Profiling Human CMV-specific T cell responses reveals novel immunogenic ORFs

- 1 Rekha Dhanwani^{1†}, Sandeep Kumar Dhanda^{1#}, John Pham¹, Gregory P. Williams¹,
- 2 John Sidney¹, Alba Grifoni¹, Gaelle Picarda^{1,3}, Cecilia S. Lindestam Arlehamn¹,
- 3 Alessandro Sette^{1,2,*}, Chris A Benedict^{1,3,*}
- 4
- ⁵ ¹ Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology,
- 6 La Jolla, CA 92037, USA
- ⁷ ² Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- ⁸ ³Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla,
- 9 CA 92037, USA
- 10 † Present Address: Division of Extramural Activities, National Institute of Allergy and
- 11 Infectious Diseases, National Institute of Health, Rockville, MD 20852, USA
- 12 [#] Present Address: St. Jude Children's Research Hospital, Arlington, VA 22203
- 13
- 14 * Corresponding authors
- 15 Alessandro Sette
- 16 Email: <u>alex@lji.org</u>
- 17
- 18 Chris A. Benedict
- 19 Email: <u>benedict@lji.org</u>
- 20
- 21

22 Abstract

23 Despite the prevalence and medical significance of human cytomegalovirus (HCMV) 24 infections, a systematic analysis of the targets of T cell recognition in humans that spans 25 the entire genome and includes recently described potential novel ORFs is not available. 26 Here, we screened a library of epitopes predicted to bind HLA class II that spans over 27 350 different HCMV ORFs and includes ~150 previously described and ~200 recently 28 described potential novel ORFs using an ex vivo IFN γ fluorospot assay. We identified 235 29 unique HCMV specific epitopes derived from 100 ORFs, some previously described as 30 immunodominant and others that were not previously described to be immunogenic. Of 31 those, 41 belong to the set of recently reported novel ORFs, thus providing evidence that 32 at least some of these are actually expressed in vivo in humans. These data reveal that 33 the breadth of the human T cell response to HCMV is much greater than previously 34 thought. The ORFs and epitopes identified will help elucidate how T cell immunity relates 35 to HCMV pathogenesis and instruct ongoing HCMV vaccine research.

36

37 Importance

To understand the crucial role of adaptive immunity in controlling cytomegalovirus infection and disease, we systematically analyzed the CMV 'ORFeome' to identify new CMV epitopes targeted primarily by CD4 T cells in humans. Our study identified >200 new T cell epitopes derived from both canonical and novel ORFs, highlighting the substantial breadth of anti-CMV T cell response and providing new targets for vaccine design.

44

45 Introduction

46 Human cytomegalovirus (HCMV, HHV-5) is a β -herpesvirus that infects the 47 majority of the world's population. Infection in healthy individuals is characterized by a 48 primary asymptomatic phase followed by the establishment of lifelong persistence/latency 49 in several cell types (1, 2). HCMV's 236 kbp double stranded DNA genome facilitates its 50 persistence and reactivation when immunity is compromised, with both viral and cellular 51 proteins controlling viral gene expression and regulating the dynamic and reversible 52 latent-lytic cycle that develops over a lifelong infection (3, 4). Although largely persistent, 53 its reactivation in immunocompromised populations, such as transplant recipients and 54 AIDS patients, causes severe disease outcomes (5-11). Congenital infection in the 55 developing fetus is also the leading infectious cause of birth defects (12-18). Moreover, the available antiviral drug therapies are insufficient and often toxic in young children (19-56 57 22). Consequently, HCMV is recognized as a major public health problem and 58 development of a vaccine that prevents or at least mitigates virus-induced disease is a 59 top priority (23-25).

60 Although both humoral and cell mediated immune responses protect against 61 HCMV infection, a considerable effort has been made towards identifying HCMV targets 62 of CTL responses due to their pivotal role in controlling HCMV disease in immunocompromised individuals (26-29). However, HCMV targets of CD4+ T helper 63 64 cells, which amplify CTL and antibody responses or may mediate direct antiviral activity 65 themselves, remain to be explored in detail. In order to develop a successful HCMV 66 vaccine, it is imperative to assess the large number of candidate viral proteins for their potential to induce robust CD4+ T cell responses. 67

68 Previous work from Sylwester et al. extensively characterized the canonical HCMV 69 proteins that are targeted by CD4+ and CD8+ T cell responses (30), and work by many 70 other groups have identified immunodominant epitopes derived from these that include 71 the 65kDA phosphoprotein (UL83/pp65), immediate early protein 1 (UL123), tegument 72 protein pp150 (UL32), envelope glycoprotein B (UL55), viral transcription factor IE2 73 (UL122), and major capsid protein (UL86) (31-38). However, a comprehensive analysis 74 of HCMV epitope-specific T cell responses has been challenging, mainly due to the large 75 size of virus and the evolving impact that persistent infection has on the memory pool. 76 Stern-Ginossar et al. recently reported all the HCMV RNAs found to be associated with 77 ribosomes in infected fibroblasts, increasing the potential number of ORFs the virus may 78 encode by ~3 fold (39). Here, we designed a comprehensive screening approach to 79 assess potential T cell responses against 563 of these ORFs, which included both 80 previously reported and potentially novel HCMV proteins. 2593 15-mer peptides were 81 predicted using computational algorithms, and a high throughput screen was performed 82 using an IFNy fluorospot assay to identify epitopes targeted by both CD8+ and CD4+ T 83 cells in healthy HCMV-infected adults. This 'whole ORFeome' approach resulted in the 84 identification of more than 200 new CD4+ and CD8+ T cell epitopes.

85

86

87 Results

88 Targets of HCMV T cell reactivity

89 To define the epitopes targeted by HCMV-specific T cell responses in healthy 90 adults, we screened PBMCs of 19 subjects, 10 males and 9 females, recruited from the 91 San Diego blood bank (SDBB). The HCMV seropositivity of all the subjects was confirmed 92 by IgG ELISA (Fig. S1A). We tested a total of 2593 15-mer HCMV peptides covering a 93 total of 563 ORFs (39). Removing the predicted ORFs that were located entirely within 94 longer ORFs resulted in a set of 359 completely unique ORFs. This set consists of 95 approximately 150 "canonical" ORFs, with an additional 200 identified by ribosomal RNA 96 profiling (39). These 15-mer peptides corresponded to epitopes likely to be dominant 97 based on a bioinformatic method that predicts promiscuous binding to HLA class II 98 molecules (40). Each ORF analyzed contained a minimum of 2 predicted epitopes, with 99 the exception of very small ORFs of less than 15-20 amino acid residues, in which case 100 at least one peptide was synthetized. The 2593 peptides were arranged in 89 pools of 101 28 to 30 15-mers. The PBMC reactivity of each of the 89 pools was assayed directly ex 102 *vivo* using an IFN- γ Fluorospot assay. After identifying the pools that resulted in IFN- γ 103 production in HCMV+ individuals, the top 10 most reactive pools (that, on average, 104 accounted for more than 90% of the reactivity observed within each subject) were then 105 deconvoluted to identify the specific epitopes (Fig. S2). Representative results from the 106 initial screening and the deconvolution of a pool in a representative subject are shown in 107 Fig. 1A-B. In conclusion, the results shown here indicate that human T cell responses to 108 HCMV recognize a wide breadth of different epitope specificities.

109

110 Characterization of CMV epitope-specific immune responses

111 The deconvolution of the top 10 pools from each subject identified widespread 112 reactivity directed against 235 unique epitopes (Fig. S3 and Table 1). Interestingly, 113 females tended to show both a higher frequency and magnitude of epitope-specific 114 responses when compared to males, although this did not reach statistical significance 115 (Fig. S4). On average, each subject recognized 25 epitopes (Fig. 2A) and all subjects 116 recognized at least 2 (range 2-57, Fig. 2B). Specifically, 6 out of 19 donors recognized 117 21-30 epitopes. A quarter of the epitopes (58 of the 235 recognized) were recognized by 118 three or more subjects (Fig. 2C), and these accounted for 76% of the total T cell response 119 (Fig. 2D).

We further characterized the phenotype of the T cell responses directed against 120 121 these 58 dominant epitopes by intracellular IFN- γ staining (representative results shown 122 in Fig. 3A, with the flow cytometry gating strategy shown in Fig. S5A). In the majority of 123 tested subjects, the responding T cells were CD4+. More specifically, 68% of all 124 responding T cells were CD4+ and 13% contained both IFN- γ + CD4+ and CD8+. In 18% 125 of the cases, only CD8+ T cells responded to these 58 epitopes (Fig. 3B). Similarly, if the 126 magnitude of the response was considered, 70% of the IFN- γ response was attributable 127 to CD4+ T cells and only 30% emanated from CD8+ T cells (Fig. 3C). The fact that the 128 responses were dominated by CD4+ T cells is consistent with the fact that the peptides 129 tested were originally selected based on their predicted likelihood to bind HLA class II 130 alleles. In turn, the occasional identification of epitope-specific CD8+ T cell responses in 131 many cases likely reflects class I epitopes nested within the 15-mer epitopes tested in the screen. Overall, these results indicate that, as expected, the screening strategy employed
 mostly identifies targets of CD4+ T cell reactivity.

134 Analysis of the ORF of origin of the identified epitopes

The 235 epitopes identified mapped to a total of 100 of the 359 unique ORFs screened. Of those, 28 ORFs contained >3 immunogenic peptides and 18 ORFs were recognized in 15% or more of the donors (**Fig. 4**). Notably, the previously wellcharacterized immunodominant ORFs such as envelope glycoprotein B (UL55), IE1 (UL123), tegument protein pp65 (UL83), major capsid protein UL86, IE2 (UL122), and pp150 (UL32) were amongst those associated with more than three immunogenic peptides.

142 To address the novelty of our findings, we compared our results with ORFs that 143 have already been reported and curated in the Immune Epitope Database (IEDB 144 http://www.iedb.org) (41), as a source of defined epitopes. Specifically, a query of the 145 IEDB in October 2020 for previously characterized targets of T cell responses tested in 146 at least 19 donors and with a minimum response frequency of 15% revealed 7 ORFs that 147 match the conditions of our screening results: UL83/pp65 (ORFL205C), UL123/IE1 148 (ORFL264C), UL122/IE2 (ORFL265C), UL55/gB (ORFL145C), UL32/pp150 (ORFL92C), 149 UL40 (ORFL105C) and UL98 (ORFL229W) (Fig. 4).

150 The same query revealed three additional ORFs that were not identified in our 151 screen. These ORFs were associated with a limited number of literature-reported and 152 IEDB curated epitopes: UL75/gH (ORFL184C; 1 epitope), UL44/DNA-pol 153 (ORFL112C.iORF1; 3 epitopes) and UL138 (ORFL313C; 1 epitope). Importantly, our

screen identified 93 ORFs that were not previously described as targets of T cell
responses (Fig. 5).

156 Notably, 52 of these 93 ORFs were already described in the 'canonical HCMV' 157 annotated genome, but not all have been described as targets of human T cell responses. 158 Even more strikingly, 41 of these 93 ORFs corresponded to those viral mRNAs only 159 identified by recent ribosomal profiling studies (39), providing evidence that they are 160 translated in HCMV infected cells. These results indicate that our approach successfully 161 re-identified known ORFs as targets of T cell responses, and perhaps most importantly, greatly expanded the repertoire of canonical and 'novel' ORFs recognized by T cells in 162 163 healthy adults.

164 Novel identified epitope pools elicit antigen specific CD4+ T cell responses.

165 Lastly, we wanted to explore whether the epitopes identified in the presented study 166 could, alone or in combination with previously described epitopes, be utilized to generate 167 epitope "MegaPools" (MP) (42-46) to allow detection of CMV-specific CD4 T cell 168 responses. Accordingly, we generated a 'P235' MP encompassing the 235 CMV epitopes 169 identified in the present study. As a comparison, we considered the commercially 170 available CMV peptide pool (Mabtech, catalog 3619-1) encompassing a total of 42 CD4 171 and CD8 epitopes. Additionally, we synthetized a MP of known class II epitopes curated 172 in the IEDB database, encompassing a total of 187 CD4 epitopes (IEDB-II, Table 2).

These MPs were tested with PBMC from a new cohort of 20 individuals (6 males and 14 females), which included both HCMV seropositive and seronegative donors (10 CMV⁺ and 10 CMV⁻, **Fig. S1B** for IgG ELISA CMV confirmation). None of the PBMC from these subjects were used in the original epitope mapping experiments. PBMCs were

stimulated with the Mabtech, P235, IEDB-II, or a combination of both P235/ IEDB-II MPs.
CD4+ T cell responses were measured as percentage of activation-induced marker assay
positive (OX40+ CD137+) CD4+ T cells and results are displayed in Fig. 6 (flow cytometry
gating strategy shown in Fig. S5B).

181 All HCMV MPs tested were associated with significantly higher CD4 AIM 182 responses in HCMV+ individuals compared to HCMV- subjects as shown in Fig. 5 183 (statistical differences detailed in figure legend). When comparing AIM responses 184 between the HCMV pools, the P235, IEDB-II and P235/IEDB-II MPs were associated with 185 significantly higher HCMV-specific CD4 responses compared to the Mabtech pool 186 (geometric mean 0.15% vs 0.25% CD4 AIM+, p=0.01; and 0.15% vs 0.36%, p=0.004, 187 and 0.15% vs 0.46% CD4 AIM+, p=0.004, respectively by Wilcoxon test). This was 188 expected, as the Mabtech pool contains fewer epitopes which are also mainly CD8 T cell 189 specific. Additionally, the combination of the P235 and IEDB-II MPs elicited higher CD4 190 responses than either MP alone (geometric mean 0.25% vs 0.46% CD4 AIM+, p=0.0078 191 and 0.36% vs 0.46% CD4 AIM+, p=0.004, respectively by Wilcoxon test) and had the 192 highest magnitude response of all pools tested. This indicates that the combination of 193 known (IEDB-II MP) and novel epitopes and ORFs (P235 MP) can capture the broadest 194 range of CD4 T-cell responses in HCMV+ individuals, which has high potential for clinical 195 diagnostic use.

196

197

198

199 Discussion

200 In this study we have identified >200 new epitopes derived from 100 HCMV ORFs 201 that induce virus-specific T cell responses. Importantly, this demonstrates that the current 202 HLA peptide-binding prediction algorithms that we and others have refined over the last 203 several decades are extremely efficient (47-51), and represent an excellent alternative to 204 synthesizing genome-wide overlapping peptides, especially for large pathogens such as 205 HCMV. Despite the significant diversity in the human HLA repertoire, current advances in 206 algorithm-based epitope identification take into consideration epitopes with potential 207 binding to diverse haplotypes, which undoubtedly contributed to this success (40, 52). 208 Together, this approach allowed us to increase the known T cell epitope landscape for 209 HCMV by greater than 10-fold by synthesizing only 2593 peptides, illustrating both its 210 efficiency and cost effectiveness in deciphering immune targets of large pathogens.

211 We chose to use IFN- γ production as a readout for positive epitope reactivity in a 212 fluorospot-based assay to identify HCMV-specific T cell epitopes in this study. As true for 213 most viral infections, CMV drives a strong Th1-like CD4+ response, and most effector 214 and memory viral CD8+ T cells also produce this cytokine (53). However, future studies 215 assessing which of these 235 epitopes may elicit HCMV-specific CD4 T cells to produce 216 other cytokines are merited. Previously, we have observed that Dengue virus epitope-217 specific CD4+ T cells can produce both IFN γ and IL-10 (54), something we have also 218 seen during acute CMV infection in mice (55), where IL-10 producing CD4+ T cells 219 enhance the duration of viral persistence (56). Recent studies by the Wills and Moss 220 groups show that subsets of HCMV epitope-specific CD4+ T cells can produce IL-10 and 221 also display cytolytic markers (57, 58). The potential CTL activity of HCMV-specific CD4+

T cells has been postulated for many years (59), and our recent results showing that CMV epitope-specific CD4 T cells can directly kill *in vivo* support this hypothesis (60). Taken together, our identification of >200 new T cell epitopes that elicit IFN γ production in this study provide us and others in the field valuable new tools to dissect the phenotypes and effector functions of HCMV-specific CD4 T cells in cases of both healthy and immune compromised patients, and will also help instruct ongoing vaccine efforts.

228 Of the 100 ORFs which we show here to be sources of specific T cell epitopes, 41 229 were uniquely identified as ribosome-bound RNAs in HCMV infected fibroblasts (39), with 230 these 41 yielding 50 unique epitopes. Notably, of these 41 ORFs, 17 are predicted to 231 produce proteins <50 amino acids in length, and 7 contain non-ATG start codons. This is 232 consistent with recent studies suggesting that the short/'cryptic' mRNAs present in both 233 virally infected and tumor cells can be translated, proteolytically processed and loaded 234 onto HLA molecules, resulting in the induction of epitope-specific T cell responses (61-235 63). Interestingly, one of the larger 41 ORFs that contains two newly identified T cell 236 epitopes (ORFL147C, 476 amino acids) has very recently been shown to regulate RNA 237 binding/processing, and its deletion compromises CMV replication in fibroblasts (64). 238 Despite >20% of the novel T cell epitopes identified here being derived from these newly 239 described, ribosome-associated HCMV RNAs, no more than 2 of the 19 healthy donors 240 analyzed produce T cells specific for any single one of these epitopes. This indicates that 241 these novel ORFs 1) may not be broad targets of T cell responses in infected persons, 2) 242 that specific individuals may more efficiently present epitopes derived from short/cryptic 243 HCMV RNAs or 3) that minor HLA molecules may present them, with other possibilities 244 also existing. Additionally, whether the proteins derived from these short ORFs are stable

and play a role in the HCMV lifecycle remains an open question. Finally, we also identified
24 epitopes derived from 14 'canonical' HCMV ORFs where the only historic support for
their existence was the presence of their RNA in infected cells or bioinformatic analyses.
Notably, a recent comprehensive study where 169 predicted canonical HCMV proteins
(including these 14) were epitope-tagged, expressed stably in infected cells,
immunoprecipitated and analyzed for interacting proteins by mass spectrometry supports
our results that these ORFs are expressed as proteins (64).

252 Of the 59 canonical ORFs that we have identified here to contain T cell epitopes, 253 >25% of these are known to function as immunomodulatory proteins (65). This is 254 intriguing, as perhaps these HCMV proteins are more subject to being localized to 255 antigen-processing or presentation compartments within infected cells. One of these 256 epitopes is derived from the HCMV IL-10 orthologue, which is being considered as a 257 potential HCMV vaccine candidate (66, 67). Additionally, 3 epitopes were found to be 258 embedded within the viral UL128 protein, a critical component of the pentameric envelope 259 protein complex (UL128-131/gH/gL) that mediates entry of HCMV into non-fibroblast cell 260 types (68, 69). This is also of high potential interest in the context of vaccine development, 261 as many believe the pentamer should be included in a viral- or subunit-based approach 262 (70). Notably, both vIL-10 and UL128 have largely been considered only in the context of 263 their abilities to induce antibody-based vaccine protection, but our identification of T cell 264 epitopes derived from both these HCMV proteins suggests they may function to prime 265 both humoral and cellular immunity.

266

267 Methods

268 Study design

For the initial CMV ORF screen, the responses of 19 CMV-seropositive subjects were evaluated. PBMCs were stimulated with 89 pools covering 563 ORFs of HCMV. Each pool comprised of 28-30 15-mer peptides overlapping by 10 residues. PBMCs that were found reactive to a pool were further tested against individual peptides contained in the pool using IFN- γ Fluorospot assay. Flow cytometry was then used to further characterize the epitopes recognized by PBMCs stimulated with individual peptides by detecting IFN- γ production from CD8+ and CD4+ T cells.

For the CMV-235 validation and comparison screen, the responses of a new cohort consisting of 10 CMV-seropositive and 10 seronegative subjects were evaluated. PBMCs were stimulated with CMV-Mabtech peptide pool (Catalog 3619-1), CMV-IEDB peptide pool (Table 2) (44, 46), CMV-235 pool, or a combination of both CMV-IEDB and CMV-235 pools. PBMC responses were assayed using the same IFN- γ Fluorospot assay. These studies were approved by the institutional review board committee at La Jolla Institute protocol number: VD-112 and VD-174.

283 Subjects

19 subjects (10 males and 9 females) were recruited anonymously from San Diego blood bank (SDBB) for the initial CMV ORF screens. For the CMV-235 comparison screens, samples from 20 subjects (6 males and 14 females) were obtained by La Jolla Institute Clinical Core and Continental Services Group (Miami, FL) for prior, unrelated studies. Blood samples were collected by trained staff. At the time of enrollment in the initial studies, all individual subjects provided informed consent that any leftover sample could be used for future studies, which includes this study. These subjects were

considered healthy as defined by no known history of any significant systemic diseases
(not limited to autoimmune disease, diabetes, kidney or liver disease, congestive heart
failure, malignancy, coagulopathy, hepatitis B or C, or HIV). The demographics of those
subjects are provided in **Table 3**.

The IgG antibodies of the subjects for both cohorts were measured using Cytomegalovirus IgG Elisa kit from Genway Biotech Inc. according to manufacturer's instructions.

298 **Peptide prediction**

Based on the 7-allele method as previously described (40), 2593 peptides were predicted for 563 potential HCMV ORFs. Of the 751 ORFs predicted by ribosomal profiling (39), those smaller than 15 amino acids were excluded, and only one peptide of ORFs 15-20 amino acids in length were selected for screening.

303 Peptide libraries and pool preparation

The predicted peptides were commercially synthesized as crude material by TC Peptide Lab (<u>www.tcpeptidelab.com</u>; San Diego, CA). The peptides were solubilized in DMSO at a concentration of 20 mg/ml and spot checked for quality by mass spectrometry. The peptides were pooled into peptide pools containing 28-30 peptides constituting multiple ORFs per pool. A total of 89 pools were prepared covering 563 ORFs of HCMV. The final concentration of each pool was 0.7 mg/ml.

For the IEDB-II (Table 2) and P235 (Table 1) peptide pools peptides were synthesized by A&A ltd, San Diego, resuspended in DMSO, pooled and sequentially lyophilized as previously described (71). The IEDB-II peptide pool was developed based on data available in the IEDB (<u>www.iedb.org</u>) (41). The MHC class II restricted epitopes

314 for CMV was extracted from the IEDB in October of 2020 using the following query; 315 Organism: human herpesvirus 5 (ID:10359), positive assays only, no B cell assays, MHC 316 restriction type: class II, host: Homo sapiens. The resulting 187 epitopes (table 2) were 317 filtered for size (13-20 amino acids) and discovered using one of the following assays: 318 ELISPOT, ICS, multi- or tetramers, proliferation and "helper response". The CMV peptide 319 pool for human CD4 and CD8 T cells containing 42 peptides (14 MHC class II restricted 320 and 28 MHC class I restricted) representing pp50, pp65, IE1, IE2, and envelope 321 glycoprotein B was purchased from Mabtech.

322 Isolation of PBMC by Ficoll-Paque density gradient centrifugation

323 One-unit blood from each donor was processed for PBMC isolation. Briefly, blood 324 was centrifuged and the top layer of plasma was removed. The remaining blood was 325 diluted and layered over 15 ml of Ficoll-Paque. Tubes were spun at room temperature in 326 a swinging bucket rotor without brake applied. The PBMC interface was carefully removed 327 by pipetting and washed with PBS by centrifugation at 800 rpm for 10 mins with brakes 328 off. PBMC pellet was resuspended in RPMI media, cell number and viability were 329 determined by trypan blue staining and cells were cryopreserved in liquid nitrogen in 330 freezing media (90% Fetal bovine serum and 10% DMSO) at a density of 30 million/ml 331 and stored until further processed.

332 Fluorospot assay

PBMC were thawed, washed and counted for viability using the trypan blue
exclusion method. 200,000 cells were plated in triplicates and stimulated with pools
(2µg/ml) or peptides (10µg/ml), PHA (10µg/ml) or medium containing equivalent amount
of DMSO in 96- well plates (Immubilion-P, Millipore) previously coated with anti IFN-γ

337 antibody (1-D1K, Mabtech, Stockholm, Sweden). After 20 hr incubation at 37°C, cells 338 were discarded and wells were washed six times with PBS/0.05% Tween 20 using an 339 automated plate washer and further incubated with IFN- γ antibody (7-B6-1-FS-BAM) for 340 2 hrs at room temperature. After incubation, wells were washed and incubated with 341 fluorophore conjugated anti-BAM-490 antibody for 1 hr at room temperature. Finally, the 342 plates were washed and incubated with fluorescence enhancer for 15 min, blotted dry 343 and fluorescent spots were counted by computer assisted image analysis (IRIS 344 Fluorospot reader, Mabtech, Sweden).

Each pool or peptide was considered positive compared to the background that had equivalent amount of DMSO based on the following criteria: (i) 20 or more spot forming cells (SFC) per 10^6 PBMC after background subtraction, (ii) the stimulation index greater than 2, and (iii) p<0.05 by student's t test or Poisson distribution test when comparing the peptide or pool triplicates with the negative control triplicate.

350 In

Intracellular cytokine assay for IFN-γ

351 Intracellular staining for IFN- γ and flow cytometry was performed to detect antigen specific T cell responses. 1x10⁶ PBMCs suspended in RPMI medium supplemented with 352 353 1-% heat inactivated human AB serum, glutamine and penicillin streptomycin were plated 354 in U-bottom 96 well plates. After overnight resting at 37°C, PBMCs were spun and 355 replaced with fresh RPMI media and stimulated with individual peptides at a concentration 356 of 10 µg/ml. PHA at a concentration of 5 µg/ml was used as a positive control. After 1 hr 357 of incubation at 37°C, 2µg/ml of Brefeldin was added and cell were further incubated at 358 37°C for additional 5 hrs. The cells were then harvested, washed with 200 µl of MACS 359 Buffer and stained with a cocktail of antibodies that contained CD3-Af700 (eBioscience,

360 clone UCHT1). CD4-APCef780 (eBioscience, clone RPA-T4). CD8-BV650 (Biolegend, 361 clone RPA-T8), CD14-V500 (BD Biosciences, clone M5E2), CD19-V500 (BD 362 Biosciences, clone HIB19), and fixable viability dye-e506 for 30 min at 4°C. The cells 363 were then washed thrice with 200 µl MACS buffer, fixed using 4% PFA for 10 mins at 4°C, 364 washed with 200 µl PBS and rested at 4°C overnight in 200 µl MACS buffer. The following 365 day, cells were washed, permeabilized by washing with 200 µl saponin buffer (0.5 % 366 saponin in PBS), washed with blocking buffer (10% human serum prepared in saponin 367 buffer) and stained with IFN- γ -FITC (eBioscience, clone 4S.B3) antibody at room 368 temperature for 30 mins. The cells were finally washed with PBS and suspended in 200 369 µl PBS.

The cells were acquired on ZE5 Biorad plate reader and further analysis was done on FlowJo software. Gates were applied on live single cells for CD3+, CD4+ and CD8+ T cell populations. The percentage of reactive CD4+ or CD8+ IFN- γ T cells were expressed as a percent of the total number of parent population analyzed. Reactive populations met the following 2 criteria: (i) well-defined cell population positive for both IFN- γ and CD4 or CD8 constituting at least 0.02% (post subtracting their corresponding DMSO controls) of the total number of CD4+ or CD8+ cells analyzed (ii) stimulation index greater than 2.

377 Activation induced marker (AIM) assay

PBMC were thawed, washed and counted for viability using the trypan blue exclusion method. 1 million cells per donor/condition were plated and cultured in the presence of the CMV specific pools (1µg/mL for P235 and IEDB-II, 2µg/mL for Mabtech pool), PHA (10µg/mL), or medium containing equivalent amount of DMSO in 96-well Ubottom plates. Cells were then harvested, washed with 200µl of MACS Buffer and stained

with a cocktail of antibodies that contained CD3-Af700 (eBioscience, clone UCHT1), CD4BV605 (eBioscience , clone RPA-T4), CD8-PerCP-Cy5.5 (Biolegend, clone HIT8a),
CD14-V500 (BD Biosciences, clone M5E2), CD19-V500 (BD Biosciences, clone HIB19),
OX40-PE-Cy7 (Ber-ACT35), CD137-APC (4B4-1), and fixable viability dye-e506 for 30
min at 4°C. The cells were then washed thrice with 200 µl MACS buffer, fixed using 4%
PFA for 10 mins at 4°C, and resuspended in 200 µl of PBS for acquisition.

389 Cells were acquired on a BD LSRFortessa and further analysis was done on 390 FlowJo software. As previously described (44, 72), quantification of live, singlet antigen 391 specific CD4 T cells was determined as a percentage of their OX40+CD137+ expression 392 (AIM+). CMV specific AIM+ CD4 T cell signals were background subtracted with their 393 corresponding negative control DMSO samples, with a minimal DMSO level set to 394 0.005%. The limit of detection (LOD) for the AIM+ assay was calculated by multiplying 395 the upper confidence interval of the geometric mean of all DMSO samples by 2 (0.03).

- 396 Statistical analysis
- 397 Statistical analyses were performed using GraphPad Prism versions 8.1.1 and
 398 8.4.3. Statistical details are provided with each figure.
- 399

400

- 401
- 402
- 403
- 404

406 Acknowledgement

- 407 We would also like to thank all donors that participated in the study. We also thank the
- 408 La Jolla Institute for Immunology Clinical Studies Group and Flow Cytometry Core for all
- 409 the invaluable help.
- 410

411 **Author contribution**

- 412 AS and CAB conceived the study. RD and GW performed the experiments and
- 413 analyzed the data. SKD performed peptide prediction, JP processed blood samples,
- 414 RD, GW, and GP conducted ELISA, JS helped with the quality check of synthesized
- 415 peptides, AG designed the IEDB-II pool, CLA, AS, CAB directed the study, RD, AS,
- 416 CAB wrote the manuscript taking input from other authors.
- 417

418 Funding

- 419 This work was supported by NIH Grants AI139749 and AI101423 to C.A.B, and NIH
- 420 contracts 75N93019C00065 to A.S. and 75N93019C00067 to C.L.A.
- 421

422 **Conflict of interest**

423 The authors declare that they have no conflict of interest.

- 425
- 426
- 427
- 428

429

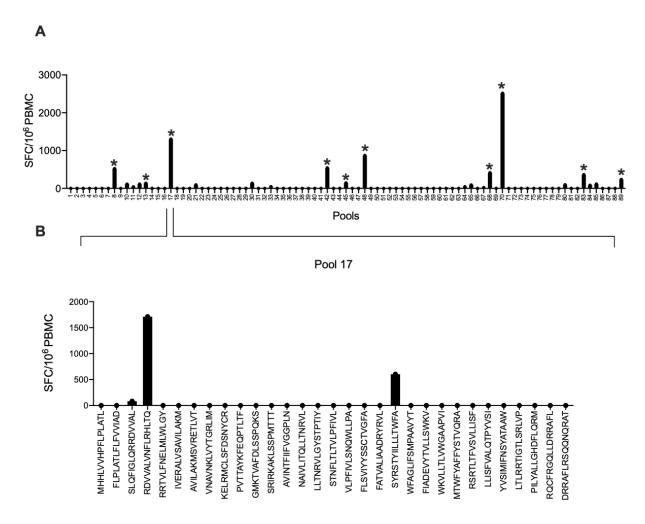
430 **References**

- Collins-McMillen D, Buehler J, Peppenelli M, Goodrum F. 2018. Molecular
 Determinants and the Regulation of Human Cytomegalovirus Latency and Reactivation.
 Viruses 10.
- 434 2. Hargett D, Shenk TE. 2010. Experimental human cytomegalovirus latency in CD14+
 435 monocytes. Proc Natl Acad Sci U S A 107:20039-44.
- 436
 3. Chaturvedi S, Klein J, Vardi N, Bolovan-Fritts C, Wolf M, Du K, Mlera L, Calvert M,
 437 Moorman NJ, Goodrum F, Huang B, Weinberger LS. 2020. A molecular mechanism for
 438 probabilistic bet hedging and its role in viral latency. Proc Natl Acad Sci U S A
 439 117:17240-17248.
- 440 4. Davison AJ, Dolan A, Akter P, Addison C, Dargan DJ, Alcendor DJ, McGeoch DJ,
 441 Hayward GS. 2003. The human cytomegalovirus genome revisited: comparison with the
 442 chimpanzee cytomegalovirus genome. J Gen Virol 84:17-28.
- Mattes FM, Vargas A, Kopycinski J, Hainsworth EG, Sweny P, Nebbia G, Bazeos A,
 Lowdell M, Klenerman P, Phillips RE, Griffiths PD, Emery VC. 2008. Functional
 impairment of cytomegalovirus specific CD8 T cells predicts high-level replication after
 renal transplantation. Am J Transplant 8:990-9.
- Walker S, Fazou C, Crough T, Holdsworth R, Kiely P, Veale M, Bell S, Gailbraith A,
 McNeil K, Jones S, Khanna R. 2007. Ex vivo monitoring of human cytomegalovirusspecific CD8+ T-cell responses using QuantiFERON-CMV. Transpl Infect Dis 9:165-70.
- 7. Clarke LM, Duerr A, Feldman J, Sierra MF, Daidone BJ, Landesman SH. 1996. Factors
 associated with cytomegalovirus infection among human immunodeficiency virus type 1seronegative and -seropositive women from an urban minority community. J Infect Dis
 173:77-82.
- 8. Doyle M, Atkins JT, Rivera-Matos IR. 1996. Congenital cytomegalovirus infection in
 infants infected with human immunodeficiency virus type 1. Pediatr Infect Dis J 15:11026.
- 457 9. Duryea EL, Sanchez PJ, Sheffield JS, Jackson GL, Wendel GD, McElwee BS, Boney LF,
 458 Mallory MM, Owen KE, Stehel EK. 2010. Maternal human immunodeficiency virus
 459 infection and congenital transmission of cytomegalovirus. Pediatr Infect Dis J 29:915-8.
- 460 10. Kovacs A, Schluchter M, Easley K, Demmler G, Shearer W, La Russa P, Pitt J, Cooper
 461 E, Goldfarb J, Hodes D, Kattan M, McIntosh K. 1999. Cytomegalovirus infection and
- 462 HIV-1 disease progression in infants born to HIV-1-infected women. Pediatric
- 463 Pulmonary and Cardiovascular Complications of Vertically Transmitted HIV Infection
 464 Study Group. N Engl J Med 341:77-84.
- Schoenfisch AL, Dollard SC, Amin M, Gardner LI, Klein RS, Mayer K, Rompalo A,
 Sobel JD, Cannon MJ. 2011. Cytomegalovirus (CMV) shedding is highly correlated with
 markers of immunosuppression in CMV-seropositive women. J Med Microbiol 60:768774.
- 469 12. Demmler-Harrison GJ. 2009. Congenital cytomegalovirus: Public health action towards awareness, prevention, and treatment. J Clin Virol 46 Suppl 4:S1-5.

471 472 473 474	13. 14.	Jeon J, Victor M, Adler SP, Arwady A, Demmler G, Fowler K, Goldfarb J, Keyserling H, Massoudi M, Richards K, Staras SA, Cannon MJ. 2006. Knowledge and awareness of congenital cytomegalovirus among women. Infect Dis Obstet Gynecol 2006:80383. Fowler KB, Stagno S, Pass RF, Britt WJ, Boll TJ, Alford CA. 1992. The outcome of
475 476		congenital cytomegalovirus infection in relation to maternal antibody status. N Engl J Med 326:663-7.
470 477	15.	Ross SA, Fowler KB, Ashrith G, Stagno S, Britt WJ, Pass RF, Boppana SB. 2006.
477	13.	Hearing loss in children with congenital cytomegalovirus infection born to mothers with
478 479		preexisting immunity. J Pediatr 148:332-6.
479	16.	Fowler KB, Boppana SB. 2006. Congenital cytomegalovirus (CMV) infection and
480 481	10.	hearing deficit. J Clin Virol 35:226-31.
482	17.	Ross SA, Boppana SB. 2005. Congenital cytomegalovirus infection: outcome and
483	1/.	diagnosis. Semin Pediatr Infect Dis 16:44-9.
484	18.	Britt WJ. 2018. Maternal Immunity and the Natural History of Congenital Human
485	10.	Cytomegalovirus Infection. Viruses 10.
486	19.	Griffiths PD. 2002. Strategies to prevent CMV infection in the neonate. Semin Neonatol
487		7:293-9.
488	20.	Kimberlin DW, Lin CY, Sanchez PJ, Demmler GJ, Dankner W, Shelton M, Jacobs RF,
489		Vaudry W, Pass RF, Kiell JM, Soong SJ, Whitley RJ, National Institute of A, Infectious
490		Diseases Collaborative Antiviral Study G. 2003. Effect of ganciclovir therapy on hearing
491		in symptomatic congenital cytomegalovirus disease involving the central nervous system:
492		a randomized, controlled trial. J Pediatr 143:16-25.
493	21.	Michaels MG, Greenberg DP, Sabo DL, Wald ER. 2003. Treatment of children with
494		congenital cytomegalovirus infection with ganciclovir. Pediatr Infect Dis J 22:504-9.
495	22.	Whitley RJ, Cloud G, Gruber W, Storch GA, Demmler GJ, Jacobs RF, Dankner W,
496		Spector SA, Starr S, Pass RF, Stagno S, Britt WJ, Alford C, Jr., Soong S, Zhou XJ,
497		Sherrill L, FitzGerald JM, Sommadossi JP. 1997. Ganciclovir treatment of symptomatic
498		congenital cytomegalovirus infection: results of a phase II study. National Institute of
499		Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis
500		175:1080-6.
501	23.	Benedict CA. 2013. A CMV vaccine: TREATing despite the TRICKs. Expert Rev
502	• •	Vaccines 12:1235-7.
503	24.	Permar SR, Schleiss MR, Plotkin SA. 2018. Advancing Our Understanding of Protective
504		Maternal Immunity as a Guide for Development of Vaccines To Reduce Congenital
505	25	Cytomegalovirus Infections. J Virol 92.
506	25.	Plotkin SA, Boppana SB. 2019. Vaccination against the human cytomegalovirus. Vaccine
507 508	26.	37:7437-7442. Li CR, Greenberg PD, Gilbert MJ, Goodrich JM, Riddell SR. 1994. Recovery of HLA-
508 509	20.	restricted cytomegalovirus (CMV)-specific T-cell responses after allogeneic bone
510		marrow transplant: correlation with CMV disease and effect of ganciclovir prophylaxis.
511		Blood 83:1971-9.
512	27.	Quinnan GV, Jr., Kirmani N, Rook AH, Manischewitz JF, Jackson L, Moreschi G,
512	27.	Santos GW, Saral R, Burns WH. 1982. Cytotoxic t cells in cytomegalovirus infection:
514		HLA-restricted T-lymphocyte and non-T-lymphocyte cytotoxic responses correlate with
515		recovery from cytomegalovirus infection in bone-marrow-transplant recipients. N Engl J
516		Med 307:7-13.

Reusser P, Riddell SR, Meyers JD, Greenberg PD. 1991. Cytotoxic T-lymphocyte
response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern
of recovery and correlation with cytomegalovirus infection and disease. Blood 78:137380.

- Smith CJ, Quinn M, Snyder CM. 2016. CMV-Specific CD8 T Cell Differentiation and Localization: Implications for Adoptive Therapies. Front Immunol 7:352.
- 30. Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR,
 Grabstein KH, Hosken NA, Kern F, Nelson JA, Picker LJ. 2005. Broadly targeted human
 cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments
 of exposed subjects. J Exp Med 202:673-85.
- Kern F, Bunde T, Faulhaber N, Kiecker F, Khatamzas E, Rudawski IM, Pruss A,
 Gratama JW, Volkmer-Engert R, Ewert R, Reinke P, Volk HD, Picker LJ. 2002.
 Cytomegalovirus (CMV) phosphoprotein 65 makes a large contribution to shaping the T
 cell repertoire in CMV-exposed individuals. J Infect Dis 185:1709-16.
- 531 32. Kern F, Surel IP, Faulhaber N, Frommel C, Schneider-Mergener J, Schonemann C,
 532 Reinke P, Volk HD. 1999. Target structures of the CD8(+)-T-cell response to human
 533 cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol
 534 73:8179-84.
- 535 33. Khan N, Best D, Bruton R, Nayak L, Rickinson AB, Moss PA. 2007. T cell recognition
 536 patterns of immunodominant cytomegalovirus antigens in primary and persistent
 537 infection. J Immunol 178:4455-65.
- 538 34. Khan N, Cobbold M, Keenan R, Moss PA. 2002. Comparative analysis of CD8+ T cell
 539 responses against human cytomegalovirus proteins pp65 and immediate early 1 shows
 540 similarities in precursor frequency, oligoclonality, and phenotype. J Infect Dis 185:1025541 34.
- 542 35. Elkington R, Walker S, Crough T, Menzies M, Tellam J, Bharadwaj M, Khanna R. 2003.
 543 Ex vivo profiling of CD8+-T-cell responses to human cytomegalovirus reveals broad and 544 multispecific reactivities in healthy virus carriers. J Virol 77:5226-40.
- 545 36. Elkington R, Shoukry NH, Walker S, Crough T, Fazou C, Kaur A, Walker CM, Khanna
 546 R. 2004. Cross-reactive recognition of human and primate cytomegalovirus sequences by
 547 human CD4 cytotoxic T lymphocytes specific for glycoprotein B and H. Eur J Immunol
 548 34:3216-26.
- 549 37. Paston SJ, Dodi IA, Madrigal JA. 2004. Progress made towards the development of a
 550 CMV peptide vaccine. Hum Immunol 65:544-9.
- 55138.Fuhrmann S, Streitz M, Reinke P, Volk HD, Kern F. 2008. T cell response to the552cytomegalovirus major capsid protein (UL86) is dominated by helper cells with a large553polyfunctional component and diverse epitope recognition. J Infect Dis 197:1455-8.
- Stern-Ginossar N, Weisburd B, Michalski A, Le VT, Hein MY, Huang SX, Ma M, Shen
 B, Qian SB, Hengel H, Mann M, Ingolia NT, Weissman JS. 2012. Decoding human
 cytomegalovirus. Science 338:1088-93.
- 40. Paul S, Lindestam Arlehamn CS, Scriba TJ, Dillon MB, Oseroff C, Hinz D, McKinney
 DM, Carrasco Pro S, Sidney J, Peters B, Sette A. 2015. Development and validation of a
 broad scheme for prediction of HLA class II restricted T cell epitopes. J Immunol
 Methods 422:28-34.


561 41. Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette
562 A, Peters B. 2019. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids
563 Res 47:D339-D343.

- Bancroft T, Dillon MB, da Silva Antunes R, Paul S, Peters B, Crotty S, Lindestam
 Arlehamn CS, Sette A. 2016. Th1 versus Th2 T cell polarization by whole-cell and
 acellular childhood pertussis vaccines persists upon re-immunization in adolescence and
 adulthood. Cell Immunol 304-305:35-43.
- da Silva Antunes R, Paul S, Sidney J, Weiskopf D, Dan JM, Phillips E, Mallal S, Crotty
 S, Sette A, Lindestam Arlehamn CS. 2017. Definition of Human Epitopes Recognized in
 Tetanus Toxoid and Development of an Assay Strategy to Detect Ex Vivo Tetanus CD4+
 T Cell Responses. PLoS One 12:e0169086.
- Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA,
 Sutherland A, Premkumar L, Jadi RS, Marrama D, de Silva AM, Frazier A, Carlin AF,
 Greenbaum JA, Peters B, Krammer F, Smith DM, Crotty S, Sette A. 2020. Targets of T
 Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and
- 576 Unexposed Individuals. Cell 181:1489-1501 e15.
- 577 45. Lindestam Arlehamn CS, McKinney DM, Carpenter C, Paul S, Rozot V, Makgotlho E,
 578 Gregg Y, van Rooyen M, Ernst JD, Hatherill M, Hanekom WA, Peters B, Scriba TJ,
 579 Sette A. 2016. A Quantitative Analysis of Complexity of Human Pathogen-Specific CD4
 580 T Cell Responses in Healthy M. tuberculosis Infected South Africans. PLoS Pathog
 581 12:e1005760.
- Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA,
 Smith DM, Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu
 ED, da Silva Antunes R, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva
 A, Peters B, Crotty S, Sette A, Weiskopf D. 2020. Selective and cross-reactive SARSCoV-2 T cell epitopes in unexposed humans. Science 370:89-94.
- 587 47. Nielsen M, Justesen S, Lund O, Lundegaard C, Buus S. 2010. NetMHCIIpan-2.0 588 Improved pan-specific HLA-DR predictions using a novel concurrent alignment and
 589 weight optimization training procedure. Immunome Res 6:9.
- 590 48. Nielsen M, Lund O. 2009. NN-align. An artificial neural network-based alignment
 591 algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 10:296.
- 49. Paul S, Kolla RV, Sidney J, Weiskopf D, Fleri W, Kim Y, Peters B, Sette A. 2013.
 593 Evaluating the immunogenicity of protein drugs by applying in vitro MHC binding data 594 and the immune epitope database and analysis resource. Clin Dev Immunol 2013:467852.
- 595 50. Salimi N, Fleri W, Peters B, Sette A. 2012. The immune epitope database: a historical retrospective of the first decade. Immunology 137:117-23.
- 597 51. Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B. 2010. Peptide binding 598 predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11:568.
- 599 52. Dhanda SK, Karosiene E, Edwards L, Grifoni A, Paul S, Andreatta M, Weiskopf D,
 600 Sidney J, Nielsen M, Peters B, Sette A. 2018. Predicting HLA CD4 Immunogenicity in
 601 Human Populations. Front Immunol 9:1369.
- 53. Lim EY, Jackson SE, Wills MR. 2020. The CD4+ T Cell Response to Human
 Cytomegalovirus in Healthy and Immunocompromised People. Front Cell Infect
 Microbiol 10:202.
- 54. Tian Y, Seumois G, De-Oliveira-Pinto LM, Mateus J, Herrera-de la Mata S, Kim C, Hinz
 D, Goonawardhana NDS, de Silva AD, Premawansa S, Premawansa G, Wijewickrama A,

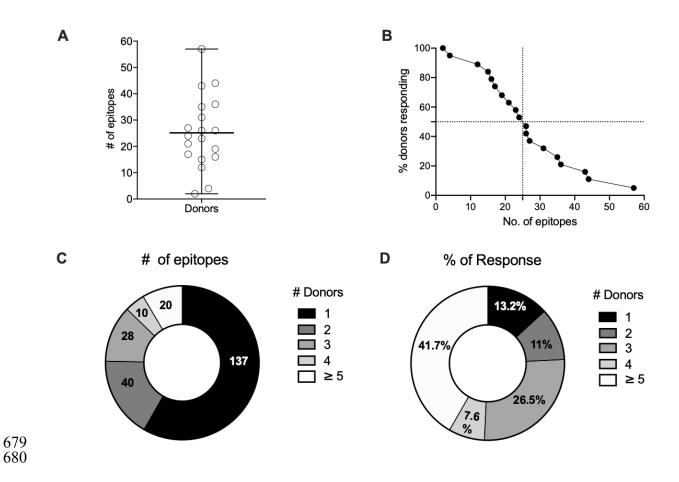
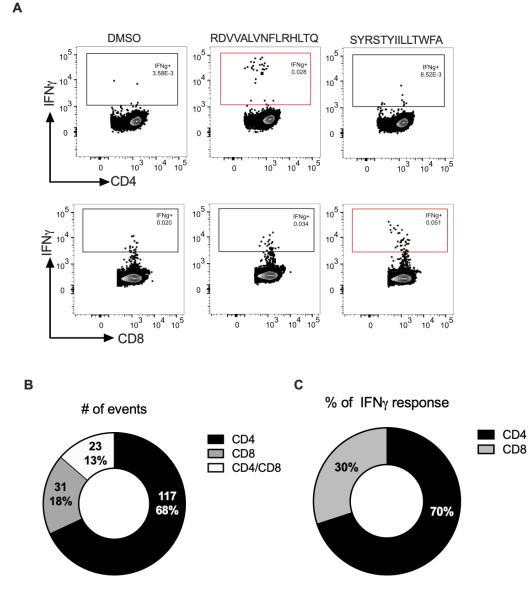
607		Balmaseda A, Grifoni A, Vijayanand P, Harris E, Peters B, Sette A, Weiskopf D. 2019.
608		Molecular Signatures of Dengue Virus-Specific IL-10/IFN-gamma Co-producing CD4 T
609		Cells and Their Association with Dengue Disease. Cell Rep 29:4482-4495 e4.
610	55.	Wehrens EJ, Wong KA, Gupta A, Khan A, Benedict CA, Zuniga EI. 2018. IL-27
611	00.	regulates the number, function and cytotoxic program of antiviral CD4 T cells and
612		promotes cytomegalovirus persistence. PLoS One 13:e0201249.
613	56.	Humphreys IR, de Trez C, Kinkade A, Benedict CA, Croft M, Ware CF. 2007.
614		Cytomegalovirus exploits IL-10-mediated immune regulation in the salivary glands. J
615		Exp Med 204:1217-25.
616	57.	Jackson SE, Sedikides GX, Mason GM, Okecha G, Wills MR. 2017. Human
617		Cytomegalovirus (HCMV)-Specific CD4(+) T Cells Are Polyfunctional and Can
618		Respond to HCMV-Infected Dendritic Cells In Vitro. J Virol 91.
619	58.	Pachnio A, Ciaurriz M, Begum J, Lal N, Zuo J, Beggs A, Moss P. 2016.
620		Cytomegalovirus Infection Leads to Development of High Frequencies of Cytotoxic
621		Virus-Specific CD4+ T Cells Targeted to Vascular Endothelium. PLoS Pathog
622		12:e1005832.
623	59.	van Leeuwen EM, Remmerswaal EB, Vossen MT, Rowshani AT, Wertheim-van Dillen
624		PM, van Lier RA, ten Berge IJ. 2004. Emergence of a CD4+CD28- granzyme B+,
625		cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus
626		infection. J Immunol 173:1834-41.
627	60.	Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, Benedict CA. 2016.
628		Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J
629		Virol 90:650-8.
630	61.	Erhard F, Dolken L, Schilling B, Schlosser A. 2020. Identification of the Cryptic HLA-I
631	(\mathbf{a})	Immunopeptidome. Cancer Immunol Res 8:1018-1026.
632	62.	Erhard F, Halenius A, Zimmermann C, L'Hernault A, Kowalewski DJ, Weekes MP,
633		Stevanovic S, Zimmer R, Dolken L. 2018. Improved Ribo-seq enables identification of
634	(2)	cryptic translation events. Nat Methods 15:363-366.
635	63.	Laumont CM, Perreault C. 2018. Exploiting non-canonical translation to identify new
636	61	targets for T cell-based cancer immunotherapy. Cell Mol Life Sci 75:607-621.
637 638	64.	Nobre LV, Nightingale K, Ravenhill BJ, Antrobus R, Soday L, Nichols J, Davies JA,
639		Seirafian S, Wang EC, Davison AJ, Wilkinson GW, Stanton RJ, Huttlin EL, Weekes MP. 2019. Human cytomegalovirus interactome analysis identifies degradation hubs, domain
640		associations and viral protein functions. Elife 8.
641	65.	Picarda G, Benedict CA. 2018. Cytomegalovirus: Shape-Shifting the Immune System. J
642	05.	Immunol 200:3881-3889.
643	66.	Deere JD, Chang WLW, Villalobos A, Schmidt KA, Deshpande A, Castillo LD, Fike J,
644	00.	Walter MR, Barry PA, Hartigan-O'Connor DJ. 2019. Neutralization of rhesus
645		cytomegalovirus IL-10 reduces horizontal transmission and alters long-term immunity.
646		Proc Natl Acad Sci U S A 116:13036-13041.
647	67.	Eberhardt MK, Deshpande A, Chang WL, Barthold SW, Walter MR, Barry PA. 2013.
648	<i></i>	Vaccination against a virus-encoded cytokine significantly restricts viral challenge. J
649		Virol 87:11323-31.
650	68.	Nguyen CC, Kamil JP. 2018. Pathogen at the Gates: Human Cytomegalovirus Entry and
651		Cell Tropism. Viruses 10.
		-

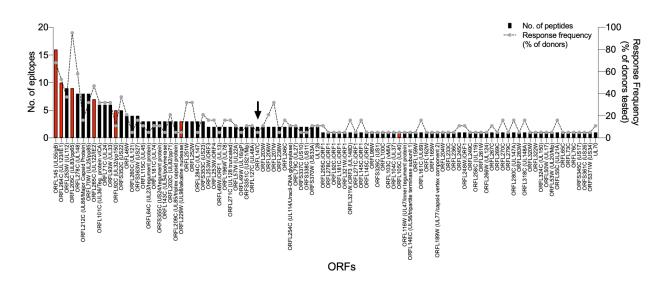
652	69.	Vanarsdall AL, Johnson DC. 2012. Human cytomegalovirus entry into cells. Curr Opin
653		Virol 2:37-42.
654	70.	Gerna G, Lilleri D. 2019. Human cytomegalovirus (HCMV) infection/re-infection:
655		development of a protective HCMV vaccine. New Microbiol 42:1-20.
656	71.	Carrasco Pro S, Sidney J, Paul S, Lindestam Arlehamn C, Weiskopf D, Peters B, Sette A.
657		2015. Automatic Generation of Validated Specific Epitope Sets. J Immunol Res
658		2015:763461.
659	72.	Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt
660		S, Frazier A, Nakao C, Rayaprolu V, Rawlings SA, Peters B, Krammer F, Simon V,
661		Saphire EO, Smith DM, Weiskopf D, Sette A, Crotty S. 2021. Immunological memory to
662		SARS-CoV-2 assessed for up to 8 months after infection. Science 371.
663		-
664		
665		
666		
667		
668		

669 Figures

670

Fig. 1 Strategy for HCMV epitope-specific T cell identification: PBMCs from HCMV seropositive subjects were stimulated with 2 μ g/ml pools and plated on IFN- γ coated fluorospot plates for 20 hours. The top 10 positive pools (indicated by * on bars) were deconvoluted to identify individual epitopes. PBMC were stimulated with 10 μ g/ml of each individual peptide contained in the pool and reactivity was measured by IFN- γ fluorospot assay. (A) SFC/10⁶ PBMC for one representative subject against the 89 peptide pools (B) Deconvoluted pool representing individual peptides.


Fig. 2 Breadth and dominance of HCMV T cell responses: (A) The number of epitopes
recognized by each donor, mean ± range. (B) Proportion of the 19 donors that responded
to the indicated number of epitopes. (C) Epitopes by number of responding donors. (D)

684 epitope % of total response by number of responding donors.

Fig. 3 Phenotypic characterization of HCMV T cell responses: (A) Representative FACS plots for intracellular IFN- γ production by CD4+ and CD8+ T cells (gating axis in red) upon stimulation with two of the scoring peptide epitopes that induced them (B and C). The number of events and % response attributable to CD4+ and CD8+ T cell responses of dominant epitopes (n=58) that demonstrated response frequency of 0.15 (15%) (i.e recognized by 3 or more donors).

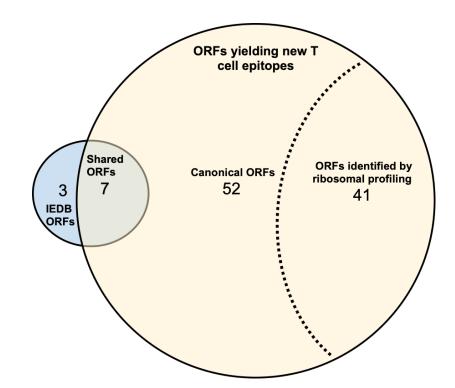
700 **Fig. 4 T cell epitope distribution by ORF of origin:** 235 epitopes mapped to 100

701 ORFs. Left Y axis denotes the number of epitopes associated with each ORF (bars) and

right Y axis denotes the response frequency associated with each ORF (dotted line).

703 Seven canonical ORFs that were common in IEDB and the present screen are denoted

in red. ORFL147C (arrow) is the first 'novel' ORF identified by rRNA profiling from left-


to-right, and only induces responses in 2/19 individuals tested.

706

699

707

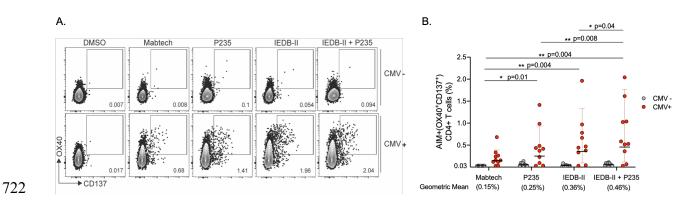
708

this T cell epitope screen. New epitopes were identified in all 100 ORFS, including 7

713 ORFs previously reported in the IEDB to be targets of T cell responses. Of the 93 ORFs

found to be new targets of T cells, 52 were canonical and 41 were 'novel' as identified

715 by recent ribosomal mRNA profiling studies.

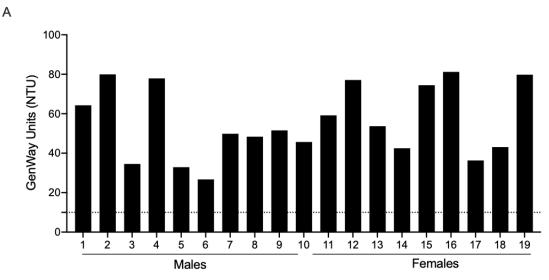

716

717

718

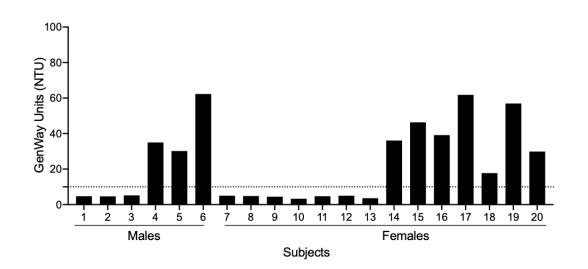
719

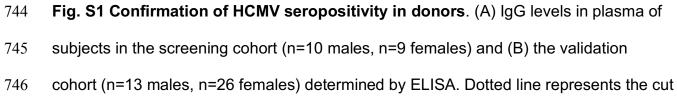
720

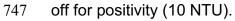

723 Fig. 6 Epitope specific CD4+ T cell responses in HCMV+ and HCMV- subjects 724 detected with different peptide pools: (A) Representative FACS plots showing HCMV 725 specific CD4+ T cell reactivity against different peptide pools based on activation-induced 726 marker assays (OX40+ and CD137+ double expression). PBMCs from HCMV+ (red 727 circles) and CMV- donors (grey circles) were stimulated with 2 µg/ml of the Mabtech pool 728 or IEDB-II/P235 pools for 24 hrs. (B) Epitope-pool specific CD4+ T cells measured as 729 percentage of activation-induced marker assay positive (OX40+ CD137+) CD4+ T cells. 730 Each dot represents an individual subject. HCMV+ subjects demonstrated significantly 731 higher CD4+ T cell AIM responses than HCMV- subjects with all the different pools tested. 732 Mabtech HCMV+ vs HCMV- p=0.0007; P235 HCMV+ vs HCMV- p=0.0065; IEDB-II 733 CMV+ vs CMV- p=0.0009; P235/IEDB-II CMV+ vs CMV- p=0.004. Two-tailed Mann-734 Whitney test. Comparisons across different pool formulations within the CMV+ were 735 made using the Wilcoxon matched-pairs signed ranked test, Two-tailed p values are 736 shown in the Figure; Geometric mean with geometric standard deviation.

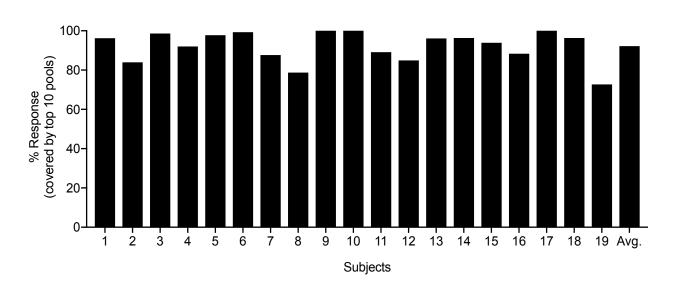
737

- 738
- 739
- 740


741 Supplementary figures


742




Subjects

748

Fig. S2 The total T cell response captured by the top 10 epitope pools in each subject. The response magnitude of the top 10 pools as a percentage of the total response magnitude observed from all positive pools. On average, the top 10 pools accounted for ~90 % of each subject's total response.

753

754

755

756

757

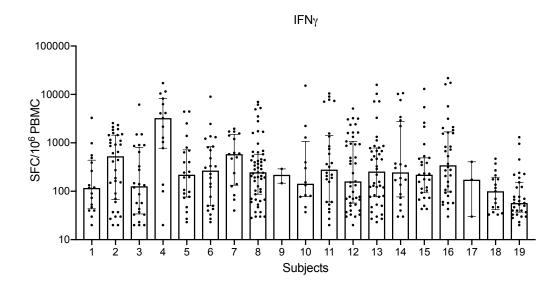
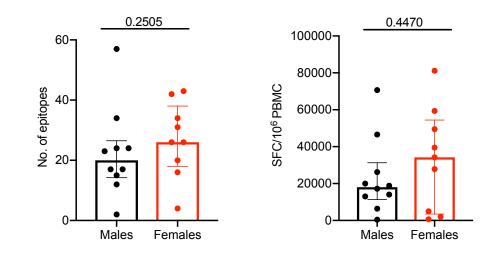



Fig. S3 Response magnitude of each epitope identified in HCMV seropositive individuals: Each dot represents an epitope. Y axis represents the response magnitude of individual epitopes. X axis represents each subject. Median \pm interquartile range is shown.

759

Fig. S4 Frequency and magnitude of response in males and females: Each dot
represents a donor. Black dot/bar represents males and red dot/bar represents females.
Median with interquartile range is displayed. Two-tailed Mann-Whitney test.

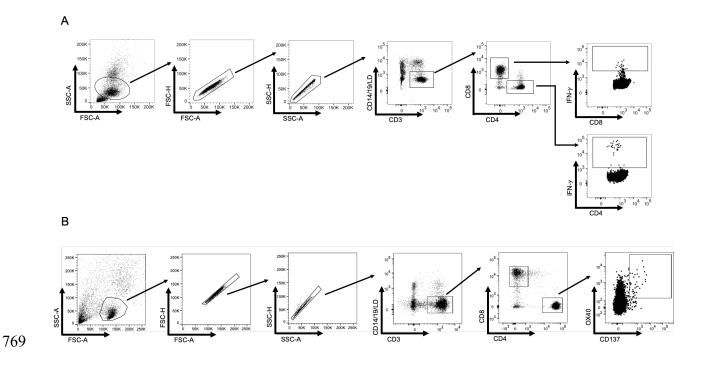


Fig. S5 Gating strategy adopted in IFN-γ Fluorospot and AIM assay: (A) Human PBMCs isolated from HCMV+ subjects were stimulated with each scoring peptide to identify HCMV-specific IFN-γ producing CD4+ and CD8+ T cells. (B) Human PBMCs isolated from HCMV+ and HCMV- subjects were stimulated with each megapool generated to identify HCMV-specific activation-induced marker assay positive (OX40+ CD137+) CD4+ T cells.

776

777

778

779

780

781

782

783 Table 1: Details of HCMV specific 235 epitopes identified in the screen.

S. No	Peptide sequence	Peptide	ORF(s)	No. of subjects	Magnitude of
		length		responding	response
			ORFL46W,		
1	NGIRWQYQELQYLVE	15	ORFL46W.iORF1_(UL13),	2	222
			ORFL46W.iORF2		
			ORFL46W,		
2	RYNALTVRSRDSLLL	15	ORFL46W.iORF1_(UL13),	2	204
			ORFL46W.iORF2		
			ORFL46W,		
3	RVRTWFVQRTTLWRR	15	ORFL46W.iORF1_(UL13),	1	60
			ORFL46W.iORF2		
			ORFL46W,		
4	GLWVSSYLVRRPMTI	15	ORFL46W.iORF1_(UL13),	2	890
			ORFL46W.iORF2		
5	QGATYQLSIVRQAMQ	15	ORFL46W.iORF1_(UL13)	1	650
6	GAGLRQLRQQLTVRW	15	ORFL46W.iORF2	1	20
7	MRTVPVTKLYTSRMV	15	ORFL49W_(UL16)(UL16P?)	1	5677
8	AITLFFFLLALRIPQ	15	ORFL49W.iORF1	1	207
9	ALFTHFVGRPRHCRL	15	ORFL50W_(UL17)	1	57
10	MLGIRAMLVMLDYYW	15	ORFL53W_(UL20)	1	350
11	PSVRMDFRARRPLRR	15	ORFL55C_(UL21A)	3	1740
40	ARRLWILSLLAVTLT	15	ORFL57W_(UL22A),	1	400
12			ORFL57W.iORF1		100
13	LLAVTLTVALAAPSQ	15	ORFL57W_(UL22A)	2	6420
14	KDRCLVIRRRWRLVR	15	ORFL64C_(UL23)	1	60

15	FVAESITEFLNIGLR	15	ORFL64C_(UL23)	1	530
16	HENGIYYGTRSMRKL	15	ORFL64C_(UL23), ORFL64C.iORF1	1	827
17	FCRRFFFPDRPDFFL	15	ORFL65C	1	107
18	AEDSVFTSTRARSAT	15	ORFL70W_(UL25)	1	490
19	KFVLQDFDVQHLRRL	15	ORFL70W_(UL25)	1	40
20	IINYYYVAQKKARHM	15	ORFL70W_(UL25)	1	163
21	ALALHFLTSRKGVTD	15	ORFL70W_(UL25)	1	40
22	LMITHFQRTIRVLRC	15	ORFL70W_(UL25)	3	2421
23	DFLRVVRQQDAFICT	15	ORFL70W_(UL25)	2	174
24	ICVARLQAQPSSRHI	15	ORFL70W_(UL25)	1	37
25	GVSSVTLLKIFSQVP	15	ORFL70W_(UL25)	2	220
26	VLATLAAVRTRRRSV	15	ORFL71C, ORFL71C.iORF1 (UL24)	2	340
27	EAYVRINAGQVLPVV	15	ORFL71C, ORFL71C.iORF1 (UL24)	1	1853
28	LHCMRYLTSSLVKRY	15	ORFL71C	1	150
29	KRYFRPLLRAWSLGL	15	ORFL71C, ORFL71C.iORF1 (UL24)	4	1388
30	HLLRNIKTAFGMRVL	15	ORFL71C, ORFL71C.iORF1 (UL24)	2	1093
31	ARNLMEFARVGLRAV	15	ORFL71C.iORF1 (UL24)	1	1450
32	TGLVLLLLLVVRLL	15	ORFL73C	1	1440
33	MLFRPTISNSIPRCR	15	ORFL76C	1	47
34	LRIIRLLRASIRHEY	15	ORFL79C_(UL27)	1	810
35	RAHIQKFERLHVRRF	15	ORFL79C_(UL27)	1	2523
36	SLQFIGLQRRDVVAL	15	ORFL92C_(UL32)	1	83

37	RDVVALVNFLRHLTQ	15	ORFL92C_(UL32)	1	1710
38	RRTVLFNELMLWLGY	15	ORFL92C_(UL32)	1	180
39	VNAVNKLVYTGRLIM	15	ORFL92C_(UL32)	1	340
40	KELRMCLSFDSNYCR	15	ORFL92C_(UL32)	1	127
41	GMKTVAFDLSSPQKS	15	ORFL92C.iORF1	1	193
42	NAIVLITQLLTNRVL	15	ORFL93W_(UL33)	1	37
43	STNFLTLTVLPFIVL	15	ORFL93W_(UL33)	1	63
44	VLPFIVLSNQWLLPA	15	ORFL93W_(UL33)	1	247
45	FATVALIAADRYRVL	15	ORFL93W_(UL33)	4	2310
46	SYRSTYIILLLTWFA	15	ORFL93W_(UL33)	3	3990
47	LTLRRTIGTLSRLVP	15	ORFL93W_(UL33)	1	163
48	RRRMVSVTLFSPYSV	15	ORFL98W.iORF1, ORFL98W.iORF2	1	53
49	GRLMEVRQRNGRLRR	15	ORFL100C	1	30
50	WPERCFIQLRSRSAL	15	ORFL101C, ORFL101C.iORF1_(UL36)	3	313
51	GPGFMRYQLIVLIGQ	15	ORFL101C, ORFL101C.iORF1_(UL36)	1	3167
52	IQTMELMIRTVPRIT	15	ORFL101C, ORFL101C.iORF1_(UL36)	2	384
53	EFLVRQYVLVDTFGV	15	ORFL101C	2	104
54	RREAIVRLEKTPTCQ	15	ORFL101C, ORFL101C.iORF1_(UL36)	2	407
55	RRRFKVCDVGRRHII	15	ORFL101C, ORFL101C.iORF1_(UL36)	1	63
56	RHRFLWQRRRRARLL	15	ORFL103C_(vMIA), ORFL104C_(UL37)	1	1000

57	GSFSSFYSQIARSLG	15	ORFL105C_(UL40)	1	363
58	FLKKMLLCALKGRAS	15	ORFL115C_(UL45),	1	020
50	FERRIVILLOALRORAS	15	ORFL115C.iORF1		930
59	MPVQRLTVNVARCVF	15	ORFL115C_(UL45)	1	20
60	KFIFELYRLPRLSIA	15	ORFL115C_(UL45)	1	173
61	ASKIKMLETRVTLAL	15	ORFL116W_(UL47)	1	140
62	ATMLSKYTRMSSLFN	15	ORFL127C_(UL48A)	2	650
63	AFKLDLLRMIAVSRT	15	ORFL127C_(UL48A)	2	477
64	MLFFQRYAPAFVTGY	15	ORFL143C_(UL54)	1	57
65	DLKYILTRLEYLYKV	15	ORFL143C_(UL54)	1	30
66	DPSYVREHGVPIHAD	15	ORFL143C_(UL54)	1	123
67	TDLIRFERNIVCTSM	15	ORFL145C_(UL55)	3	273
68	EGIMVVYKRNIVAHT	15	ORFL145C_(UL55)	1	637
69	HTFKVRVYQKVLTFR	15	ORFL145C_(UL55)	1	423
70	YQKVLTFRRSYAYIH	15	ORFL145C_(UL55)	1	40
71	RRSYAYIHTTYLLGS	15	ORFL145C_(UL55)	5	2730
72	QLMPDDYSNTHSTRY	15	ORFL145C_(UL55)	5	45517
73	NLNCMVTITTARSKY	15	ORFL145C_(UL55)	2	4810
74	NADKFFIFPNYTIVS	15	ORFL145C_(UL55)	4	5120
75	GLVVFWQGIKQKSLV	15	ORFL145C_(UL55)	1	53
76	QLQFTYDTLRGYINR	15	ORFL145C_(UL55)	3	2236
77	LRGYINRALAQIAEA	15	ORFL145C_(UL55)	3	30337
78	KELSKINPSAILSAI	15	ORFL145C_(UL55)	3	18557
79	AILSAIYNKPIAARF	15	ORFL145C_(UL55)	5	11264
80	ASCVTINQTSVKVLR	15	ORFL145C_(UL55)	5	8941
81	YLFKRMIDLSSISTV	15	ORFL145C_(UL55)	1	67
82	EQAYQMLLALARLDA	15	ORFL145C_(UL55)	4	21807

83	LLDRLRHRKNGYRHL	15	ORFL145C.iORF1	3	12544
84	QILWTDGLARRTRDR	15	ORFL145C.iORF2	1	37
85	RVGITIQQLNVYHQL	15	ORFL146C_(UL56)	1	963
86	TMRSVFEMQRIRHGA	15	ORFL147C	1	67
87	NIFLVGFYLLVPYLG	15	ORFL147C	1	1633
88	SLLILVVLLLIYRCC	15	ORFL159W	1	23
89	LSYMKYHHLHGLPVN	15	ORFL161C_(UL69)	3	879
90	VELCLGAGAGHVVVV	15	ORFL162W	1	383
91	RSSWRASCVEVPKKP	15	ORFL165W	1	370
92	MQKYFSLDNFLHDYV	15	UL70	2	20343
93	QTIYFLGLTALLLRY	15	ORFL181C_(UL74)	1	583
94	SFYLVNAMSRNLFRV	15	ORFL181C_(UL74)	1	43
95	TMRKLKRKQALVKEQ	15	ORFL181C_(UL74)	1	1563
96	TAVSEFMKNTHVLIR	15	ORFL181C.iORF1	1	747
97	WREDVLMDRVRKRYL	15	ORFL189W_(UL77)	1	67
98	IKMWFLLGAPMIAVL	15	ORFL196W_(UL78), ORFL196W.iORF1	3	2867
99	LFIIAFFSREPTKDL	15	ORFL196W_(UL78)	1	190
100	PKSFTLTRIHPEYIV	15	ORFL202C_(UL82/pp71)	2	340
101	PEYIVQIQNAFETNQ	15	ORFL202C_(UL82/pp71)	4	527
102	GALTLVIPSWHVFAS	15	ORFL202C_(UL82/pp71)	2	190
103	CRSATSLVGNTNADV	15	ORFL203W	1	30
104	SSCAHTTCRSATSLV	15	ORFL203W	2	104
105	SWLGQMLRPVGLCTL	15	ORFL204W	1	43
106	QTGIHVRVSQPSLIL	15	ORFL205C_(UL83/pp65), ORFL205C.iORF1	11	33563
107	MSIYVYALPLKMLNI	15	ORFL205C_(UL83/pp65)	1	83

108	PLKMLNIPSINVHHY	15	ORFL205C_(UL83/pp65)	7	2920
109	ATKMQVIGDQYVKVY	15	ORFL205C_(UL83/pp65), ORFL205C.iORF1	2	4637
110	PKNMIIKPGKISHIM	15	ORFL205C_(UL83/pp65), ORFL205C.iORF1	5	538
111	PGKISHIMLDVAFTS	15	ORFL205C_(UL83/pp65), ORFL205C.iORF1	9	2386
112	MNGQQIFLEVQAIRE	15	ORFL205C_(UL83/pp65), ORFL205C.iORF1	6	3990
113	ELRQYDPVAALFFFD	15	ORFL205C_(UL83/pp65)	8	1106
114	GILARNLVPMVATVQ	15	ORFL205C_(UL83/pp65), ORFL205C.iORF1	11	34633
115	ALFFFDIDLLLQRGP	15	ORFL205C.iORF1	2	73
116	RVTGLVFSVVFSVSL	15	ORFL206W	4	6380
117	LTWCVIADRQPRFSV	15	ORFL206W	3	240
118	RPKRRVVAPFRVAAA	15	ORFL207W	2	283
119	APFRVAAAGETPLGR	15	ORFL207W	6	1089
120	IPQRLHLIKHYQLGL	15	ORFL209C_(UL85)	1	437
121	IVPMPLALEINQRLL	15	ORFL209C_(UL85)	1	283
122	LASELTMTYVRKLAL	15	ORFL209C_(UL85)	1	37
123	HSILADFNSYKAHLT	15	ORFL212C_(UL86) Major Capsid Protein	1	27
124	FHELRTWEIMEHMRL	15	ORFL212C_(UL86) Major Capsid Protein	1	7343
125	PQLLFHYRNLVAVLR	15	ORFL212C_(UL86) Major Capsid Protein	1	60

100		45	ORFL212C_(UL86) Major		00
126	RNLVAVLRLVTRISA	15	Capsid Protein	1	20
127	LFLAVQFVGEHVKVL	15	ORFL212C_(UL86) Major	1	53
121		10	Capsid Protein	,	00
128	VRVQDLFRVFPMNVY	15	ORFL212C_(UL86) Major	1	43
120		10	Capsid Protein	,	
129	LGYNSKFYSPCAQYF	15	ORFL212C_(UL86) Major	1	20
129	LUTINGRETOFCAQTE	15	Capsid Protein	I	20
130	TQEALPILSTTTLAL	15	ORFL212C_(UL86) Major	1	407
130	IQEALFILSTITLAL	15	Capsid Protein	I	407
131	PFTVLRLSYAYRIFA	15	ORFL229W_(UL98)	1	33
132	AREFLLSHDAALFRA	15	ORFL229W_(UL98)	1	23
133	MLIQQYVLSQYYIKK	15	ORFL229W_(UL98)	1	20
134	RLGTAATQIQKQTLY	15	ORFL233C	1	30
135	KTQIFNKLFTNRISV	15	ORFL236C	1	1587
136	VRSLAVDAQHAAKRV	15	ORFL238W	1	53
137	LEERDEWVRSLAVDA	15	ORFL238W	1	47
138	AAITVVPVITQSRLA	15	ORFL245C	3	450
139	PWYPITQARTLELTP	15	ORFL246C	2	996
140	MSTKRSTVPWYPITQ	15	ORFL246C	3	477
141	LRVTFHRVKPTLQRE	15	ORFL248W.iORF1	2	830
142	SGRVILWTTLRLCIL	15	ORFL249C	1	20
			ORFL251W, ORFL252W,		
143	VVRKYWTFTNPNRIL	15	ORFL253W_(UL112),	3	16876
140		10	ORFL253W.iORF1,	3	10070
			ORFL253W.iORF2		

	1				
			ORFL251W, ORFL252W,		
144	144 TFDVRQFVFDNARLV	15	ORFL253W_(UL112),	6	13736
		10	ORFL253W.iORF1,	0	10100
			ORFL253W.iORF2		
			ORFL251W, ORFL252W,		
4.45		45	ORFL253W_(UL112),		0004
145	VRGGIVFNKSVSSVV	15	ORFL253W.iORF1,	5	2691
			ORFL253W.iORF2		
			ORFL253W_(UL112),		
146	GNLQVTYVRHYLKNH	15	ORFL253W.iORF1,	4	655
			ORFL253W.iORF2		
			ORFL253W_(UL112),		
147	AVAFLNYSSSSSAVS	15	ORFL253W.iORF1,	3	2151
			ORFL253W.iORF2		
148	AGLMMMRRMRRAPAE	15	ORFL253W_(UL112)	1	490
149	CDLPLVSSRLLPETS	15	ORFL253W_(UL112)	1	123
150	CEIKPYVVNPVVATA	15	ORFL253W_(UL112)	3	2583
151	DPLLRLSQVAGSGRR	15	ORFL253W_(UL112)	2	2067
152	LPLCSTARLRLAPRR	15	ORFL253W.iORF3	1	467
153	RATGNFRSTSLYAAV	15	ORFL253W.iORF3	3	4220
154	RCCTLRFRRRCRARC	15	ORFL253W.iORF4	2	713
155	MSATRHHRCCTLRFR	15	ORFL253W.iORF4	1	277
156	RVFCLSADWIRFLSL	15	ORFL254C_(UL114)	2	846
157	HLGWQTLSNHVIRRL	15	ORFL254C_(UL114)	1	127
158	TVVRLHVQIAGRSFT	15	ORFL258C_(UL119)	1	213
159	SCTHPYVISLVTPLT	15	ORFL260C_(UL121)	1	80
160	ISLVTPLTINATLRL	15	ORFL260C_(UL121)	1	317

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447997; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

161	CRVDADLGLLYAVCL	15	ORFL260C_(UL121)	1	673
162	VCLILSFSIVTAALW	15	ORFL260C_(UL121)	1	43
163	MFFLAIRDHDTAGGI	15	ORFL261W	1	1637
164	LQTMLRKEVNSQLSL	15	ORFL264C_(UL123) IE1, ORFL265C_(UL122) IE2	2	1606
165	LVKQIKVRVDMVRHR	15	ORFL264C_(UL123) IE1	3	580
166	RVDMVRHRIKEHMLK	15	ORFL264C_(UL123) IE1	2	250
167	LRRKMMYMCYRNIEF	15	ORFL264C_(UL123) IE1	6	1697
168	CSPDEIMSYAQKIFK	15	ORFL264C_(UL123) IE1	2	194
169	EERDKVLTHIDHIFM	15	ORFL264C_(UL123) IE1	2	107
170	VLCCYVLEETSVMLA	15	ORFL264C_(UL123) IE1	1	93
171	ITKPEVISVMKRRIE	15	ORFL264C_(UL123) IE1	1	1600
172	FAQYILGADPLRVCS	15	ORFL264C_(UL123) IE1	1	30
173	EAIVAYTLATAGASS	15	ORFL264C_(UL123) IE1	3	19333
174	TTRPFKVIIKPPVPP	15	ORFL265C_(UL122) IE2	2	424
175	NKGIQIIYTRNHEVK	15	ORFL265C_(UL122) IE2, ORFL265C.iORF1, ORFL265C.iORF2, ORFL265C.iORF3,	7	3794
176	LGSMCNLALSTPFLM	15	ORFL265C_(UL122) IE2, ORFL265C.iORF1, ORFL265C.iORF2	4	668
177	STPFLMEHTMPVTHP	15	ORFL265C_(UL122) IE2, ORFL265C.iORF1, ORFL265C.iORF2, ORFL265C.iORF3,	4	740
178	YRNMIIHAATPVDLL	15	ORFL265C.iORF3	2	130

179	VMVRIFSTNQGGFML	15	ORFL265C.iORF3	2	3560
180	VVVGIVLCLSLASTV	15	ORFL266W_(UL124)	1	1417
181	SPVAAELPHPSPAPM	15	ORFL267C	2	166
182	SYLAVHLRISHRYYH	15	ORFL269C	1	290
183	IAITMVMRFWQYING	15	ORFL270C	3	163
184	TALWLLLGHSRVPRV	15	UL128	1	177
185	AEIRGIVTTMTHSLT	15	ORFL271C_(UL128_truncated)	1	1713
186	NPLYLEADGRIRCGK	15	ORFL271C_(UL128_truncated), UL128	2	884
187	LHRRAAVSGRRSLLQ	15	ORFL271C.iORF1	1	87
188	MLRLLFTLVLLALYG	15	ORFL278C_(UL148)	3	4593
189	HVRLLSYRGDPLVFK	15	ORFL278C_(UL148)	3	333
190	VVRFALYLETLSRIV	15	ORFL278C_(UL148)	2	123
191	FYMNWTLRRSQTHYL	15	ORFL278C_(UL148)	6	16883
192	QVEILKPRGVRHRAI	15	ORFL278C_(UL148)	9	3468
193	FCVYRYNARLTRGYV	15	ORFL278C_(UL148)	3	700
194	TRGYVRYTLSPKARL	15	ORFL278C_(UL148)	7	9337
195	SLDRFIVQYLNTLLI	15	ORFL278C_(UL148)	8	23368
196	PTWSTTVNAHNSFLH	15	ORFL278C.iORF1	1	47
197	DRLSTLAATMCMFDY	15	ORFL279C	1	53
198	LFYRAVALGTLSALV	15	ORFL280C_(UL147A)	3	2633
199	SSIFTSTHRGVIVAP	15	ORFL283W	1	27
200	LSVRYLSLTAYMLLA	15	ORFL284C_(UL147)	1	1200
201	TAYKAFLWKYAKKLN	15	ORFL284C_(UL147)	1	503
202	WKYAKKLNYHYFRLR	15	ORFL284C_(UL147)	1	237
203	VYLWYVRRQLVAFCL	15	ORFL318C_(UL148A)	3	253
204	FPSARDIPKQLPEQP	15	ORFL320W	1	27

205	VVAYVILERLWLAAR	15	ORFL321W.iORF1	1	23
206	IRRWWISVAIVIFIG	15	ORFL321W.iORF2, ORFL321W.iORF3_(UL148D)	3	10480
207	RWQFAVCAASKTATR	15	ORFL322W	1	50
208	PQRLLLTALAIWQRT	15	ORFL324C_(UL150)	1	983
209	PWWRRLRVKRPKFPS	15	ORFS326C, ORFS326C.iORF1_(US1)	1	240
210	LWYLGDYGAILKIYF	15	ORFS337C_(US10)	1	40
211	LFCGACVITRSLLLI	15	ORFS337C_(US10)	1	487
212	MNLVMLILALWAPVA	15	ORFS338C_(US11)	1	553
213	VSEYRVEYSEARCVL	15	ORFS338C_(US11)	1	263
214	MLVVTVFDTTRLFEI	15	ORFS345C_(US17)	1	840
215	VCAFCWLVLPHRLEQ	15	ORFS351C_(US21)	1	1960
216	VSVLYFMPSEPGSAH	15	ORFS351C.iORF2	1	177
217	VFQKTLSMLQGLYLR	15	ORFS352C_(US22)	2	327
218	GLYLRQYDPPALRTY	15	ORFS352C_(US22)	2	633
219	WFLVMREQAAIPQIY	15	ORFS352C_(US22)	4	1100
220	QIYARSLAADYLCCD	15	ORFS352C_(US22)	1	33
221	DFRDLLNFIRQRLCC	15	ORFS352C_(US22)	1	30
222	PSQEILLLCARHLDE	15	ORFS353C_(US23)	3	110
223	TDCWPFEVAPAARLA	15	ORFS353C_(US23)	2	1637
224	LFRAGLMKVYVRRRY	15	ORFS353C_(US23)	1	870
225	VVFMGRFSRVYAYDT	15	ORFS355C_(US24)	1	70
226	EKYMVLVSHNLDELA	15	ORFS355C_(US24)	1	20
227	PRLHCLVTTRSSTRE	15	ORFS355C.iORF1	1	1277
228	LRYKWLIRKDRFIVR	15	ORFS361C_(US26)	1	3247
229	TNIMLQVSNVTNHTL	15	ORFS363W_(US27)	1	58

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447997; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

230	IVVGLPFFLEYAKHH	15	ORFS363W_(US27)	2	1250
231	YNRMVRFIINYVGKW	15	ORFS363W_(US27)	1	23
232	ITFCLYVGQFLAYVR	15	ORFS363W_(US27)	1	27
233	HDPLGLTRFIMRQLM	15	ORFS370W_(US33A)	1	473
234	FIMRQLMMYPLVLPF	15	ORFS370W_(US33A)	1	530
235	GLVYRELHDFYGYLQ	15	ORFS371W_(US34)	1	963

. . .

802 Table 2: Details of HCMV specific class II epitopes from IEDB

S. No	Peptide sequence	Peptide length	ORF	Antigen Name from IEDB
1	HINSHSQCYSSYSRVIA	17	ORFL145C_(UL55)	glycoprotein B
2	SRVIAGTVFVAYHRD	15	ORFL145C_(UL55)	glycoprotein B
3	CMVTITTARSKYPYH	15	ORFL145C_(UL55)	glycoprotein B
4	VFETTGGLVVFWQGI	15	ORFL145C_(UL55)	glycoprotein B
5	MQLIPDDYSNTHSTRYVTVK	20	ORFL145C_(UL55)	glycoprotein B
6	LPLKMLNIPSINVH	14	ORFL205C_(UL83/pp65)	65 kDa lower matrix
0		17		phosphoprotein
7	PQYSEHPTFTSQYRIQ	16	ORFL205C (UL83/pp65)	65 kDa lower matrix
		10	OTT 22000_(0200/pp00)	phosphoprotein
8	FTSQYRIQGKLEYRHT	16	ORFL205C (UL83/pp65)	65 kDa lower matrix
0	TIGGINIQUELINI	10	OTT E2030_(0E03/pp03)	phosphoprotein
9	PPWQAGILARNLVPMV	16	ORFL205C_(UL83/pp65)	65 kDa lower matrix
0		10		phosphoprotein
10	KYQEFFWDANDIYRIF	16	ORFL205C_(UL83/pp65)	65 kDa lower matrix
10		10		phosphoprotein
11	GPISGHVLKAVFSRG	15	ORFL205C (UL83/pp65)	65 kDa lower matrix
		10	Civi 22000_(0200/pp00)	phosphoprotein
12	LLQTGIHVRVSQPSL	15	ORFL205C (UL83/pp65)	65 kDa lower matrix
		10	Cr.(L2000_(0L00/pp00)	phosphoprotein
13	IYVYALPLKMLNIPS	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix
		10	Civi 22000_(0200/pp00)	phosphoprotein

				65 kDa lower matrix
14	LPLKMLNIPSINVHH	15	ORFL205C_(UL83/pp65)	phosphoprotein
15	KDVALRHVVCAHELV	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
16	RHVVCAHELVCSMEN	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
17	CSMENTRATKMQVIG	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
18	TRATKMQVIGDQYVK	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
19	MQVIGDQYVKVYLES	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
20	VYLESFCEDVPSGKL	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
21	FCEDVPSGKLFMHVT	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
22	LGSDVEEDLTMTRNP	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
23	EEDLTMTRNPQPFMR	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
24	QPFMRPHERNGFTVL	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
25	KISHIMLDVAFTSHE	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
26	MLDVAFTSHEHFGLL	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein

				65 kDa lower matrix
27	FTSHEHFGLLCPKSI	15	ORFL205C_(UL83/pp65)	phosphoprotein
28	PQYSEHPTFTSQYRI	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
29	SQYRIQGKLEYRHTW	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
30	YRHTWDRHDEGAAQG	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
31	IHNPAVFTWPPWQAG	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
32	PWQAGILARNLVPMV	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
33	ATVQGQNLKYQEFFW	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
34	QNLKYQEFFWDANDI	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
35	QEFFWDANDIYRIFA	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
36	ELEGVWQPAAQPKRR	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
37	IFLEVQAIRETVELR	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
38	PPWQAGILARNLVPM	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
39	DVPSGKLFMHVTLGS	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein

				65 kDa lower matrix
40	KLFMHVTLGSDVEED	15	ORFL205C_(UL83/pp65)	phosphoprotein
41	DVEEDLTMTRNPQPF	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
42	VAFTSHEHFGLLCPK	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
43	SEHPTFTSQYRIQGK	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
44	LEYRHTWDRHDEGAA	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
45	PLKMLNIPSINVHHY	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
46	KVYLESFCEDVPSGK	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
47	TLGSDVEEDLTMTRN	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
48	ASTSAGRKRKSASSA	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
49	ACTSGVMTRGRLKAE	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
50	AGILARNLVPMVATV	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
51	EPDVYYTSAFVFPTK	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein
52	QVIGDQYVKVYLESF	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix phosphoprotein

				65 kDa lower matrix
53	FFWDANDIYRIFAEL	15	ORFL205C_(UL83/pp65)	phosphoprotein
E 4		45		65 kDa lower matrix
54	LVSQYTPDSTPCHRG	15	ORFL205C_(UL83/pp65)	phosphoprotein
55	SHIMLDVAFTSHEH	14		65 kDa lower matrix
55	SHIMEDVAFISHEN	14	ORFL205C_(UL83/pp65)	phosphoprotein
56	DEDSDNEIHNPAVFTW	16		65 kDa lower matrix
50	DEDSDIVEININFAVETW	10	ORFL205C_(UL83/pp65)	phosphoprotein
57		13		65 kDa lower matrix
57	SQYTPDSTPCHRG	13	ORFL205C_(UL83/pp65)	phosphoprotein
58	KPGKISHIMLDVA	13		65 kDa lower matrix
00	KFGRISHIMLDVA	15	ORFL205C_(UL83/pp65)	phosphoprotein
59	DTETCOVDIOCI/I	13		65 kDa lower matrix
59	PTFTSQYRIQGKL	13	ORFL205C_(UL83/pp65)	phosphoprotein
<u> </u>		00		65 kDa lower matrix
60	DTPVLPHETRLLQTGIHVRV	20	ORFL205C_(UL83/pp65)	phosphoprotein
64		00		65 kDa lower matrix
61	INVHHYPSAAERKHRHLPVA	20	ORFL205C_(UL83/pp65)	phosphoprotein
60		15		65 kDa lower matrix
62	LLQRGPQYSEHPTFT	15	ORFL205C_(UL83/pp65)	phosphoprotein
63		10		65 kDa lower matrix
03	ALFFFDIDLLLQRGPQYSE	19	ORFL205C_(UL83/pp65)	phosphoprotein
64	DQYVKVYLESFCEDVPSGKL	20		65 kDa lower matrix
64	DQTVKVTLESFCEDVFSGKL	20	ORFL205C_(UL83/pp65)	phosphoprotein
65	MTRNPQPFMRPHERNGFTV	20		65 kDa lower matrix
65	L	20	ORFL205C_(UL83/pp65)	phosphoprotein

				65 kDa lower matrix
66	MISVLGPISGHVLKAVFSRG	20	ORFL205C_(UL83/pp65)	phosphoprotein
	ASGKQMWQARLTVSGLAWT			65 kDa lower matrix
67	ASGRQIVIVQARLIVSGLAVVI	20	ORFL205C_(UL83/pp65)	65 kDa lower matrix
	R		<u>-</u> (,pp)	phosphoprotein
68	LPLKMLNIPSINVHHYPSAA	20	ORFL205C_(UL83/pp65)	65 kDa lower matrix
		20	014 <u>22000_(0200,pp00</u>)	phosphoprotein
69	PHETRLLQTGIHVRVSQPSL	20		65 kDa lower matrix
09	PHETRELQTGINVRVSQPSL	20	ORFL205C_(UL83/pp65)	phosphoprotein
70		20		65 kDa lower matrix
70	IYVYALPLKMLNIPSINVHH	20	ORFL205C_(UL83/pp65)	phosphoprotein
71	QYDPVAALFFFDIDLLLQRG	20	ORFL205C_(UL83/pp65)	65 kDa lower matrix
/1	QTDFVAALFFFDIDLLLQRG	20	URFL203C_(UL83/pp03)	phosphoprotein
70		40		65 kDa lower matrix
72	RQYDPVAALFFFDIDL	16	ORFL205C_(UL83/pp65)	phosphoprotein
70		45		65 kDa lower matrix
73	HETRLLQTGIHVRVS	15	ORFL205C_(UL83/pp65)	phosphoprotein
74		45		65 kDa lower matrix
74	VYALPLKMLNIPSIN	15	ORFL205C_(UL83/pp65)	phosphoprotein
75	VALRHVVCAHELVCS	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix
75	VALINITVOAILEVOS	15		phosphoprotein
76	HIMLDVAFTSHEHFG	15		65 kDa lower matrix
70		15	ORFL205C_(UL83/pp65)	phosphoprotein
77	FTSQYRIQGKLEYRH	15		65 kDa lower matrix
11	FIGUTNIQUELETRI	10	ORFL205C_(UL83/pp65)	phosphoprotein
70		15		65 kDa lower matrix
78	YRIQGKLEYRHTWDR	15	ORFL205C_(UL83/pp65)	phosphoprotein

				65 kDa lower matrix
79	ARNLVPMVATVQGQN	15	ORFL205C_(UL83/pp65)	phosphoprotein
				65 kDa lower matrix
80	ANDIYRIFAELEGVW	15	ORFL205C_(UL83/pp65)	phosphoprotein
81		15		65 kDa lower matrix
01	TRQQNQWKEPDVYYT	15	ORFL205C_(UL83/pp65)	phosphoprotein
00		45		65 kDa lower matrix
82	TERKTPRVTGGGAMA	15	ORFL205C_(UL83/pp65)	phosphoprotein
83	NLKYQEFFWDANDIY	15	ORFL205C_(UL83/pp65)	65 kDa lower matrix
00	NERTQEFFWDANDIT	15	ORF22030_(0283/pp03)	phosphoprotein
84		15		65 kDa lower matrix
84	TPRVTGGGAMAGAST	15	ORFL205C_(UL83/pp65)	phosphoprotein
85	DQYVKVYLESFCEDV	15	ORFL205C_(UL83/pp65)	HCMVUL83
86	GKISHIMLDVAFTSH	15	ORFL205C_(UL83/pp65)	HCMVUL83
87	EHPTFTSQYRIQGKL	15	ORFL205C_(UL83/pp65)	HCMVUL83
88	GQNLKYQEFFWDAND	15	ORFL205C_(UL83/pp65)	HCMVUL83
89	KYQEFFWDANDIYRI	15	ORFL205C_(UL83/pp65)	HCMVUL83
90	IIKPGKISHIMLDVA	15	ORFL205C_(UL83/pp65)	HCMVUL83
91	TRATKMQVIGDQYVKVYLES	20	ORFL205C_(UL83/pp65)	HCMVUL83
92	KLFMHVTLGSDVEEDLTMTR	20	ORFL205C_(UL83/pp65)	HCMVUL83
93	KPGKISHIMLDVAFTSHEHF	20	ORFL205C_(UL83/pp65)	HCMVUL83
94	LPVADAVIHASGKQMWQARL	20	ORFL205C_(UL83/pp65)	HCMVUL83
95	GSDSDEELVTTERKTPRVTG	20	ORFL205C_(UL83/pp65)	HCMVUL83
96	RHRQDALPGPCIASTPKKHR	20	ORFL205C_(UL83/pp65)	HCMVUL83
97	YQEFFWDANDIYR	13	ORFL205C_(UL83/pp65)	HCMVUL83
98	LAWTRQQNQWKEPDV	15	ORFL205C_(UL83/pp65)	HCMVUL83
99	YQEFFWDANDIYRIF	15	ORFL205C_(UL83/pp65)	HCMVUL83

100	EFFWDANDIYRIF	13	ORFL205C_(UL83/pp65)	HCMVUL83
101	VEEDLTMTRNPQPFM	15	ORFL205C_(UL83/pp65)	HCMVUL83
102	KPGKISHIMLDVAFTSH	17	ORFL205C_(UL83/pp65)	HCMVUL83
103	TSQYRIQGKLEYRHT	15	ORFL205C_(UL83/pp65)	HCMVUL83
104	MSIYVYALPLKMLNI	15	ORFL205C_(UL83/pp65)	HCMVUL83
105	VYYTSAFVFPTKDVA	15	ORFL205C_(UL83/pp65)	HCMVUL83
106	LRQYDPVAALFFFDI	15	ORFL205C_(UL83/pp65)	HCMVUL83
107	GPQYSEHPTFTSQYRI	16	ORFL205C_(UL83/pp65)	HCMVUL83
108	HPTFTSQYRIQGKLE	15	ORFL205C_(UL83/pp65)	HCMVUL83
109	TRLLQTGIHVRVSQP	15	ORFL205C_(UL83/pp65)	HCMVUL83
110	RNGFTVLCPKNMIIK	15	ORFL205C_(UL83/pp65)	HCMVUL83
111	PISGHVLKAVFSRGD	15	ORFL205C_(UL83/pp65)	HCMVUL83
112	GIHVRVSQPSLILVS	15	ORFL205C_(UL83/pp65)	HCMVUL83
113	IHASGKQMWQARLTV	15	ORFL205C_(UL83/pp65)	HCMVUL83
114	GKQMWQARLTVSGLA	15	ORFL205C_(UL83/pp65)	HCMVUL83
115	ENTRATKMQVIGDQY	15	ORFL205C_(UL83/pp65)	HCMVUL83
116	ATKMQVIGDQYVKVY	15	ORFL205C_(UL83/pp65)	HCMVUL83
117	RPHERNGFTVLCPKN	15	ORFL205C_(UL83/pp65)	HCMVUL83
118	AQGDDDVWTSGSDSD	15	ORFL205C_(UL83/pp65)	HCMVUL83
119	SSATACTSGVMTRGR	15	ORFL205C_(UL83/pp65)	HCMVUL83
120	YRIFAELEGVWQPAA	15	ORFL205C_(UL83/pp65)	HCMVUL83
121	AELEGVWQPAAQPKR	15	ORFL205C_(UL83/pp65)	HCMVUL83
122	AVFSRGDTPVLPHET	15	ORFL205C_(UL83/pp65)	phosphorylated matrix prote
122	AVESNOUTEVLENET	10		(pp65)
123	ALPLKMLNIPSINVH	15	ORFL205C_(UL83/pp65)	pp65
124	HVLKAVFSRGDTPVL	15	ORFL205C_(UL83/pp65)	pp65
125	AHELVCSMENTRATKMQVIG	20	ORFL205C_(UL83/pp65)	tegument protein pp65

126	FCEDVPSGKLFMHVTLGSDV	20	ORFL205C_(UL83/pp65)	tegument protein pp65
127	TLGSDVEEDLTMTRNPQPF	19	ORFL205C_(UL83/pp65)	tegument protein pp65
128	LLQTGIHVRVSQPSLILV	18	ORFL205C_(UL83/pp65)	tegument protein pp65
129	SICPSQEPMSIYVYA	15	ORFL205C_(UL83/pp65)	tegument protein pp65
130	SQEPMSIYVYALPLK	15	ORFL205C_(UL83/pp65)	tegument protein pp65
131	LNIPSINVHHYPSAA	15	ORFL205C_(UL83/pp65)	tegument protein pp65
132	HDVSKGDDNKLGGALQAKA	19	ORFL264C_(UL123) IE1	55 kDa immediate-early
102		10	014 22010_(02120)121	protein 1
133	ALQAKARDKKDELRRKMMY	19	ORFL264C (UL123) IE1	55 kDa immediate-early
				protein 1
134	KEHMLKKYTQTEEKF	15	ORFL264C_(UL123) IE1	55 kDa immediate-early
				protein 1
135	QTEEKFTGAFNMMGGCLQN	19	ORFL264C (UL123) IE1	55 kDa immediate-early
				protein 1
136	MGGCLQNALDILDKVHEPFE	20	ORFL264C_(UL123) IE1	55 kDa immediate-early
			_, ,	protein 1
137	AIVAYTLATAGVSSSDSLV	19	ORFL264C_(UL123) IE1	55 kDa immediate-early
			_, ,	protein 1
138	TMQSMYENYIVPEDKREMW	19	ORFL264C_(UL123) IE1	55 kDa immediate-early
			_, ,	protein 1
139	RRKMMYMCYRNIEFFTKNS	19	ORFL264C_(UL123) IE1	55 kDa immediate-early
				protein 1
140	FFTKNSAFPKTTNGCSQAM	19	ORFL264C_(UL123) IE1	55 kDa immediate-early
				protein 1
141	CVETMCNEYKVTSDACMMT	19	ORFL264C_(UL123) IE1	55 kDa immediate-early
				protein 1

				55 kDa immediate-early
142	DACMMTMYGGASLLSEFCR	19	ORFL264C_(UL123) IE1	protein 1
140		20		55 kDa immediate-early
143	NYIVPEDKREMWMACIKELH	20	ORFL264C_(UL123) IE1	protein 1
144	VRHRIKEHMLKKYTQTEEKF	20		55 kDa immediate-early
144		20	ORFL264C_(UL123) IE1	protein 1
145		15		55 kDa immediate-early
140	VRVDMVRHRIKEHML	15	ORFL264C_(UL123) IE1	protein 1
140		45		55 kDa immediate-early
146	VKQIKVRVDMVRHRI	15	ORFL264C_(UL123) IE1	protein 1
147		15		55 kDa immediate-early
147	VRHRIKEHMLKKYTQ	15	ORFL264C_(UL123) IE1	protein 1
140		45		55 kDa immediate-early
148	EQSDEEEEEGAQEER	15	ORFL264C_(UL123) IE1	protein 1
140		45		55 kDa immediate-early
149	VKSEPVSEIEEVAPE	15	ORFL264C_(UL123) IE1	protein 1
450		45		55 kDa immediate-early
150	PVSEIEEVAPEEEED	15	ORFL264C_(UL123) IE1	protein 1
151		15		55 kDa immediate-early
151	LQNALDILDKVHEPF	15	ORFL264C_(UL123) IE1	protein 1
450		45		55 kDa immediate-early
152	EDKREMWMACIKELH	15	ORFL264C_(UL123) IE1	protein 1
150		45		55 kDa immediate-early
153	THIDHIFMDILTTCV	15	ORFL264C_(UL123) IE1	protein 1
454				55 kDa immediate-early
154	VLEETSVMLAKRPLI	15	ORFL264C_(UL123) IE1	protein 1

				55 kDa immediate-early
155	TKPEVISVMKRRIEE	15	ORFL264C_(UL123) IE1	protein 1
450		45		55 kDa immediate-early
156	RRIEEICMKVFAQYI	15	ORFL264C_(UL123) IE1	protein 1
157	NIEFFTKNSAFPKTT	15	ORFL264C_(UL123) IE1	regulatory protein IE1
158	LTHIDHIFMDILTTCVETM	19	ORFL264C_(UL123) IE1	regulatory protein IE1
159	AIVAYTLATAGASSSDSLV	19	ORFL264C_(UL123) IE1	UL123; IE1
160	VRVDMVRHRIKEHMLKKYTQ	20	ORFL264C_(UL123) IE1	UL123; IE1
161	DKREMWMACIKELH	14	ORFL264C_(UL123) IE1	UL123; IE1
162	QSMYENYIVPEDKREMWMA	20	ORFL264C_(UL123) IE1	UL123; IE1
102	С	20		
163	TRRGRVKIDEVSRMF	15	ORFL265C (UL122) IE2	45 kDa immediate-early
103		15		protein 2
164	GDILAQAVNHAGIDS	15	ORFL265C_(UL122) IE2	45 kDa immediate-early
104	ODIEAQAVINIAOIDO	10		protein 2
165	KTTRPFKVIIKPPVP	15	ORFL265C_(UL122) IE2	45 kDa immediate-early
100		10		protein 2
166	FKVIIKPPVPPAPIM	15	ORFL265C_(UL122) IE2	45 kDa immediate-early
100		10		protein 2
167	PEPDFTIQYRNKIID	15	ORFL265C (UL122) IE2	45 kDa immediate-early
107		15		protein 2
168	PFTIPSMHQVLDEAI	15	ORFL265C (UL122) IE2	45 kDa immediate-early
		10		protein 2
169	LMQKFPKQVMVRIFS	15	ORFL265C_(UL122) IE2	45 kDa immediate-early
103		10		protein 2
170		15		45 kDa immediate-early
170		10		protein 2
170	VRIFSTNQGGFMLPI	15	ORFL265C_(UL122) IE2	-

				45 kDa immediate-early
171	PEDLDTLSLAIEAAI	15	ORFL265C_(UL122) IE2	protein 2
				45 kDa immediate-early
172	TLSLAIEAAIQDLRN	15	ORFL265C_(UL122) IE2	protein 2
173	SMHQVLDEAIKACKT	15	ORFL265C_(UL122) IE2	45 kDa immediate-early
				protein 2
174	KGIQIIYTRNHEVKS	15	ORFL265C_(UL122) IE2	45 kDa immediate-early
				protein 2
175		15		45 kDa immediate-early
175	ALSTPFLMEHTMPVT	15	ORFL265C_(UL122) IE2	protein 2
				45 kDa immediate-early
176	FLMEHTMPVTHPPEV	15	ORFL265C_(UL122) IE2	protein 2
				single-stranded DNA-binding
177	PYAVAFQPLLAYAY	14	UL57	protein
470				
178	KTQLNRHSYLKDSDFLDAA	19	UL75	envelope glycoprotein H
179	RQTEKHELLVLVKKAQLNRH	20	UL75	Glycoprotein H precursor
180	LDPHAFHLLLNTYGRPIR	18	UL75	Glycoprotein H precursor
181	KAQLNRHSYLKDSDFLDAA	19	UL75	Glycoprotein H precursor
182	DVLKSGRCQMLDRRTVEMA	19	UL75	Glycoprotein H precursor
183	LDKAFHLLLNTYGRPIR	17	UL75	Glycoprotein H precursor
184	KDQLNRHSYLKDPDFLDAA	19	UL75	Glycoprotein H precursor
185	SYLKDSDFLDAAL	13	UL75	HCMVUL75
186	RRIPHFYRVRREVPRTVNE	19	UL86	Major capsid protein
187	MDVNYFKIPNNPRGRASCM	19	UL86	Major capsid protein
202		10		

806 **Table 3: Demographic characteristics of HCMV (+/-) subjects analyzed in**

807 screening and validation studies.

808

	Screening cohort	Validation	n cohort
Characteristics	HCMV+	HCMV+	HCMV- 810
Total participants enrolled, n	19	10	10 ₈₁₁
Males/females	10/9	3/7	3/7 ₈₁₂
Median age (range)	65 (28-80)	35.5 (22-55)	28.5 (19 <u>-42</u>) 813
Caucasian, % (n)	68 (13)	40 (4)	40 (4) ₈₁₄
Asian, % (n)	16 (3)	10 (1)	20 (2) 815
African American, % (n)	5 (1)	10 (1)	10 $(1)_{817}^{816}$
More than one race, % (n)	0 (0)	30 (3)	30 (3) ⁸¹⁸
Unknown, % (n)	10 (2)	10 (1)	0 (0)