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Abstract 12 

Genomic prediction (GP) success is directly dependent on establishing a training population, where 13 

incorporating envirotyping data and correlated traits may increase the GP accuracy. Therefore, we aimed to design 14 

optimized training sets for multi-trait for multi-environment trials (MTMET). For that, we evaluated the predictive 15 

ability of five GP models using the genomic best linear unbiased predictor model (GBLUP) with additive + 16 

dominance effects (M1) as the baseline and then adding genotype by environment interaction (G × E) (M2), 17 

enviromic data (W) (M3), W+G × E (M4), and finally W+G × W (M5), where G × W denotes the genotype by 18 

enviromic interaction. Moreover, we considered single-trait multi-environment trials (STMET) and MTMET for 19 

three traits: grain yield (GY), plant height (PH), and ear height (EH), with two datasets and two cross-validation 20 

schemes. Afterward, we built two kernels for genotype by environment by trait interaction (GET) and genotype 21 

by enviromic by trait interaction (GWT) to apply genetic algorithms to select genotype:environment:trait 22 

combinations that represent 98% of the variation of the whole dataset and composed the optimized training set 23 

(OTS). Using OTS based on enviromic data, it was possible to increase the response to selection per amount 24 

invested by 142%. Consequently, our results suggested that genetic algorithms of optimization associated with 25 

genomic and enviromic data efficiently design optimized training sets for genomic prediction and improve the 26 

genetic gains per dollar invested. 27 
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1. INTRODUCTION 30 

In the last decades, maize (Zea mays L.) has reached the level of the world's largest crop, being the 31 

only one to produce more than 1 billion tons per year (Contini et al., 2019), which makes it a crop of high economic 32 

importance, due also to its multiple uses, such as human and animal nutrition, ethanol fuel production and in the 33 

pharmaceutical industry. Although maize yield has been growing, the development of new cultivars adapted to 34 

the specific edaphoclimatic conditions of different regions at different planting times is still necessary (Andrade 35 

et al., 2016). 36 

As an allogamous species of great agronomic interest, maize has already been extensively studied by 37 

breeding programs, and the increase in productivity in this species is mainly dependent on the development of 38 

single- cross cultivars, also known as hybrids, where the hybridization is used to explore the expression of 39 

heterosis, first described by Shull (1908), which is quite expressive and well known in maize. To released new 40 

cultivars capable of high yields and great performance of other agronomical characteristics, maize breeding 41 

programs develop thousands of hybrids each year that need to be evaluated in field experiments; however, 42 

resources are limited, and evaluations are expensive and labor-intensive. The time, area, labor, and budget required 43 

to evaluate all those materials in all the desired locations and for all the traits of interest each year are very high 44 

and, in most cases, unfeasible. Therefore, technologies, such as genomic prediction (GP), capable of predicting 45 

the performance of those materials early, with no need to wait until the end of the crop cycle to discard unwanted 46 

materials, are of great interest to the sector (Schrag et al., 2009; Werner et al., 2020). 47 

GP emerged with the promise of increasing genetic gain per unit of time and reducing costs (Meuwissen 48 

et al., 2001), and has been widely studied for different crops like maize, wheat, rice, coffee, and brachiaria (Crossa 49 

et al., 2017; Carvalho et al., 2020; Matias et al., 2019), as well as for livestock and forest trees. Genomic selection 50 

(GS) has been used for many purposes, for example, to predict the performance of lines and double haploids 51 

during the initial stages of development (Krchov & Bernardo, 2015; Werner et al., 2020), including the quality 52 

(Ibba et al., 2020; Lado et al., 2018), resistance to diseases (Rutkoski et al., 2012) and performance of single-53 

crosses (Bandeira e Sousa et al., 2017; Lyra et al., 2017; Alves et al., 2019). Several groups have shown that there 54 

are advantages with the inclusion of multiple traits (MT) in GP, since they explore the correlation between traits 55 

and their heritability in the prediction process, surpassing single-trait models' predictive ability (Jia & Jannink, 56 

2012; Lado et al., 2018; Schulthess et al., 2018). Moreover, the use of multi-environment models (MET) seems 57 

unquestionable (Guo et al., 2020; Oakey et al., 2016). Consequently, the combination of both, i.e., multi-trait 58 

multi-environment models (MTMET), may improve the accuracy and save labor costs (de Oliveira et al., 2020; 59 

Montesinos-López et al., 2016, 2019; Wang et al., 2018). 60 

However, regardless of the GP method, the training set population (TRN) needs to be genotyped and 61 

high-quality phenotyped, while the testing set population (TST) only needs to be genotyped. The establishment 62 

of the TRN, which should be representative in terms of size, diversity, and the relationship of the individuals to 63 

be predicted, is the key to success in GS (Jannink et al., 2010; Akdemir et al., 2015; Crossa et al., 2017; Varshney, 64 

2017; Ibba et al., 2020). For that, the main objectives are to minimize costs associated with phenotyping by 65 

selecting smaller training populations, and maximize the predictive ability for the individuals of the TST through 66 

efficient resource allocation (Isidro et al., 2015; Lado et al., 2018; Pinho Morais et al., 2020; Riedelsheimer & 67 

Melchinger, 2013; Technow et al., 2014). Additionally, there is a lack of knowledge on how to distribute 68 
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genotypes optimally in multi-environment trials in order to achieve the best balance between the number of 69 

genotypes tested in the field and the predictive capacity of GP models, and maximize the selection gain with fixed 70 

area and budget resources (Jarquin et al., 2020). Furthermore, in MTMET, we could also ask: which traits should 71 

be evaluated in each genotype:trial combination? 72 

Hence, the strategy is to design optimized populations for GP, which allows keeping the accuracy of 73 

prediction at satisfactory levels using a training population that is smaller, but representative in terms of 74 

information (Fritsche-Neto et al., 2018). In this context, many studies have been carried out aiming to establishing 75 

the balance between investment and efficiency through different methods, experiment design, statistical analysis, 76 

and TRN composition. For instance, the genetic algorithm to design training populations developed by Akdemir 77 

(2017) was tested by Pinho Morais et al. (2020) for several population sizes. The responses were compared with 78 

randomly selected populations, noting that optimizing TRN can be effective to obtain satisfactory accuracies. 79 

Using MT models, Lado et al. (2018) tested other resource allocation strategies by comparing the PA with 80 

different levels of availability of phenotypic information for the target trait (expensive and labor-intensive). For 81 

that, they decreased the TRN sizes from 80 to 10%, then included the phenotypic data of all individuals for 82 

correlated traits (less laborious and less costly), and finally, considered balanced and unbalanced scenarios. The 83 

results showed no loss in PA when reducing TRN for a target trait up to 30% but using full information of 84 

correlated traits; additionally, the unbalanced phenotyping approach for correlated traits performed better than the 85 

balanced one for the same purpose of reducing TRN. Another strategy was proposed by Costa-Neto et al. (2021a), 86 

who investigated the inclusion of dominance effects and envirotyping data into a single-trait MET scenario. The 87 

authors found that, especially for traits with low heritability and highly influenced by the environment, the 88 

environmental covariables (EC) can increase PA for new environments or newly developed hybrids by tracking 89 

variation sources, environment resources, and reducing the error variance. 90 

As described above, the use of accurate genetic algorithms for optimizing training populations can help 91 

to reduce the number of genotypes that compose the TRN, as well as reduce costs and field labor, while 92 

maintaining good values of predictive accuracy (Akdemir, 2017; Akdemir et al., 2015; Misztal et al., 2014; 93 

Misztal, 2016). Additionally, the collection and processing of environmental data can help in the optimization 94 

process. Instead of using a simple incidence matrix of environments to model the G × E interaction, processed 95 

environmental data better describe specific relationships between environments and crop phenology, called 96 

envirotyping. Through envirotyping, it is possible to describe the quality of an environment and estimate the 97 

resources available to satisfy the crop needs. When it comes to multi-environment trials (MET), environmental 98 

quality ends up as a global average of the entire experimental network. With the aid of some tools, such as the 99 

EnvRtype R package of Costa-Neto et al. (2021b), it is possible to compose a covariance matrix (W) between 100 

trials, which then makes it possible, among other things, to dissect the G × E interaction, and to build 101 

environmental relationship matrices for genomic prediction, which better explain the sources of non-genetic 102 

variation, such as the influence of environments on phenotypic variation. Finally, the envirotyping information 103 

can be associated with genomic data in genetic algorithms to better select genotypes and target environments that 104 

are more informative in terms of G × E (Costa-Neto et al., 2021a). 105 

Compiling these ideas, to optimize TRN sets, MT models may help predict quantitative target traits 106 

based on correlated characteristics. MET models also allow the inclusion of the G × E interaction term, which 107 

undoubtedly helps predict non-phenotyped individuals. Finally, envirotyping is an emerging component for 108 
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selecting fewer but well-optimized trial locations. Therefore, our goal was to test the performance of optimized 109 

training sets (OTS) for multi-trait multi-environmental trials (MTMET), and the use of environmental covariables 110 

(W) in genomic prediction models, with the aim of diminishing the phenotypic labor due to lower but optimally 111 

selected population sizes, while keeping the predictive ability at satisfactory levels, and then compare these results 112 

with benchmarks. For that, we (i) fitted and compared the performance of five different prediction models, 113 

progressively including environmental covariables and interaction terms (G × E and G × W); (ii) estimated the 114 

genomic prediction ability of the five prediction models for STMET and MTMET, to use as benchmarks values; 115 

and (iii) estimated the genomic prediction ability using OTS with controlled unbalancing of G, E and trait 116 

information, selected by a genetic algorithm. 117 
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2. MATERIALS AND METHODS 118 

2.1. Plant material 119 

The phenotypic data consisted of two datasets of tropical maize single-cross hybrids. Plant material 120 

was evaluated for the following three traits of agronomic interest: grain yield (GY, in ton ha-1), plant height (PH, 121 

in cm), and ear height (EH, in cm). For GY assessment, ears were harvested at physiological maturity, grains were 122 

adjusted to 13% moisture, and the yield was corrected by area and plant population. PH and EH were measured 123 

from the soil surface to the flag leaf collar and the highest ear, respectively, on five representative plants within 124 

each plot. 125 

HEL dataset 126 

Provided by Helix Seeds (HEL), the first dataset was composed of phenotypic and genotypic data of 127 

452 maize hybrids obtained from single crosses in a partial diallel mating design among 106 tropical maize inbred 128 

lines. In order to balance the data, only genotypes that were evaluated in all locations for all traits were considered, 129 

so that 247 remained for analysis. Balancing the data will later allow the creation of controlled imbalances. The 130 

experimental design used was randomized complete blocks with two replications per genotype per location. 131 

Hybrids were evaluated in trials carried out over the 2014/15 growing season at three locations in Brazil: Ipiaçu 132 

(IP) and Pato de Minas (PM) in the state of Minas Gerais, and Sertanópolis (SE) in the state of Paraná. 133 

USP dataset  134 

The second dataset belongs to the University of Sao Paulo (USP). The data consist of 903 maize single 135 

crosses obtained from a diallel mating design between 49 inbred lines. After balancing the data, 623 genotypes 136 

remained for analysis. Hybrids were evaluated at two locations in Brazil: Piracicaba (PI) and Anhumas (AN), in 137 

São Paulo. They were evaluated for two years during the second growing season of years 2016 and  2017. The 138 

experimental design was an augmented block, with two commercial hybrids as checks per block. Although the 139 

areas are relatively close on the map, the soil and climate conditions are quite contrasting, and thus characterize 140 

different environments, allowing us to consider each location × year combination as an environment: AN.16, 141 

PI.16, AN.17, and PI.17. 142 

Further details about both datasets can be found in Alves et al. (2019), Bandeira e Sousa et al. (2017) 143 

and Lyra et al. (2017). 144 

2.2. Genotypic data 145 

Parental inbred lines from HEL and USP datasets were genotyped with an Affymetrix® Axiom® Maize 146 

Genotyping SNP array of 616 K (Unterseer et al., 2014). The genomic quality control (QC) was performed using 147 

the SNPRelate package (Zheng et al., 2012) from R software. Markers with a call rate ≤ 0.95 for HEL and a call 148 

rate ≤ 0.90 for USP, heterozygous loci in at least one of the parental lines, and monomorphic loci were removed.  149 

The genotypic data of the hybrids were obtained by combining the homozygous markers of their 150 

parental lines. The imputation of the lines and genotypes was performed by Synbreed (Wimmer et al., 2012) using 151 

the Beagle 4.0 algorithm (Browning & Browning, 2008). Allele frequencies and linkage disequilibrium were 152 

computed using the genotypes of the hybrids. Then, markers with minor allele frequency (MAF) ≤ 0.05 were 153 
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removed. After QC, 30,467 and 62,409 high-quality SNPs were available to analyze the HEL and USP datasets, 154 

respectively. All the analyses were performed in the R software (R Core team, 2020). 155 

2.3. Enviromic data 156 

Enviromental covariables (EC) were obtained from the EnvRtype R package (Costa-Neto et al., 2021b), 157 

to be used as descriptors of the environment for prediction purposes, aiming to increase predictive accuracy (PA) 158 

in multi-environment GP scenarios. EnvRtype is a very practical package to acquire and process weather data. 159 

Based on trial network information like geographical coordinates (WGS84), plant date, and harvest date, the 160 

package collects and processes remote weather data from NASAPower. The environmental factors can be 161 

summarized according to the plant phenology intervals of growth or preestablished fixed time intervals. For this 162 

research, we used five time intervals according to the maize cycle phenology, defined as 0-14, 15-35, 36-60, 61-163 

90, and 91-120 days after emergency. The environmental factors used were: radiation-related (sunshine hours, in 164 

hours, and total daylength, in hours), radiation balance (insolation incident on a horizontal surface, shortwave, 165 

and downward thermal infrared radiative flux, longwave), and atmospheric demands (rainfall precipitation, in 166 

mm, and relative air humidity, in %) as described in Costa-Neto et al. (2021a). The ECs can be estimated from 167 

mean air temperature and accumulated precipitation over the period, for example, and then used to establish G × 168 

E interaction. This process creates a covariate matrix of ECs called W, which produces environmental relationship 169 

matrices for genomic prediction. Then we can calculate an enviromic kernel equivalent to a genomic relationship 170 

matrix, as follows (Costa-Neto et al., 2021b): 171 

𝐾𝐾𝐸𝐸 =
𝑊𝑊𝑊𝑊′

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑊𝑊𝑊𝑊′)/𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑊𝑊)
 172 

where 𝐾𝐾𝐸𝐸 is the enviromic-based kernel for the similarity between environments and W is the matrix 173 

of ECs.  174 

For the HEL dataset, each environment was characterized by 217 ECs, and for the USP dataset, each 175 

environment was characterized by 238 ECs, resulting in matrices of dimensions 3 × 217 and 4 × 238, then used 176 

to estimate the W matrix. 177 

 178 

2.4.  Variable transformation 179 

We established an index for EH that represents the distance from the actual EH to an ideal ideotype, 180 

defined here as 80 centimeters, according to the following formula: 181 

𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 =  |𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 − 80| ∗ (−1)  182 

where 𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡 is the transformed EH and 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 is the EH for genotype i at environment j. According to 183 

this index, the closer to zero, the closer to our ideal height. For PH, values were normalized in order to obtain a 184 

normal distribution interval. To fit the models, all phenotypic data were centered and standardized.  185 
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2.5. Statistical analysis 186 

2.5.1. Phenotypic analysis 187 

We used a linear mixed model for the two-step analysis to calculate the best linear unbiased estimates 188 

(BLUEs) of each trait's hybrids. BLUEs were obtained within environments for the USP and HEL datasets by the 189 

following respective models: 190 

 191 

𝒚𝒚𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 = µ +  𝒈𝒈𝒊𝒊 + 𝒈𝒈∗  +  𝒃𝒃𝒃𝒃 +  ε𝒊𝒊𝒊𝒊 192 

𝒚𝒚𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯 = µ + 𝒈𝒈𝒊𝒊 +  𝒃𝒃𝒃𝒃 + ε𝒊𝒊𝒊𝒊 193 

 194 

where 𝒚𝒚𝒊𝒊𝒊𝒊 is the estimated phenotypic value of genotype i at environment j, µ is the general mean or 195 

intercept, 𝒈𝒈𝒊𝒊 is the fixed effect of hybrid genotype i, g* is the fixed effect of check genotypes, bl is the random 196 

effect of blocks for the USP dataset (bl ~NM (0, σ𝑏𝑏𝑏𝑏2 ) and the fixed effect of blocks for the HEL dataset, and 197 

finally, ε𝒊𝒊𝒊𝒊 is the residual error for genotype i at environment j, where 𝜀𝜀 ~𝑁𝑁M(0,𝜎𝜎2). 198 

Phenotypic analyses were performed using the ASReml-R package (Butler, 2018) of R software (R 199 

Core Team, 2020) and subsequently used in our genomic prediction models. 200 

The variance components estimated for each model's effect will be used to estimate the average broad-201 

sense heritability H2. 202 

2.5.2. Genomic prediction scenarios 203 

In order to obtain a benchmark value of PA for the models, we first tested these models in full single-204 

trait multi-environment trials (STMET) and multi-trait multi-environment trials (MTMET) genomic prediction 205 

analyses. From those, we were able to obtain the highest possible PA for the specific datasets under study because 206 

we used all the information we had available (Fritsche-Neto et al., 2018), through cross-validation schemes with 207 

replication. 208 

The algorithms APY (Misztal et al., 2014; Misztal, 2016) and LA-GA-T, from the STPGA R package 209 

(Akdemir, 2017), were used in optimization scenarios. The APY is used for determining the size of samples by 210 

singular value decomposition. LA-GA-T is a genetic-based algorithm used to select representative individuals 211 

from the population and compose the samples. For this purpose, two different kernels were built from the 212 

Kronecker product between the variance-covariance matrices of genotypes (G), environments (E), environmental 213 

covariables (W), and traits (T) as follows: ΣG ⨂ ΣE ⨂ ΣT and ΣG ⨂ ΣW ⨂ ΣT, hereafter called GET and GWT, 214 

respectively.  215 

These kernels, used as inputs for the algorithms, assemble combinations between our variables. Thus 216 

APY gives us the number of components that explain 98% of the variation within the population, and LA-GA-T 217 

selects that number of representative information inside the kernels. Moreover, a genotype was added as a check 218 

and therefore evaluated in all environments to create a connection between environments. 219 

The optimized samples from LA-GA-T were obtained three times for each dataset and considered the 220 

training set (TRN), while the remaining individuals were used as a testing set (TST). From these three samples 221 

(OTS 1), two other scenarios were created, always within kernels. The former one was created by combining the 222 
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samples two by two (OTS 2), which resulted in three replicates. In the latter, the three independent samples were 223 

added together (OTS 3), resulting in just one and bigger optimized training set (OTS).  224 

2.5.3. Genomic prediction via single and multi-trait multi-environment models with additivity and 225 

dominance effects 226 

The genomic prediction was first performed by five GBLUP additive + dominance models for STMET 227 

and MTMET scenarios. The following models were already tested (for further details, see Costa-Neto et al., 228 

2021a). 229 

 230 

Model 1 (M1): Environment and main additive plus dominance genomic effects (EAD) 231 

M1 is the most basic model tested, described as follows:  232 

𝒚𝒚 = 𝒁𝒁𝐸𝐸 𝛽𝛽 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑨𝑨 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑫𝑫 + 𝜺𝜺 233 

where 𝒚𝒚 is the adjusted observed values (BLUEs) obtained from the first step for the hybrids. The fixed 234 

effects of environment were modeled by 𝒁𝒁𝑬𝑬 𝛽𝛽 with the incidence matrix 𝒁𝒁𝑬𝑬, and 𝒁𝒁𝐺𝐺  is the incidence matrix for 235 

the genotypic effects. 𝒖𝒖𝑨𝑨 is the vector of additive genetic effects, where 𝒖𝒖𝑨𝑨 ~MN (0, Ga𝜎𝜎𝐴𝐴2), 𝒖𝒖𝑫𝑫 is the vector of 236 

dominance effects, where 𝒖𝒖𝑫𝑫 ~MN (0, Gd𝜎𝜎𝐷𝐷2), and 𝜺𝜺 is the random residual effect, where 𝜺𝜺 ~MN (0, 𝜎𝜎𝑒𝑒2𝑰𝑰). Ga and 237 

Gd  are the genomic relationship matrices (GRM) for additive and dominant effects, respectively, given according 238 

to VanRaden (2008) as follows: 239 

𝑮𝑮𝒂𝒂 =  
𝑊𝑊𝐴𝐴𝑊𝑊𝐴𝐴

′

2 ∑ 𝑝𝑝𝑖𝑖𝑛𝑛
𝑖𝑖 (1 −  𝑝𝑝𝑖𝑖)

 240 

where the values from the incidence matrix WA are equal to 0, 1 and 2, for genotypes markers of A1A1, 241 

A1A2 and A2A2, respectively, and pi is the frequency of one allele from i locus. 242 

𝑮𝑮𝒅𝒅 =
𝑊𝑊𝐷𝐷𝑊𝑊𝐷𝐷

′

4∑ {(𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)}2𝑛𝑛
𝑖𝑖

 243 

where WD contains the values equal to 0 (zero) for both homozygotes A1A1 and A2A2, and equal to 1 for 244 

heterozygotes A1A2. 245 

 246 

Model 2 (M2): Environment, main effects plus block diagonal GE (EAD+GE) 247 

This model is an update of M1 that accounts for the main effects (A and D), adding the additive × 248 

environment and dominance × environment interactions effects (AE and DE). 249 

𝒚𝒚 = 𝒁𝒁𝑬𝑬 𝛽𝛽 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑨𝑨 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑫𝑫 + 𝒖𝒖𝑨𝑨𝑨𝑨 + 𝒖𝒖𝑫𝑫𝑫𝑫 +  𝜺𝜺 250 

where 𝒖𝒖𝑨𝑨𝑨𝑨 and 𝒖𝒖𝑫𝑫𝑫𝑫 are the vectors of random effects of the interactions. 𝒖𝒖𝑨𝑨𝑨𝑨 and 𝒖𝒖𝑫𝑫𝑫𝑫 have a 251 

multivariate normal distribution, 𝒖𝒖𝑨𝑨𝑨𝑨 ~ MN (0,[𝒁𝒁𝐺𝐺𝐴𝐴𝒁𝒁𝐺𝐺′]  ⊙ [𝒁𝒁𝑬𝑬𝒁𝒁𝑬𝑬′] 𝜎𝜎𝑎𝑎𝑎𝑎2 ) and 𝒖𝒖𝑫𝑫𝑫𝑫~ MN (0,[𝒁𝒁𝐺𝐺𝐷𝐷𝒁𝒁𝐺𝐺′]  ⊙252 

[𝒁𝒁𝑬𝑬𝒁𝒁𝑬𝑬′] 𝜎𝜎𝑑𝑑𝑑𝑑2 ), where 𝝈𝝈𝒂𝒂𝒂𝒂𝟐𝟐  and 𝝈𝝈𝒅𝒅𝒅𝒅𝟐𝟐  are the variance components for 𝒖𝒖𝑨𝑨𝑨𝑨 and 𝒖𝒖𝑫𝑫𝑫𝑫 interaction effects, respectively 253 

(Bandeira e Sousa et al., 2017; Jarquín et al., 2014; Lopez-Cruz et al., 2015). 254 

 255 

Model 3 (M3): Main effects plus main environmental covariable information (EAD+W) 256 

This third model includes environmental covariables information (W) from envirotyping data. 257 
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𝒚𝒚 = 𝒁𝒁𝑬𝑬 𝛽𝛽 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑨𝑨 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑫𝑫 + 𝒖𝒖𝑾𝑾 +  𝜺𝜺 258 

where 𝒖𝒖𝑾𝑾  is the matrix of environmental covariables, as according to Costa-Neto et al. (2021a), it is 259 

non-genetic information that fills the gap between the genomic phenotypic information that remains across 260 

environments. 261 

 262 

Model 4 (M4): Main effects EADW plus reaction norm for GE (EAD+W+GE) 263 

This model is an extension of the previous model (M3), adding the environment's additive and 264 

dominance interactions. 265 

𝒚𝒚 = 𝒁𝒁𝑬𝑬 𝛽𝛽 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑨𝑨 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑫𝑫 + 𝒖𝒖𝑾𝑾 + 𝒖𝒖𝑨𝑨𝑨𝑨 + 𝒖𝒖𝑫𝑫𝑫𝑫 + 𝜺𝜺 266 

 267 

Model 5 (M5): Main effects EAD plus W plus reaction norm for GW (EAD+W+GW) 268 

This model is a modification of the latter (M4) reaction-norm variation; it replaces the genomic × 269 

environment interactions with the genomic × enviromic effects interactions. 270 

𝒚𝒚 = 𝒁𝒁𝑬𝑬 𝛽𝛽 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑨𝑨 + 𝒁𝒁𝐺𝐺𝒖𝒖𝑫𝑫 + 𝒖𝒖𝑾𝑾 + 𝒖𝒖𝑨𝑨𝑨𝑨 + 𝒖𝒖𝑫𝑫𝑫𝑫 +  𝜺𝜺 271 

where 𝒖𝒖𝑨𝑨𝑨𝑨 and 𝒖𝒖𝑫𝑫𝑫𝑫 are the vectors of random effects of interactions. 𝒖𝒖𝑨𝑨𝑨𝑨 and 𝒖𝒖𝑫𝑫𝑫𝑫 have a multivariate 272 

normal distribution, 𝒖𝒖𝑨𝑨𝑨𝑨 ~ MN (0, [𝒁𝒁𝐺𝐺𝐴𝐴 𝒁𝒁𝐺𝐺′]  ⊙ [𝑾𝑾𝑾𝑾′] 𝜎𝜎𝑎𝑎𝑎𝑎2 ) and 𝒖𝒖𝑫𝑫𝑫𝑫 ~ MN (0, [𝒁𝒁𝐺𝐺𝐷𝐷 𝒁𝒁𝐺𝐺′]  ⊙ [𝑾𝑾𝑾𝑾′] 𝜎𝜎𝑑𝑑𝑑𝑑2 ). 273 

Here we can assume that there are different levels of relationship between genotypes and environments. 274 

All models were fitted with the Bayesian Generalized Linear Regression BGLR R package (Pérez & 275 

de los Campos, 2014a; Pérez & De Los Campos, 2014b), using a Gibbs sampler with 10,000 iterations, assuming 276 

a burn-in of 1,000, and a thinning of 2. 277 

It is important to point out that the "Multitrait" function of the BGLR package has some basic premises 278 

that must be met for the model to work, one of which is the availability of complete information from at least one 279 

genotype. Here, as we used multiple traits with the multiple environments approach, we established a genotype 280 

as a check, with complete phenotypic data available, common to all environments. This way, it was possible to 281 

connect the environments, especially when we explored the G × E interaction. 282 

2.6. Assessing the predictive ability of the models 283 

Two cross-validation schemes were used to access GP models' predictive ability, proposed by 284 

Burgueño et al. (2012). 285 

The first validation scheme, known as CV1, was applied considering 50 random partitions with 70% 286 

of phenotypic and genotypic (genotypes phenotyped for all traits in all environments) information as TRN, while 287 

the remaining 30% (genotypes not phenotyped in any of the environments) were predicted, using only their 288 

genotypic information. This scheme aims to quantify GP models' ability and reproduce a scenario frequently faced 289 

by breeders when predicting new genotypes in a network of already known environments, i.e., newly developed 290 

maize hybrids never evaluated in any environment. The second scheme, CV2, mimics another common situation 291 

when genotypes are tested in unbalanced field trials (or incomplete field trials), i.e., some genotypes are evaluated 292 

in some environments but not in the entire experimental network. For this scheme, we also used 50 random 293 

partitions with 70% of the information (genotype–environment combinations) as TRN, and the remaining 30% as 294 

TST. 295 
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For each TRN-TST partition, models were fitted using the TRN, and we performed Pearson's 296 

correlation coefficient between the predicted value and the observed value or BLUE of the TST individuals within 297 

each environment, for each one of the 50 partitions. Then these correlations were used to assess the accuracy and 298 

compare the performance of each model. Since the BLUEs were calculated by environment, the PAs were also 299 

calculated by environment. The same 50 TRN-TST partitions were used to fit each model, allowing access to the 300 

best performance model. 301 

For OTS, the predictive ability was also calculated as the Pearson's correlation coefficient between the 302 

predicted value and the adjusted observed value or BLUE of the TST individuals within each environment for 303 

each trait; then the average of environments was taken. 304 

2.7.  Response to selection per unit invested 305 

The genetic gain per dollar invested was estimated to compare the efficiency of the scenarios tested in 306 

this work with pure phenotypic selection (PS). The methodology was based on information from Krchov & 307 

Bernardo (2015) and Muleta et al. (2019). The phenotyping costs assumed were: 2 US dollars (USD) per plot per 308 

trait for PH and EH; 4 USD per plot for GY. For genotyping, we considered 20 USD per sample. As we are 309 

dealing with F1 maize hybrids, the parental inbred lines were genotyped, and the hybrid genotype was assembled 310 

in silico. This way, the total cost was the sum of the expenses with genotyping (20 USD × number of lines) plus 311 

phenotyping the TRN. This calculation was made for each dataset × scenario, considering the three OTS scenarios 312 

(OTS 1, OTS 2 and OTS 3) for each kernel and the MTMET CV2 standard scenario. For the phenotypic selection 313 

scenario, the average accuracy (√𝐻𝐻2 of each trait) was divided by phenotyping cost, 8 USD per plot for all traits, 314 

for the complete dataset. The genetic gain was estimated by dividing the PA by the corresponding cost and 315 

subsequently transformed to the base of 10,000 USD, given the fact that the other components of the breeder’s 316 

equation (Lush, 1937) were considered as fixed. 317 
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3. RESULTS 318 

3.1. Descriptive statistics 319 

Pearson's correlation between traits was calculated for each dataset using the BLUEs obtained in the 320 

first step. As a consequence of the EH transformation, GY assumed a negative correlation with the other traits. 321 

For the HEL dataset, GY had a moderately negative correlations with PH and EH, of −0.55 and −0.58, 322 

respectively, while PH and EH had a high positive correlation of 0.82. For the USP dataset, GY had weak negative 323 

correlations with PH and EH, of −0.44 and −0.33, respectively, while PH and EH had a high positive correlation 324 

of 0.70. 325 

Estimated heritability was intermediate to high: for the HEL dataset, trait heritability was 0.62, 0.78 326 

and 0.80 for GY, PH and EH respectively; for the USP dataset, heritability was 0.56 for GY, 0.84 for PH and 0.89 327 

for EH.  328 

As expected, the correlation for the complex trait GY was lower than for PH and EH; additionally, the 329 

complex trait had a lower heritability than the auxiliary ones. 330 

3.2. Optimized training sets (OTS) 331 

The first result of selecting information to form the training populations, using the APY algorithm, 332 

returned the effective population sizes (Ne) for each kernel, as described below. HEL dataset: GET – OTS 1: 155 333 

combined information of genotype × environment × trait selected to form the TRN, which represents 7.4% of 334 

observations; GWT– OTS 1: 102 combined information of genotype × environment × trait selected to form the 335 

TRN, based on environmental covariables (W), representing 5% of observations. USP dataset: GET– OTS 1: 267 336 

combined information of genotype × environment × trait selected to form the TRN set, representing 3.7% of 337 

observations; GWT– OTS 1: 107 combined information of genotype × environment × trait selected to form the 338 

TRN set, representing 1.6% of observations. Sample size differs depending on the kernel and germplasm because 339 

the amount of available information varies as well as the genomic source. From this number, in order to minimize 340 

the stochastic error, the LA-GA-T algorithm was performed three times to select the individuals. Thus, the first 341 

validation scheme was done for OTS 1; the second combining the three basic populations, two by two, also 342 

resulting in three different repetitions, where for Helix the Ne were: GET – OTS 2 = 306, representing 13.8% and 343 

GWT – OTS 2 = 206, representing 9.3% of total observations, respectively, and for USP: GET – OTS 2  = 533, 344 

representing 7.1% and GWT – OTS 2 = 224, representing 3% of total observations, respectively. Finally we added 345 

the three repetitions of the base population to form a larger, but optimized, training population, which corresponds 346 

to Helix: GET – OTS 3 = 436, representing 19.6% and GWT – OTS 3 = 300 representing 13.5% of total 347 

observations, and for USP: GET – OTS 3 = 775, representing 10.4% and GWT – OTS 3 = 326, representing 4.4% 348 

of total observations, respectively. The difference in selecting information between the three repetitions from the 349 

different OTS tested scenarios can be seen in the heatmaps for Helix (Fig. 1a-f) and USP (Fig. 2a-f). 350 
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 351 
Fig. 1 Heatmap of OTS (optimized training sets) graph for the Helix dataset. (a) OTS 1 for kernel GET. (b) OTS 352 
2 for kernel GET. (c) OTS 3 for kernel GET. (d) OTS 1 for kernel GWT. (e) OTS 2 for kernel GWT. (f) OTS 3 353 
for kernel GWT. In green are the hybrids selected to form the training population, for each trait × environment 354 
and repetition inside kernels. The solid line that crosses all the graphs represents the genotype used as a check. 355 
The environments on the x-axis: IP (Ipiaçu), PM (Patos de Minas), and SE (Sertanópolis); the traits under study: 356 
EH (ear height), GY (grain yield), and PH (plant height). The kernels: GET (genotype × environment × trait) and 357 
GWT (genotype × environmental covariables × trait) used as the base to select information 358 
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 359 
Fig. 2 Heatmap of OTS (optimized training sets) graph for the USP dataset. (a) OTS 1 for kernel GET. (b) OTS 360 
2 for kernel GET. (c) OTS 3 for kernel GET. (d) OTS 1 for kernel GWT. (e) OTS 2 for kernel GWT. (f) OTS 3 361 
for kernel GWT. In green we see the distribution of the hybrids selected to form the training population, for each 362 
trait x environment and repetition inside kernels. The solid line that crosses all the graphs represents the genotype 363 
used as a check. The environments on the x-axis: AN.16 (Anhembi 2016), PI.16 (Piracicaba 2016), AN.17 364 
(Anhembi 2017) and PI.17 (Piracicaba, 2017); the traits under study: EH (ear height), GY (grain yield) and PH 365 
(plant height). The kernels: GET (genotype × environment × trait) and GWT (genotype × environmental 366 
covariables × trait) are used as the base to select information 367 

3.3. Predictive abilities of the five models over STMET and MTMET scenarios 368 

HEL dataset 369 

Single-trait multi-environment trial analysis: Results for CV1 showed, on average, PAs varying from 370 

0.53 to 0.73 (Supplementary Table 1). However, individually, environment SE was inferior in predicting GY, 371 

mainly when models without G × E interactions (M1 and M3) were used. In contrast, models including G × E 372 

(M2 and M4) increased PA from 100 to 104% and G × W (M5) increased PA by 92% for this specific trait × 373 

environment; considering the average within environments, PA for GY between models varies from 3 to 19%. 374 

For EH and PH, PAs were higher, from 0.70 to 0.73, and differences between models were minimal, from 0 to 375 

2%. Results for CV2 (Supplementary Table 1) produced the same patterns as those for CV1, ranging from 0.52 376 

to 0.79 when the overall average of environments was considered. For GY in the SE environment, PA could 377 
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increase between 61 to 68% when models with G × W (M5) and G × E interactions (M2 and M4) were used, 378 

respectively. For EH and PH, the accuracies were similar within models, with a maximum difference of 2%. 379 

Comparing CV1 with CV2, PA means increased from 3 to 8%, and differences were higher for PH and EH. In 380 

general, M4 showed the best performance. Overall, the greatest difference was observed for GY, between models 381 

M1 and M3 (without G × E interaction) and M2 and M4 (with G × E interaction), where M4 (M2) outperformed 382 

M3 (M1) by between 25 and 30%, however, M5 also outperformed M3 (M1) by  29%. 383 

Multi-trait multi-environment trial analysis: As for the STMET analysis, the results of the multi-trait 384 

analysis showed a similar pattern of responses, both for CV1 and CV2, varying from 0.54 to 0.73 and 0.53 to 385 

0.79, respectively (Supplementary Table 2). Nevertheless, we noticed that PAs increased between 61 and 68% 386 

for CV1 in the SE environment, which showed the lowest PA for GY in MTMET, like for STMET, when not 387 

exploring G × W and G × E interaction effects. Considering the average within environments, the PA variation 388 

for GY between models was practically identical to that of STME (0-24%). For EH and PH, accuracy varied from 389 

0.70 to 0.73 and 0.75 to 0.79 for CV1 and CV2, respectively, but in general, the means ranged from 0 to 1%, 390 

where M4 performed better. Comparing CV1 with CV2, the PAs increased from 2.4 to 7.7%, with higher PA 391 

differences for GY. Comparing STMET with MTMET, PAs rose from 0 to 1.4%, where the differences were 392 

higher for GY and nonexistent for PH. 393 

USP dataset 394 

Single-trait multi-environment trial analysis: Results for CV1 showed PAs varying from 0.46 to 0.65. 395 

The PI.17 environment isolated was inferior for predicting EH when models without G × E interactions (M1 and 396 

M3) were used (Supplementary Table 3). In contrast, models with G × E (M2 and M4) could increase the 397 

accuracy up to 440% in the PI.17 environment for EH (considering the overall average within environments, PA 398 

for EH varied from 0 to 7%) and model with G × W increased PA by 420% for the same environment × trait;  399 

other environments performed very well for EH, with PA from 0.66 to 0.80. For GY, PA ranged from 0.42 to 400 

0.51. For PH, PA were high, from 0.63 to 0.68 between environments, with no difference between models. Results 401 

for CV2 produced almost the same patterns as those for CV1. For EH in the PI.17 environment, PA could increase 402 

by 340% when models with G × E interactions were used and 320% when using G × W. Despite the environment, 403 

PI.17 for EH, the accuracy of all other traits and environments was similar within models, with differences of 404 

around 0 to 5%. In general, M4 showed the best performance. Comparing CV1 with CV2, the PA increased from 405 

4 to 8% for GY and PH, respectively. 406 

Multi-trait multi-environment trial analysis: As for the STMET analysis, the results of the multi-trait 407 

analysis showed similar response patterns, both for CV1 and CV2 (Supplementary Table 4). Nevertheless, PAs 408 

increased between 4 and 8%. Also for STMET, the PI.17 environment showed low PA for EH in MTMET, but 409 

by exploring G × E, accuracy increased up to 333%. For GY, accuracies varied from 0.42 to 0.52, and for PH, 410 

from 0.63 to 0.72, but for both, in general, the means did not vary. Comparing STMET with MTMET, PAs 411 

changed from 0 to 0.4%. Including interaction effects (no matter if G × E or G × W) always increased PA. 412 

  413 
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3.4. Predictive ability for OTS scenarios 414 

Similar to what was done previously, for the optimized training sets, the five models were also tested. 415 

The model that achieved the best performance was the M4, so only this result will be presented. Helix dataset: In 416 

the overall average of traits, for OTS 1, PAs were 0.55 and 0.41 for kernels GET and GWT, respectively. Those 417 

values increased to 0.63 (+15.9%) and 0.50 (+22.6%), then 0.68 (+7.7%) and 0.61 (+21.4%), for OTS 2 then OTS 418 

3, while the maximum PA obtained by the benchmark CV2 was 0.74 (Table 1 and Fig. 3). USP dataset: in the 419 

overall average of traits, for OTS 1, PAs were 0.41 and 0.24 for kernels GET and GWT, respectively. Following 420 

the same pattern, when we increased the size of TRN, those values increased to 0.47 (+15.6%) and 0.30 (+24.4%) 421 

for OTS 2, then 0.52 (+9%) and 0.44 (+46.5%) for OTS 3, while the maximum PA obtained by the benchmark 422 

CV2 was 0.61 (Table 1 and Fig. 4).  423 

 424 
Fig. 3 The trend graph shows the increase in the average PA (predictive ability, mean of environments and traits) 425 
according to increases in the Helix dataset's training set size. GET and GWT are the kernels used as the basis for 426 
selection of information by the LA-GA-T algorithm. The 4 points on each line correspond to OTS1, OTS2, OTS3 427 
and finally CV2, which is a benchmark or the highest value achieved with this dataset under this particular study's 428 
conditions 429 
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 430 

Fig. 4 The trend graph shows the increase in the average (predictive ability, mean of environments and traits) 431 
according to increases in the USP dataset's training set size. GET and GWT are the kernels used as the basis for 432 
selection of information by the LA-GA-T algorithm. The 4 points on each line correspond to OTS1, OTS2, OTS3 433 
and finally CV2, which is our benchmark or the highest value achieved with this dataset under this particular 434 
study's conditions  435 

Table 1 Average increase, per trait, in predictive ability, according to an increase in the training set (denoted here 436 
as OTS 1, 2 and 3), for both GET and GWT kernels, in the Helix and USP datasets. Ne: number of information 437 
used as the training set; prediction accuracies for EH: ear height, GY: grain yield and PH: plant height. Values in 438 
parentheses show the percentage increase between that value and the value immediately preceding it 439 

 
 

GET  GWT 
 OTS Ne  EH GY PH  Ne  EH GY PH 

Helix 

1 155 0.61 0.47 0.56  102 0.43 0.42 0.38 
 

2 306 
(+97%) 

0.67 
(+11,2%) 

0.56 
(+18%) 

0.66 
(+19,2%) 

 206 
(+100%) 

0.54 
(+23,5%) 

0.50 
(+19,8%) 

0.48 
(+24,3%) 

3 436 
(+42%) 

0.72 
(+7%) 

0.60 
(+7,7%) 

0.72 
(+8,5%) 

 300 
(+45%) 

0.64 
(+18,4%) 

0.60 
(+19,3%) 

0.63 
(+26,7%) 

  GET  GWT 
 OTS Ne EH GY PH  Ne EH GY PH 

USP 

1 267 0.47 0.28 0.48  107 0.22 0.19 0.32 
 

2 533 
(+91.9%) 

0.52 
(+12.6%) 

0.34 
(+19.8%) 

0.56 
(+16%) 

 224 
(+87.5%) 

0.31 
(+42.2%) 

0.23 
(+23%) 

0.36 
(+12.8%) 

3 775 
(+45%) 

0.56 
(+5.9%) 

0.40 
(+17%) 

0.61 
(+8.7%) 

 326 
(+43%) 

0.43 
(+39%) 

0.35 
(+51.5%) 

0.54 
(+49.2%) 

 440 

3.5.  Response to selection per amount invested 441 

The genetic gain per dollar per 10,000 USD invested was estimated for each dataset × OTS' scenario, 442 

primarily to compare the efficiency at the kernel level. Then, between scenarios: OTS versus MTMET CV2 and 443 

OTS versus phenotypic selection, within datasets. 444 
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For the HEL dataset, the results showed an inversion of gain between the kernels over scenarios. While 445 

the GET kernel started at 0.80 × 10-3 and went to 0.58 × 10-3, the GWT kernel started at 0.70 × 10-3 and went to 446 

0.67 × 10-3 gain per 10,000 USD invested. For PS, the gain was 0.14 × 10-3 (Fig. 5). 447 

For the USP dataset, the GET kernel started with a gain of 1.29 × 10-3, and went to 0.47 × 10-3, while 448 

the GWT kernel started at 1.42 × 10-3 and went to 1.15 × 10-3.  For PS, the gain was 0.04 × 10-3. 449 

As a matter of comparison, we did the same procedure for the standard scenario MTMET CV2 (for 450 

M4) and the gains per investment were 0.16 × 10-3 for HEL and 0.02 × 10-3 for the USP dataset.  451 

 452 
Fig. 5 Gain per cost × 10-3 (per 10,000 dollars invested) for the HEL and USP datasets, comparing the two 453 
optimization kernels (GET and GWT) and the standard scenario (MTMET CV2, TRN = 70%). The cost includes 454 
the phenotyping of TRN (3 USD per trait per plot) and the whole dataset's genotyping (20 USD per sample) 455 

 456 
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4. DISCUSSION 457 

The major goal of GS can be defined as increasing the genetic gain with no increase in costs compared 458 

to phenotypic selection only (Crossa et al., 2017; Werner et al., 2020), thus compensating the loss in predictive 459 

ability by the gains in response to selection. 460 

The traits evaluated here are moderately to strongly positively correlated by Pearson's correlation 461 

coefficient. However, the selection targets for them in a real breeding program are in opposite directions. While 462 

we want to increase grain yield, we want to decrease plant height and stabilize ear height. Dwarf plants with high 463 

yield are already a reality in other crops like wheat and rice. However, in maize, dwarfing mutant genes have been 464 

studied. Unlike wheat and rice, PH in maize is a quantitative trait that affects other plant characteristics like yield 465 

losses, making it difficult to apply (Chen et al., 2018). Since we want all those attributes simultaneously, we 466 

created a selection index for EH, which measures the distance from the ideal ideotype defined here as 80 467 

centimeters. Then, traits assume a negative correlation between them due to the index, allowing us to select for 468 

all the traits concurrently (Wang et al., 2018). 469 

Similar to what Ibba et al. (2020) and Werner et al. (2020) reported and to what was expected, accuracy 470 

is specific to the population, which depends on many other factors like the model chosen, the traits to be predicted, 471 

trait heritability, the correlation between traits, the environments, and  the correlation between environments. So, 472 

the results here were no exception. Differences in predictive ability between the two datasets, which occurred for 473 

the benchmarks (CV1 and CV2) and OTS's kernels (GET and GWT), can be partially attributed to differences 474 

in Pearson's correlation coefficient between traits, since PA is directly related to the correlation between traits 475 

(Lado et al., 2018). 476 

We could see that some models overperformed others, which was also expected since they contain 477 

additional terms or variance components such as environmental covariables (W) and interaction terms (G × E 478 

and G × W) that better capture the portion of variance explained by the model (Alves et al., 2019). Results of 479 

Dias et al. (2018) suggested that GBLUP models that contain additivity, dominance and G × E interaction should 480 

be preferred for predicting the performance of newly developed hybrids in any MET analyses, as is the case with 481 

STMET and MTMET under CV1, and OTS. 482 

In this study, two cross-validation schemes, CV1 and CV2 (Burgueño et al., 2012), were used to 483 

evaluate PA for both STMET and MTMET models. For all combination scenarios of dataset, model, single or 484 

multi-trait, CV2 outperformed CV1, because, in this scheme, we have phenotypic information of genotypes in 485 

some environments, but not in others, which helped increase the PA of the models. With CV1 and CV2, single-486 

trait and multi-trait genomic predictions with multi-environment trials are well described and established in the 487 

general literature and for the data used in this study (Bandeira e Sousa et al., 2017; Alves et al., 2019). Random 488 

cross-validation schemes CV2 and CV1 combined with STMET and MTMET were then used here as benchmarks 489 

and as a matter of comparison for the five different prediction models tested (Werner et al., 2020). Thus, based 490 

on this prior validation, the model with the highest accuracies (M4) was chosen for the prediction using the 491 

optimized training set populations, and those validations were also used in a scale as a comparison parameter for 492 

prediction accuracies while increasing the effective population sizes of TRN (see Fig. 3 and Fig. 4). Note that the 493 

model whose performance was superior includes the G × E interaction component, in agreement with what has 494 

already been reported by several authors (Acosta-Pech et al., 2017; Burgueño et al., 2012; Dias et al., 2018; 495 
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Jarquin et al., 2020; Montesinos-López et al., 2019; Robert et al., 2020) and more recently, by Jarquin et al. (2021). 496 

As well, adding the interaction effect G × W (M5) increases PA when compared to the main effects models (M1 497 

and M3), but not as much as models containing the G × E,  similar to what was already presented by Robert et al. 498 

(2020) and Jarquin et al. (2021); however, G × W has the advantage of predicting new environments (Costa-Neto 499 

et al., 2021a; Jarquin et al., 2021; Robert et al., 2020), which has not been tested here. Also, MTMET models 500 

gave a small increase in PA compared with STMET, especially for models containing the G × E term (Lyra et 501 

al., 2017; Mendonça & Fritsche-Neto, 2020). Furthermore, as Costa-Neto et al. (2021a) reported, including the 502 

W matrix helps increase PA, especially in the case of untested hybrids and/or untested environments, by better 503 

explaining sources of variation, capturing the environment potential per se and its interaction with the genotypes. 504 

Nevertheless, in the present study, and according to what was presented by Jarquin et al. (2021), the inclusion of 505 

W matrix alone (M3) did not improve PA, but was similar to the M1; and the inclusion of W with G × E in M4, 506 

gave similar results as the G × E alone (M2). Despite that, the W matrix allows optimizing complex information, 507 

as we saw in our OTS's scenarios, then optimizing trials (Jarquin et al., 2021).  508 

Studies involving SNP data, such as GP, require the inverse of the genomic relationship matrix (GRM). 509 

However, as the number of individuals to be evaluated increases, the computational cost of this matrix's inversion 510 

is relatively high, with limitations in memory and time. In order to minimize this problem, Misztal (2016) 511 

proposed the algorithm for proven and young animals (APY). Using the APY it is not necessary to make a 512 

complete inversion of the GRM, since its result returns the number of individuals (n) needed to sample 98% of 513 

the population variation; then the inverse of GRM can be obtained by recursion, based on the information of the 514 

core individuals. Despite reducing the number of individuals, this algorithm does not specifically indicate which 515 

genotypes we should select as core individuals. Hence, it is necessary to take a random sample of population. 516 

Here we extended the APY to plants. Since the APY does not provide information on which genotypes should be 517 

included in the core population, another algorithm was used to efficiently select these individuals. We used the 518 

genetic optimization algorithm in the selection of sub-populations, the LA-GA-T (look ahead genetic algorithm 519 

with taboo) proposed by Akdemir (2017) in his STPGA (selection of training populations by genetic algorithms) 520 

R package. Genetic algorithms work based on the principles of biological evolution, so that they solve their 521 

problems using evolutionary strategies, where at each iteration, the best individuals are selected and elite 522 

individuals and so on form the next population. Still, the term taboo indicates that the solutions recently tested 523 

will be avoided in the next attempts, avoiding unnecessary evaluations, and limiting the number of iterations 524 

necessary to reach convergence. Thus, LA-GA-T optimizes the selection, on a genetic basis, of the n genotypes 525 

informed by APY to compose our optimized  training set (OTS) (Fristche-Neto et al., 2018). In this context, 526 

Mendonça & Fritsche-Neto (2020) used the algorithm designed by Akdemir (2017) to select the most 527 

representative genotypes to build the training population. Similar to our findings, they did not notice an increase 528 

in PA while using OTS, but reduced the budget. 529 

Nevertheless, in the present work, we extended these algorithms to more complex relationship matrices, 530 

as the Kronecker product of the genomic relationship matrix (GRM), with the environmental variances and 531 

covariances matrix (W) and the traits (T) of interest (G ⊗ E ⊗ T or G ⊗ W ⊗ T). Although these scenarios cause 532 

a high level of imbalance in the data, they will give an idea about which genotypes need to be phenotyped, in 533 

which locations and for which traits in order to form a smaller but optimized training set, reducing fieldwork and 534 

the financial resources spent on evaluations, and how much data imbalance the models support for the prediction 535 
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of hybrids, without important losses in PA. Thus, it allowed us to identify which genotypes should be evaluated 536 

in which environments and for which traits, to form a super-optimized training population, capable of predicting 537 

the performance of the entire population for all traits and environments, filling gaps in GS and answering questions 538 

about the optimal partition of genotypes across environments (Jarquin et al., 2020).  539 

Voss-Fels et al. (2019) said that the TRN have to be exceptionally large. Similarly, Wang et al. (2018) 540 

stated that the larger the TRN, the better the estimation of genetic effects and therefore, the greater the accuracy, 541 

mainly for low heritability traits. Here, the amount of information for each OTS, regardless of the kernel, is small, 542 

representing between 1.6 and 19.6% of the total available information. Moreover, the samples have a good 543 

distribution of genotypes, including those genotypes that perform well, and those that are not so good, bringing 544 

positive impacts on PA (Michel et al., 2020). As expected and similar to what Pinho Morais et al. (2020) found, 545 

with a small effective population size, PA is diminished, since the sample contains small genetic variability. 546 

However, we still obtained satisfactory prediction values, with an overall mean up to 0.41 and 0.54 for USP and 547 

Helix, respectively, with the advantage that costs were reduced by more than 1000% and the labor with the TRN 548 

was also reduced. According to Krchov and Bernardo (2015), accuracies should be greater than 0.50 so that the 549 

GS is superior and chosen instead of the phenotypic selection. 550 

It is interesting to notice that, with a similar increase in effective population size of approximately 90-551 

100% from OTS 1 to OTS 2, and from OTS 2 to OTS 3, respecting the particularities of each training set 552 

population, the increases in PA are different for each kernel-dataset combination, as given in Fig. 1, Fig. 2 and 553 

Table 1, which show that PA practically doubled for GWT when compared to GET, mainly for the USP dataset, 554 

whose amount of information used as TRN represents a very small portion of the total dataset. Therefore, it means 555 

that a small increase in the training population results in satisfactory PA increases, especially when considering 556 

the response to selection. However, GET proved less efficient for optimizing TRN, because it assumes that the 557 

environments are not related, and thus needs more information to explain variations in the whole dataset, while 558 

GWT proved more efficient for optimizing TRN, than using the W matrix for optimization. With all the 559 

aggregated information it carries, GWT is able to select individuals more assertively, and then needs less 560 

information to form the OTS, so the TRN size is smaller, providing the added advantages of lower cost and labor. 561 

Shown here for a complex case, the global idea is similar to what was observed in Costa-Neto et al. (2021a), 562 

adding information to help in prediction. 563 

Since the costs of genotyping are decreasing, whereas the costs of field testing in maize are either 564 

stagnant or increasing, and adding that genotypic information is stable, not liable to seasonal variation, less effort 565 

is expended saving money resources, genotypic selection is, from this perspective, more efficient (Krchov & 566 

Bernardo, 2015). It is worth noting that with a fixed budget, as we decrease the training population size, using 567 

OTS for example, we can have a larger test population, since the resources are reallocated from phenotyping to 568 

genotyping, or even, with a fixed training population, small budget increments mean a significant increase in the 569 

test population, which can be considerably expanded for greater selection gains (Riedelsheimer & Melchinger, 570 

2013; Krchov & Bernardo, 2015). 571 

Looking to reduce costs with phenotyping, Lado et al. (2018), working with wheat, found that there 572 

were no losses in the predictive power when reducing the training population up to 30% when traits highly 573 

correlated to the trait of interest are used in the multi-trait model because the correlation between the traits and 574 

the heritability of each assists in the prediction of the other. Here, we could reduce the training population up to 575 
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approximately 4% obtaining satisfactory results when considering the selection gains per 10,000USD invested, 576 

which were about 0.70 × 10-3 against 0.16 × 10-3, with optimized (GWT) against standard scenario (MTMET 577 

CV2) TRN, respectively, for the HEL dataset and 1.42 × 10-3 against 0.16 × 10-3 for the USP dataset. 578 

The genetic gain per dollar invested was estimated as a basis of comparison for responses in different 579 

TRN sizes, datasets and mainly to justify the use of optimization for training populations in GS. From the results, 580 

we can infer that the optimized populations have advantages over the standard scenario (70% TRN-30% TST). 581 

The difference in gains between the datasets is due to their particular characteristics, such as the number of inbred 582 

lines and the PA reached. For the HEL dataset, however, PA was higher, and the costs of genotyping were also 583 

higher, since there were a great number of inbred lines, so gains were lower; there was also an inversion of gains 584 

between GET and GWT, where the efficiency of the GWT kernel remains practically constant while that of GET 585 

falls. For the USP dataset it was the opposite; nevertheless, the PAs were lower, there were fewer individuals to 586 

both genotype and phenotype. In this way, the costs per individual were lower and the gains were higher, and 587 

GWT outperformed GET in all the scenarios. Altogether, GWT allowed reducing the TRN up to 58% compared 588 

with GET. From this point of view, although the PA using GWT is the lowest, independent of the scenario, its 589 

advantage can be offset by the gain in the  response to selection per USD invested (see Fig. 5); giving special 590 

attention to GWT in the USP dataset. In summary, compared with MTMET – CV2, with GWT there was a 591 

reduction of up to 60% in terms of PA; however, it brings the possibility of substantially reducing the number of 592 

plot:traits to be phenotyped up to 98%. Furthermore, using OTS plus W allows increasing the response to selection 593 

per amount invested up to 142% compared with GET; thus, there is no gain in PA with OTS, but the reduction in 594 

the training population greatly reduces costs and fieldwork, and thus, the relative genetic gains are greater. 595 

In light of this, our results add to the subject of training populations, answering questions about which 596 

design to use to distribute the population for evaluation, which individuals to choose to form the training 597 

population, because as already seen, TRN is the key to the success of GS. 598 

Multi-trait and multi-environment analyses have been applied as a way to optimize the distribution of 599 

resources through GP, reaching satisfactory accuracy and gains; however, this scenario can still be worked on and 600 

improved, taking advantage of new tools, like the environmental relationship matrix (W matrix) and genetic 601 

algorithms (APY and LA-GA-T) to optimize the allocation of resources. To our knowledge, this is the first work 602 

that tests the optimization of training set populations with genetic algorithms, which determine the size of the 603 

population and select the individuals based on complex kernels, causing a high level of imbalance, and we 604 

observed that, using a smaller optimized training set, we diminished the phenotypic evaluations in the field, and 605 

consequently saved costs that can be reallocated for genotyping. Additionally, we calculated the gains per 606 

10,000USD invested, which allowed us to infer that, in a practical way, by applying optimization and maintaining 607 

a constant selection intensity, under a fixed budget, the input lines/hybrids of a breeding program can be larger, a 608 

greater number of crosses can be tested per cycle and in the early stages, this will improve the gains. The initial 609 

investments in GS are considerably high; however, they are offset by gains per unit of time. Nevertheless, it is 610 

known that that the genetic variance of a given population decreases over the selection cycles, especially in small 611 

populations sizes, which limits the selection gains (Muleta et al., 2019). Hence, we can consider the optimization 612 

aiming to renovate training sets each year, to keep GS accuracy acceptable and raise the gains. Therefore, periodic 613 

recalibration of the training population is important to endorse genetic variability and, in addition, when using an 614 

optimized population for recalibration, the cost of evaluation (genotyping plus phenotyping) is offset by the 615 
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genetic gains obtained (Muleta et al., 2019). In summary, optimization gave a good balance between gain versus 616 

costs, and between gain versus labor, and added new insight for using the algorithms tested here. 617 
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5. CONCLUSIONS 618 

Genomic prediction models that include G × E and G × W interaction effects always increase PA, 619 

performing better than main effects models; G × E interaction is the best scenario, with a small increase in multi-620 

trait multi-environment analysis when compared with single-trait multi-environment analysis. Furthermore, 621 

genetic algorithms of optimization associated with genomic and enviromic data are efficient in designing 622 

optimized training sets for genomic prediction and improve genetic gains per dollar invested. However, it is worth 623 

remembering that there is a specific interaction between combinations of germplasm, environments, experimental 624 

network and evaluated traits that must be taken into account when using the proposed approach.  625 
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