive clinical assessment, which included492

multimodal imaging, scalp and intracranial video-EEG monitoring,493

and neuropsychological testing. This study was approved by the494

Institutional Review Board of the University of Pennsylvania, and495

all subjects provided written informed consent prior to participating.496

See Table S2 for subject demographics.497

Structure. Methods and pipelines for structural connectivity genera-498

tion and analysis are described in the following sections. Specific499

GitHub files and code are included where applicable.500

Imaging Protocol. Prior to electrode implantation, MRI data were501

collected on a 3T Siemens Magnetom Trio scanner using a 32-502

channel phased-array head coil. High-resolution anatomical images503

were acquired using a magnetization prepared rapid gradient echo504

(MPRAGE) T1-weighted sequence (repetition time = 1810 ms, echo 505

time = 3.51m, flip angle = 9, field of view = 240mm, resolution = 506

0.94x0.94x1.0 mm3). High Angular Resolution Diffusion Imaging 507

(HARDI) was acquired with a single-shot EPI multi-shell diffusion- 508

weighted imaging (DWI) sequence (116 diffusion sampling directions, 509

b-values of 0, 300, 700, and 2000s/mm2, resolution = 2.5x2.5x2.5 510

mm3, field of view = 240mm). Following electrode implantation, 511

spiral CT images (Siemens) were obtained clinically for the pur- 512

poses of electrode localization. Both bone and tissue windows were 513

obtained (120kV, 300mA, axial slice thickness = 1.0mm) 514

Diffusion Weighted Imaging (DWI) Preprocessing. HARDI images 515

were subject to preprocessing pipeline QSIPrep to ensure repro- 516

ducibility and implementation of the best practices for processing 517

of diffusion images 54. Briefly, QSIPrep performs advanced recon- 518

struction and tractography methods in curated workflows using 519

tools from leading software packages, including FSL, ANTs, and 520

DSI Studio with input data specified in the Brain Imaging Data 521

Structure (BIDS) layout. 522

Structural Network Generation. DSI-Studio (http://dsi- 523

studio.labsolver.org, version: December 2020) was used to 524

reconstruct the orientation density functions within each voxel 525

using generalized q-sample imaging with a diffusion sampling 526

length ratio of 1.25 55. Deterministic whole-brain fiber tracking 527

was performed using an angular threshold of 35 degrees, step 528

size of 1mm, and quantitative anisotropy threshold based on 529

Otsu’s threshold 56. Tracks with length shorter than 10mm or 530

longer than 800mm were discarded, and a total of 1,000,000 531

tracts were generated per brain. Deterministic tractography 532

was chosen based upon prior work indicating that deterministic 533

tractography generates fewer false positive connections than 534

probabilistic approaches, and that network-based estimations are 535

substantially less accurate when false positives are introduced into 536

the network compared with false negatives 31.To calculate structural 537

connectivity, atlases listed in Table 1 were used. Structural 538

networks were generated by computing the number of streamlines 539

passing through each pair of structural regions in each specific atlas. 540

Streamline counts were log-transformed and normalized to the 541

maximum streamline count, as is common in prior studies 26,57–59. 542

GitHub: packages/imaging/tractography/tractography.py 543

Atlases. Atlas descriptions and sources used in this study are found 544

in Table S1. All atlases were sourced in MNI space and if not 545

already, resliced to dimensions 182x218x182. Atlases were linear 546

then non-linear registered to T1w subject space using the ICBM 547

2009c Nonlinear Asymmetric template 60 and FSL flirt and fnirt. In 548

addition to published standard atlases demarcating neuroanatomical 549

and functional boundaries, we used whole-brain random atlases. 550

A limitation of most standard atlases is that they may not have 551

anatomical definitions for all regions of the brain, and therefore, 552

implanted electrodes may not be assigned properly to a region. 553

Whole-brain random atlases, in contrast, provide coverage to all 554

implanted electrodes. They also allow for the ability to change 555

some morphological properties (i.e. parcellation size), while keeping 556

other morphologies the same (i.e. parcellation shape; Fig. 2d). 557

A limitation of random atlases is that regions may not represent 558

true anatomical or functional boundaries. With the limitations for 559

each approach in mind, analyses were conducted for both standard 560

and random atlases. Random atlases were built in the ICBM 561

template space and covered all voxels, excluding those labeled as 562

CSF or outside the template. To fill these points, a pseudo grassfire 563

algorithm was applied 31. Briefly, N points representing the number 564

of ROIs of the atlas were randomly chosen as seed points. These 565

seed points were iteratively expanded in all six Cartesian directions 566

until all points were covered by one of the initial N seeds. After each 567

iterative step, the smallest volume region expanded first. Random 568

atlases created were of N equal to 10, 30, 50, 75, 100, 200, 300, 400, 569

500, 750, 1000, 2000, 5000, and 10000 ROIs. Five permutations 570

for each N were created. GitHub code to generate random atlases: 571

packages/imaging/randomAtlas/randomAtlasGeneration.py 572

Atlas Morphology: Volume and Sphericity. Atlas morphological mea- 573

surements included regions of interest (ROI) size and shape, and 574
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were measured with volume and sphericity calculations, respec-575

tively (Fig. 2). Region volume was calculated as the number of576

voxels in an ROI and log10 transformed. Region sphericity was577

calculated as the ratio of the surface area of a sphere with an578

equal volume of the ROI to the actual surface area of the at-579

las ROI. Under this definition, sphericity is bounded from 0 to 1580

where 1 is a perfect sphere. For reference, a perfect cube and a581

hemi-sphere have a sphericity of 0.8 and 0.7 respectively. GitHub:582

packages/imaging/regionMorphology/regionMorphology.py583

Structural Network Measures. We characterized the structural net-584

work topology of 52 atlases (Fig. 3 and Fig. S3). To quantify585

network topology, we examined density, mean degree, mean clus-586

tering coefficient, characteristic path length, and small worldness.587

Connectivity matrices were first binarized and a distance matrix588

was computed. The distance of any nodes that were disconnected589

from the main graph was set to the maximum distance between590

any pair of nodes in the main graph. Density, mean degree, clus-591

tering coefficient, and characteristic path length were then cal-592

culated on the binary, undirected graphs. Small worldness was593

calculated as the σ-ratio where σ = γ/λ and is the ratio of the594

average, normalized clustering coefficient, C, to the normalized595

characteristic path length, I. γ = CG/CR and λ = lG/lR where G596

is the graph of interest and R represents a ‘random’ graph that is597

equivalent to G. To approximate the equivalent random graph R598

due to intractable computational costs 61, a well-known analytical599

equivalent CR = d/N and IR = log N/log d were used, where d600

denotes average nodal degree. All network measures were calculated601

using the Brain Connectivity Toolbox for Python. GitHub: pa-602

pers/brainAtlas/Script_05_structure_02_network_measures.py603

Function. Methods and pipelines for functional connectivity genera-604

tion and analysis are described in the following sections. Specific605

GitHub files and code are included where applicable.606

Intracranial EEG Acquisition. Stereotactic Depth Electrodes were607

implanted in patients based on clinical necessity. Continuous SEEG608

signals were obtained for the duration of each patient’s stay in the609

epilepsy monitoring unit. Intracranial data was recorded at either610

512 or 1024 Hz for each patient. Seizure onset times were defined by611

the unequivocal onset 62. Seizure types were classified using ILAE612

2017 criteria 63 as focal aware, focal impaired awareness, or focal to613

bilateral tonic-clonic. All annotations were verified and consistent614

with detailed clinical documentation. If a patient had more than one615

seizure annotated, the first seizure longer than 30 seconds without616

artifacts was used. iEEG times used in the study are sourced in617

the Box folder (below) and iEEG snippets are downloaded using618

GitHub script in packages/eeg/ieegOrg/downloadiEEGorg.py619

Electrode Localization. In-house software 64 was used to assist in lo-620

calizing electrodes after registration of pre-implant and post-implant621

neuroimaging data. All electrode coordinates and labels were saved622

and matched with the electrode names on IEEG.org. All electrode lo-623

calizations were verified by a board-certified neuroradiologist (J.S.).624

Electrode coordinates in patient T1w space were assigned to an625

atlas ROI also registered in patient T1w space. Electrodes that fell626

outside the atlas of interest were excluded from subsequent analysis.627

GitHub: packages/atlasLocalization/atlasLocalization.py628

Functional Connectivity Network Generation. Functional connectiv-629

ity networks were generated from four periods: interictal, preictal,630

ictal, and postictal. (1) The interictal period consisted of the time631

approximately 6 hours before the ictal period. (2) The preictal632

period consisted of the time immediately before the ictal period.633

(3) The ictal period consisted of the time between the seizure un-634

equivocal onset and seizure termination. (4) The postictal period635

consisted of the time immediately after the ictal period. Interictal,636

preictal, and postictal periods were 180 seconds in duration. Fol-637

lowing removal of artifact-ridden electrodes, SEEG signals inside638

either GM or WM for each period were common-average referenced639

to reduce potential sources of correlated noise 65. Next, each period640

was divided into 2s time windows with 1s overlap 66–69. To generate641

a functional network representing broadband functional interactions642

between SEEG signals (Fig. 4b), we carried out a method described643

in detail previously 23,68. Namely, signals were notch-filtered at 60 644

Hz to remove power line noise, low-pass and high-pass filtered at 127 645

Hz and 1Hz to account for noise and drift, and pre-whitened using 646

a first-order autoregressive model to account for slow dynamics. 647

Functional networks were then generated by applying a normalized 648

cross correlation function ρ between the signals of each pair of 649

electrodes within each time window, using the formula: 650

ρxy = max
τ

� 1
T

T�

τ=1

[xk(t) − x̄k] ∗ [yk(t + τ) − ȳk]
σxk σxy

�
651

where x and y are signals from two electrodes, k is the 2s time 652

window, t is one of the T samples during the time window, and 653

τ is the time lag between signals, with a maximum lag of 0.5 s. 654

Functional connectivity measurements were also calculated for co- 655

herence, zero time-lag Pearson and Spearman rank correlations 656

with associated p-values, and mutual information. They are in- 657

cluded in the freely available open source dataset but were not used 658

in hypothesis testing in the study. Also freely available are the 659

functional connectivity measurements in defined frequency bands 660

reviewed in Newson and Thiagarajan 2019 70. Networks are repre- 661

sented as full-weighted adjacency matrices. GitHub Code: GitHub: 662

code/tools/echobase.py 663

Structure-Function Correlation. To quantify the relationship between 664

structure and function in the epileptic brain, we computed the Spear- 665

man Rank correlation coefficient between the edges of the structural 666

connectivity networks and the edges of the functional connectivity 667

network (Fig. 4c). In the case where multiple electrodes fell in the 668

same atlas ROI, a random electrode was selected to represent the 669

functional activity of that neuroanatomically defined region. To 670

reproduce these results, random seed was set to 42 using the NumPy 671

Python package. Note that atlases with very small ROI volumes in- 672

cluded more electrodes for SFC calculation. Electrodes that did not 673

localize to an atlas were excluded from analysis. To average the SFC 674

for all patients and each atlas (Fig. 5), SFC time-series was resam- 675

pled to 100 seconds for each period and each sample was averaged 676

together. GitHub code: packages/eeg/echobase/echobase.py 677

rsSFC and ΔSFC. Resting-state SFC (rsSFC) was defined as the SFC 678

during the interictal period, approximately 6 hours before the ictal 679

period. The mean SFC of that period was computed. ΔSFC was 680

defined as the change in the mean SFC from the preictal to the ictal 681

period (Fig. 5 top left panel). rsSFC and ΔSFC was calculated for 682

each atlas (Fig. 6). 683

Statistics. Preictal and ictal SFC for each atlas were compared and 684

significance was determined using the non-parametric repeated 685

measures Wilcoxon signed-rank test. Bonferroni correction was 686

applied over the 52 tests performed, equaling to the number of 687

atlases studied. 688

Data availability and Reproducibility. All code 689

files used in this manuscript are available at 690

https://github.com/andyrevell/revellLab. All de-identified 691

raw and processed data (except for patient MRI imaging) are 692

available for download on Box. Link provided on GitHub. The 693

GitHub repository used to analyze the data is also contained within 694

Box. Raw imaging data is available upon reasonable request from 695

Principal Investigator K.A.D.; tractography files generated from 696

the imaging data are readily available on Box. iEEG snippets 697

used specifically in this manuscript are contained within the Box 698

data folder, while full iEEG recordings are publicly available at 699

https://www.ieeg.org. The Python environment for the exact 700

packages and versions used in this study in contained in the 701

environment directory within the GitHub. The QSIPrep docker 702

container was used for DWI preprocessing. 703
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