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ABSTRACT 

B cells and T cells are key players in the defence against infections and malignancies. To exert 

their function, B cells and T cells differentiate into effector and memory cells. Tight regulation 

of these differentiation processes is key to prevent their malfunction, which can result in life-

threatening disease. Lymphocyte differentiation relies on the appropriate timing and dosage of 

regulatory molecules, and post-transcriptional gene regulation (PTR) is a key player herein. 

PTR includes the regulation through RNA-binding proteins (RBPs), which control the fate of 

RNA and its translation into proteins. To date, a comprehensive RBP expression map 

throughout lymphocyte differentiation is lacking. Using transcriptome and proteome analyses, 

we here provide an RBP expression map for human B cells and T cells. We observed that even 

though the overall RBP expression is conserved, the relative RBP expression is distinct between 

B cells and T cells. Differentiation into effector and memory cells alters the RBP expression, 

resulting into preferential expression of different classes of RBPs. For instance, whereas naïve 

T cells express high levels of translation-regulating RBPs, effector T cells preferentially express 

RBPs that modulate mRNA stability. Lastly, we found that cytotoxic CD8+ and CD4+ T cells 

express a common RBP repertoire. Combined, our study reveals a cell type-specific and 

differentiation-dependent RBP expression landscape in human lymphocytes, which will help 

unravel the role of RBPs in lymphocyte function.  
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INTRODUCTION 

B cells and T cells are essential to eradicate microbial infections and malignant cells. Upon 

antigen recognition through their receptors, B cells produce antibodies and T cells produce 

cytokines and chemokines, respectively. Cytotoxic T cells also acquire the capacity to kill target 

cells. The critical contribution of these lymphocyte subsets to anti-microbial and anti-tumor 

responses was evidenced by the discovery of genetic mutations in humans that result in immune 

dysfunction in response to infections (1). Similarly, effective T cell responses are key for tumor 

immunosurveillance (2).  

Importantly, tight regulation of B cells and T cells effector function is key for effective 

clearance of infections. The aberrant production of antibodies by B cells, and the 

overproduction of effector molecules by T cells has been correlated with several autoimmune 

disorders, including systemic lupus erythematosus rheumatoid arthritis and multiple sclerosis 

(3–6). Likewise, patients suffering from severe disease upon COVID-19 infection developed 

auto-antibodies against type-I interferons (7), and an excess cytokine production in COVID-19 

patients can result in organ dysfunction (8). Conversely, in chronic HIV infections or in tumors, 

T cells gradually lose their capacity to produce effector cytokines and to kill target cells (9,10). 

These findings combined highlight the necessity to fine-tune the effector function of B cells 

and T cells. 

To perform their effector function, B cells and T cells need to undergo an intricate process of 

differentiation. B cells differentiate into antibody-producing plasmablasts in germinal centers 

(GC), and upon pathogen clearance into long-lived memory B cells. Likewise, upon T cell 

priming, T cells differentiate into effector T cells, and upon pathogen clearance are maintained 

as memory T cells to ensure long-term production from recurring infections. In the past 

decennia, important insights have been obtained how B cells and T cell differentiate. In 

particular, the role of transcription factors and of metabolic regulators was extensively studied 

herein (11–14).  

For appropriate lymphocyte differentiation, the regulators of differentiation processes must be 

produced at the right time and the right amount. In fact, gene dosage of transcription factors 

was shown to be key for B cell and T cell differentiation (15–18). This fine-tuning of gene 

expression is - at least in part - regulated by post-transcriptional events governed by RNA-

binding proteins (RBPs) and non-coding RNAs (19,20). RBPs control a plethora of processes. 

They orchestrate RNA splicing, RNA polyadenylation and the subsequent export from the 

nucleus to the cytoplasm (21,22). RBPs can also modify the RNA (23). Furthermore, RBPs 
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control mRNA localization, translation and stability. For instance, the RBPs ZFP36L1 and 

ZFP36L2 induce quiescence in developing B cells to allow for efficient B cell receptor 

rearrangement (24). ZFP36L1 is also required for the maintenance of the marginal-zone B cell 

compartment (25). For germinal center B cells that undergo cell cycle progression and affinity 

maturation, the expression of the RBP PTBP1 is key (26). In thymocytes, ZFP36L1 and 

ZFP36L2 dampen the DNA-damage response, which promotes their differentiation into mature 

T cells (27). In the periphery, Roquin suppresses T helper cell differentiation (28,29). Also m6A 

modifications are important for T helper cell differentiation, as evidenced in mice lacking the 

methyltransferase METTL3 in T cells (30).  

Not only T cell differentiation, but also T cell effector function is tightly regulated by RBPs. 

Genetic ablation of the RBP Regnase-1 reprogrammed CD8+ T cells into long-lived effector 

CD8+ T cells, resulting in increased tumour control (31). In a patient, a nonsense-mutation in 

REGNASE-1 resulted in hyperinflammation, including hypercytokinemia in T cells and 

monocytes (32). Another example is ZFP36L2, which blocks the cytokine production in 

memory CD8+ T cells from pre-formed mRNA in the absence of activation signals, thereby 

preventing aberrant production of effector molecules  (33).  

Even though these examples clearly highlight the importance of RBPs in regulating gene 

expression in lymphocytes, to date studies have addressed the contribution of individual RBPs. 

The overall expression profile of RBPs in primary human B cells and T cells is not well-

documented, yet critical for our understanding of regulation of gene expression in lymphocytes.  

In this study, we mapped the mRNA and protein expression of RBPs in primary human B cells 

and T cells. We observed clear differences of RBP expression levels between lymphocyte 

subsets. Furthermore, upon differentiation, the RBP expression profile significantly altered, 

which resulted in a shift of functional annotations of RBPs. Lastly, we identified an RBP 

signature that is specific for CD4+ T cells and CD8+ T cells with a high cytotoxic potential. In 

conclusion, RBP expression is lymphocyte-type specific and the RBP expression shows 

dynamic changes upon differentiation.   
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RESULTS 

RNA-binding proteins are abundantly expressed in human B and T lymphocytes 

To investigate the overall mRNA and protein expression of RBPs in human lymphocytes, we 

first generated a comprehensive list of RBPs. We included RBPs that were identified by RNA-

interactome capture on multiple cell lines including, HEK293, HeLa-S3, MCF7, MCF10A, 

U2OS and Jurkat cells (34–36). This list was supplemented with computationally predicted 

RBPs based on the presence of a defined list of RNA-binding domains (RBDs) (36,37). This 

compiled list resulted in 3233 unique RBPs (Figure 1A, Supplementary Table 1).  

To define the global RBP gene expression in human B and T lymphocytes, we compiled 

previously published RNA-sequencing (RNA-seq) data on human CD19+ B cell, CD4+ T cell 

and CD8+ T cell subsets that were isolated from the blood of 3-4 healthy human donors (38). 

On average, 12.5x106 reads per sample (range: 7.97x106-19.15x106 reads) could be mapped 

onto the human transcriptome. A total of 12,830 gene products (>0.1 TPM) were detected in all 

lymphocyte subsets combined. 2983 of the 3233 RBPs (92.3% of our reference list) were 

detected at the RNA level in human B and T lymphocytes (>0.1 TPM, Figure 1B), of which 

2189 were identified in RNA-interactome capture studies and 794 were computationally 

predicted RBPs. The number of RBPs expressed at the RNA level in human B and T 

lymphocytes was similar to that of the epithelial cell line HeLa-S3 and the myelogenous 

leukemia cell line K562 cells, and overlapped for 90.1% (HeLa-S3: 2843 RBPs, K562: 2826 

RBPs, Supplementary Figure 1A,B, (39)). 

To calculate the number of RBPs expressed at the protein level in B and T lymphocytes, we 

used previously published mass spectrometry (MS) data of B cell and T cell subsets of 4 donors 

(40) that were similarly prepared and selected as the ones in the RNA-seq dataset we used (38). 

In total, 9436 proteins were identified in all B cell and T cell subsets combined, of which 96.8% 

(9136 proteins) were also expressed at the RNA level (Supplementary Figure 1C). Overall, 

2617 RBPs (80.9% of our reference list) were detected at the protein level (Figure 1B), and 

2596 RBPs (80.2%) were detected at both RNA and protein level (Figure 1B). This high overlap 

corroborated with the overall high expression levels of RBPs (Figure 1C; p-value: 6.2e-12 for 

RNA and 2.1e-12 for protein). The top 20 expressed RBPs at RNA level included several 

ribosomal proteins (RPL3, RPL4, RPS3, RPS27), translation-related proteins (EEF1A1, 

EEF1G, EIF1) and splicing-related proteins (DDX5 (41), SRSF5 (42), HNRNPA1 (43); Figure 

1D). At protein level, top 20 expressed RBPs included the RNA stability-related protein (VIM 
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(44)), the splicing-related protein HNRNPA2B1 (45), the ribosomal protein RPS27A, and the 

moonlighting RBPs ENO1 and GAPDH (Figure 1D, (46,47)).  

Next, we determined which RNA-binding domains (RBDs) are present in the detected RBPs. 

Using previously reported RBDs (Supplementary Table 1, (36,37)) and the protein families 

annotation database (Pfam; (48)), we detected a broad range of RBDs. (Supplementary Table 

1). The top 20 RBDs included classical RBDs, such as the RNA-recognition motif (RRM; 5.8%, 

present in e.g. CELF2, CNOT4, ELAVL2, HNRNPLL and PABPC1) and the DEAD helicase 

motif (DEAD; 2.1%, present in e.g. DDX1, DDX10, DHX16). Also a variety of zinc-finger 

protein domains was found, including the zinc-finger C2H2 (zf C2H2; 3.2%, present in e.g. 

ZNF638, ZMAT3), zinc-finger metazoans (zf-met; 1.1%, present in e.g. ZFR2, TUT1), zinc-

finger CCCH (zf-CCCH; 1.0%, present in e.g. ZFP36L1, RBM27, ZC3H10), zinc-finger CCHC 

(zf-CCHC; 0.5%, present in e.g. ZCRB1, CPSF4) and the zinc-finger Ran binding protein (zf-

RanBP; 0.5%, present in e.g. RBM5, RBM10, Figure 1E). In addition, 52.8% of the RBPs 

contained non-canonical RNA-binding domains (1574 RBPs; Figure 1E), which were by and 

large present in experimentally identified RBPs (Supplementary Figure 1D). These included 

ribosomal proteins (RPL18 and RPL5), the RNA processing molecule DUSP11, RNA splicing-

related RBPs (AHNAK, PCF11, SNIP1, SCAF11, SNRNP40) and the exoribonuclease EXOSC3. 

A similar distribution of the top 20 RBDs was present in RBPs detected in HeLa-S3 and K562 

cells (Supplementary Figure 1E), indicating that the RBD distribution is not a specific feature 

of lymphocytes.  

RBPs regulate many processes, which includes RNA splicing, stability, subcellular localization 

of RNA, RNA modification, and translation (5,49). Using protein annotations from the human 

protein atlas database (50), we found that 1178 RBPs (41.7%) were annotated as regulators of 

at least one of these five RNA-related processes (Figure 1F, left panel), of which 24% were 

annotated for multiple RNA-related processes (Figure 1F, right panel). Combined, these data 

show that human lymphocytes express a wide variety of RBPs with a diverse set of RBDs. 

 

Human B cells and T cells have a distinct RBP signature 

To determine whether and how RBP expression differed between B cells and T cells, we 

analyzed CD19+ B cells, CD4+ T cells, and CD8+ T cells separately in the RNA-seq and MS 

datasets employed in Figure 1. Overall, 2923 RBPs (97.0% of the total RBPs) and 2556 RBPs 

(97.6% of the total RBPs) were detected in all three subsets at the RNA and the protein level, 
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respectively (Supplementary Figure 2A, B). Only few RBPs were identified in one cell type 

alone (Supplementary Figure 2A). In particular, B cells exclusively expressed members of the 

ribonuclease A super-family (RNASE1, RNASE2 and RNASE3) and the RBP DAZL. The RBPs 

RBM24 and PABPC3 were only detected in CD4+ T cells, and NCBPL2 and A1CF were 

specifically expressed in CD8+ T cells (Supplementary Table 2). At the protein level, 36 RBPs 

were specifically detected in CD4+ T cells and CD8+ T cells (e.g. RC3H1, REXO1, HENMT1). 

KHDRBS2, RPL37, DHX32 were for instance exclusively detected in CD19+ B cells and CD4+ 

T cells and CPEB2 and TRMT44in CD4+ T cells alone (Supplementary Table 2). 

We next questioned whether the global RBP expression differed between the three lymphocyte 

subsets. Principal Component Analysis (PCA) revealed that the RBP mRNA and protein 

expression alone separates B cells from T cells just as effectively as a PCA performed on all 

genes (Figure 2A; Supplementary Figure 2C). Differential expression (DE) analysis on RBPs 

also revealed clear differences between B cells and T cells. 695 and 644 DE RBPs (82.3% and 

76.3% of the DE RBPs) were found DE at the mRNA level between CD19+ B cells and CD4+ 

T cells, or CD8+ T cells, respectively (Figure 2B, Supplementary Table 2; LFC > 0.5; p-

adjusted<0.01). CD4+ T cells and CD8+ T cells were more closely related, with only 68 DE 

RBPs (8.1% of all DE RBPs, Figure 2B, Supplementary Table 2). RBP expression at protein 

level showed similar trends, with 40 and 24 DE RBPs between CD19+ B cells and CD4+ T cells 

or CD8+ T cells, respectively, and only 6 DE RBPs between CD4+ T cells and CD8+ T cells 

(Supplementary Figure 2D, Supplementary Table 2; LFC > 0.5; p-adjusted<0.05). 84.4% of the 

DE RBPs at protein level were also DE RBPs at RNA level (Supplementary Figure 2E). Indeed, 

unsupervised clustering of the DE RBPs clearly distinguished B cell- from T cell-associated 

RBP clusters (Figure 2C, D).  

To investigate the functional annotation of the DE RBPs, we focused on RBPs that were 

significantly higher expressed by either B cell or T cell populations (Figure 2E). We studied 

RBPs that are annotated regulators of RNA splicing, stability, subcellular localization of RNA, 

RNA modification, and translation, as defined by protein annotation from the human protein 

atlas database. This included 107 (32.5%) of the B cell-associated RBPs and 49 (28.0%) of the 

T cell-associated RBPs (Figure 2F, left panel). The majority of these RBPs were annotated for 

one function, and 17.8% and 16.3% for multiple functions for B cells and T cells, respectively 

(Figure 2F, middle panel). Interestingly, the relative distribution of RBPs annotated for these 5 

RNA processes differed between B cells and T cells. Whereas 52.3% of RBPs in B cells were 

annotated for translation, this was only the case for 30.6% in T cells (Fig 2F, right panel). 
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Conversely, only 17.8% was annotated for RNA splicing in B cells, but reached 30.6% in T 

cells (Fig 2F, right panel). In conclusion, the overt differential RBP expression between human 

B cells and T cells shown here possibly reflects a distinct distribution between different classes 

of RBPs. 

 

RBP expression changes upon B cell differentiation 

Several B cell subsets can be found in the peripheral blood including naïve B cells, memory B 

cells and plasmablasts (Figure 3A). Whereas plasmablasts produce vast quantities of antibodies 

and are short-lived, memory B cells are long-lived and for the most part quiescent (51). We 

found that the phenotypical differences between these three B cell subsets is echoed in their 

RBP expression profile. We identified 1308 DE RBPs at RNA level, and 96 DE RBPs at protein 

level between naïve B cells, memory B cells and plasmablasts (Supplementary Figure 3A, B, 

Supplementary Table 3). In particular, although only 151 DE RBPs were found between naïve 

and memory B cells, plasmablasts showed a distinct RBP profile, with 1185 and 891 DE RBPs 

between naïve or memory B cells and plasmablasts, respectively (Supplementary Figure 3A, 

Supplementary Table 3). The top 20 DE RBPs at both the RNA and protein level spanned a 

wide range of abundance, and included RRM2, APOBEC3B, METTL5 and LGALS3 (Figure 3B, 

C). Hierarchical clustering of DE RBPs at RNA level revealed three clusters between B cell 

subsets (Figure 3D, Supplementary Table 3). 188 RBPs were highly expressed in plasmablasts 

(cluster 1), 541 RBPs were highly expressed in memory B cells (cluster 2) and cluster 3 with 

579 RBPs were highly expressed in naïve and memory B cells, respectively (cluster 3). 

Hierarchical clustering on protein levels revealed similar differential RBP expression patterns 

(Figure 3C). Within these three clusters of DE RBPs at the RNA level, we isolated RBPs 

annotated for RNA splicing, stability, subcellular localization of RNA, RNA modification, and 

translation. This included 67 (35.6%) RBPs in cluster 1, 204 (44.4%) RBPs in cluster 2, and 

214 (37%) RBPs in cluster 3 (Figure 3F, left panel). Again, 75-78% of the RBPs was annotated 

for one function (Figure 3F, middle panel), and the prime annotation of RBPs was translation 

in all three clusters (Figure 3F, right panel). Interestingly, whereas RBPs annotated for RNA 

splicing were also abundant in naïve and memory B cell subsets with 31.3% and 40.2%, 

respectively,  plasmablasts (cluster 1) contained only 6.0% RBPs annotated for RNA splicing 

(Figure 3F, right panel). Instead, 44,8 % of RBPs expressed in plasmablasts annotated for RNA 

transport (Figure 3F, right panel). STRING-analysis on splicing-related RBPS from cluster 3 

(naïve-memory B cells) revealed networks consisting of known splicing factors, such as the SR 
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protein family members SRSF1, SRSF4, SRSF3, SRSF6, in addition to NUDT21 and HNRNPLL 

(Figure 3G). For transport-annotated RBPs from cluster 1 (plasmablast), the interaction 

networks included the RBP SLBP, which regulates mRNA export (52), and the RBP TST, which 

regulates the transport of ribosomal RNA (Figure 3H, (53)). In conclusion, the RBP expression 

differs between B cell subsets, and involves different types of post-transcriptional regulatory 

functions.  

 

RBP expression changes upon CD4+ T cell differentiation 

Naïve T cells (Tnaive) undergo differentiation into effector T cells, which are rarely found in 

the peripheral blood of healthy donors (54). Rather, central memory (Tcm) and effector memory 

(Tem) CD4+ T cell subsets, which develop during the course of infections, are present in the 

blood and differentially contribute to recall responses upon recurring infections (Figure 4A; 

(55)). Similar to B cells, we find RBPs differentially expressed in the CD4+ T cell subsets 

Tnaive, Tcm and Tem at RNA (n=774), and at protein level (n=115; Supplementary Figure 4A, 

B; Supplementary Table 4). 48% of the DE RBPs at protein level are detected also at the RNA 

level (Supplementary Figure 4C). The top 20 DE RBPs included RBPs such as, APOBEC3H 

and PAPBC3 (RNA level) and OASL and ANXA2 (protein level, Figure 4B, C).  

Hierarchical clustering of the DE RBPs revealed three clusters (Figure 4D, E), with cluster 1 

(Tnaive) containing 145 RBPs, cluster 2 (Tem) containing 366 RBPs, and cluster 3 (Tcm) 

containing 263 RBPs (Supplementary Table 4). This differential expression of RBPs was also 

apparent at the protein level (Figure 4E, 115 DE RBPs, Supplementary Table 4). To gain more 

insights into the biological processes of the RBPs in the different clusters, we performed Gene 

Ontology (GO) analysis. Whereas metabolic processes were enriched in all three clusters, 

cluster 2 and 3 were enriched for GO-terms associated with translation (translation initiation, 

cytoplasmic translation) and with RNA transport (Supplementary Figure 4D). Cluster 2 also 

showed a moderate enrichment for RBPs associated with regulation of RNA stability (RNA 

destabilization, 3’-UTR-mediated mRNA destabilization; Supplementary Figure 4D).  

When we specifically isolated RBPs annotated for RNA splicing, stability, subcellular 

localization of RNA, RNA modification, and translation, we found that 103 (39.2%) RBPs of 

the DE RBPs belong to these 5 RBP classes in cluster 1, 148 RBPs in cluster 2 (40.4%) and 84 

RBPs in cluster 3 (57.9%) (Figure 4F, left panels). Only a fraction of RBPs is associated with 

more than one of these functions (cluster 1: 17.5%, cluster 2: 26.4%, cluster 3: 25%; Figure 4F, 
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middle panel). When CD4+ T cells differentiate, the relative distribution of functional RBP 

annotation alters. 83.3% of the RBPs associated with the 5 RBP classes were linked to 

translation in cluster 3 (Tcm), compared to 51.5% and 43.2% in cluster 1 (Tnaive) and cluster 

2 (Tem), respectively (Figure 4F, right panels). Conversely, in cluster 2 (Tem), the percentage 

of RBPs annotated for RNA transport are with 41.2% primarily found in cluster 2 and much 

less so in cluster 2 and 3 with 15.5% and 13.1%, respectively (Figure 4F, right panels). 

STRING-analysis on the translation-related RBPs of cluster 3 revealed an enrichment of 53 

ribosomal proteins and of other translation-associated RBPs, such as PABPC1, YBX1 and FAU 

(Figure 4G). The RNA-transport-related RBPs of cluster 2 included the mRNA export-

associated RBPs DDX19B, SARNP, MAGOH and THOC2 (Figure 4H). Combined, our findings 

reveal that the RBP expression landscape changes throughout CD4+ T cell differentiation, 

which results in a relative enrichment of specific RBP classes in different CD4+ T cell subsets.  

 

RBP expression changes upon CD8+ T cell differentiation 

We then focused on the CD8+ T cell differentiation subsets. Our dataset also included effector 

CD8+ T cells (Teff), which was included in the analysis, in addition to Tnaive, Tcm and Tem 

CD8+ T cell subsets (Figure 5A). 707 RBPs were differentially expressed at the RNA level 

between Tnaive, Tcm and Tem and Teff, and 115 RBPs at the protein level (Supplementary 

Figure 5A, B; Supplementary Table 5). 44.1% of DE RBPs at protein level were also detected 

at the RNA level (Supplementary Figure 5C). The top 20 DE RBPs included RBPs like 

JAKMIP1 and OASL (RNA level) and EIF4EBP3 and FLNB (protein level, Figure 5B, C). 

Hierarchical clustering of RBP expression resulted 3 clusters (Figure 5D). Cluster 1 contained 

297 RBPs highly expressed in Tem and Teff CD8+ T cells (Figure 5B, Supplementary Table 

5). Cluster 2 (176 RBPs) also included Tem an Teff CD8+ cells, and to a lesser extent in Tcm 

cells. Cluster 3 (234 RBPs) included primarily Tnaive cells, but also Tcm cells (Figure 5B, 

Supplementary Table 5). Similar clusters were identified at RBP protein level (Figure 5E, 177 

DE RBPs, Supplementary Table 5). 

In CD8+ T cell subsets, 67 RBPs in cluster 1 (38.1%), 84 RBPs in cluster 2 (35.9%), and 143 

RBPs in cluster 3 (48.1%) were annotated as regulators of RNA splicing, stability, subcellular 

localization of RNA, RNA modification, or translation (Figure 5F, left panels), with a minority 

of RBPs (20-28%) linked to multiple functions (Figure 5F, middle panels). We found that 

cluster 3 was relatively enriched for translation-associated RBPs (71.3%), compared to cluster 
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1 and cluster 2 with 34.5% and 44.8%, respectively (Figure 5F, right panels). Conversely, 

cluster 1 and 2 were enriched for RBPs associated with RNA transport (cluster 1: 43.3%, cluster 

2: 46.4%), and this RBP class was 12.6% only minor in cluster 3 (Figure 5F, right panels). 

STRING-analysis on translation-associated RBPs from cluster 3 revealed the interaction 

network between 56 ribosomal proteins and 10 eukaryotic translation initiation factors (Figure 

5G). The RNA-transport associated RBPs in cluster 2 and 3 included RBPs involved in RNA 

export (THOC5 (56), RBM8A (57), SARNP (58), Figure 5H). 

Gene Ontology (GO) analysis on the DE RBPs also showed in cluster 3 - in addition to catabolic 

processes - an enrichment of GO-terms associated with translation, i.e. cytoplasmic translation, 

translation initiation and positive regulation of translation (Supplementary Figure 5D). Cluster 

1 displayed a moderate enrichment for GO-terms related to RNA stability (3’-UTR-mediated 

mRNA destabilization, regulation of mRNA stability, Supplementary Figure 5D). In 

conclusion, CD8+ T cells change their RBP expression landscape throughout differentiation, 

with specific RBP classes enriched in different CD8+ T cell subsets.  

 

Specific RBP expression associates with T cell cytotoxicity 

T cells can acquire cytotoxic function when they differentiate into effector cells. Importantly, 

whereas CD8+ T cells are generally classified as cytotoxic, not all CD8+ T cells display 

cytotoxic features (59–61). Conversely, a subset of human CD4+ T cells also shows cytolytic 

features (62–64). We therefore sought to identify RBPs that were associated with a high 

cytotoxic capacity in human CD8+ T cells and CD4+ T cells. As source of T cells, we used 

previously published single-cell RNA-seq (scRNA-seq) data on blood-derived human CD8+ 

and CD4+ T cells (65–67). 

Because only memory and effector T cells can be cytotoxic, we excluded naïve T cells from 

our analysis based on their high gene expression of CCR7, LEF1 and SELL (Supplementary 

Figure 6A-D). We then identified and integrated the expression of 8 cytotoxic genes (9)  i.e. 

FGFBP2, GZMB, GZMH, PRF1, NKG7, CX3CR1, GNLY and ADGRG1 into a cytotoxic score 

(see methods; Figure 6A, Supplementary Figure 6E, F). Dimensional reduction analysis 

revealed that CD8+ and CD4+ T cells with a low (bottom 10%) or high cytotoxic score (top 

10%) form two distinct clusters (Figure 6B, C). High expression of ITGB1 in CD8+ and CD4+ 

T cells with a high cytotoxic score confirmed the selection for cytotoxic T cells ((59,62), Figure 

6D, E). In addition, 16 RBPs were significantly upregulated in CD8+ T cells with a low 
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cytotoxic score, whereas 36 RBPs were preferentially expressed in CD8+ T cells with a high 

cytotoxic score (Figure 6D, Supplementary Table 6; LFC>0.5; P-adjusted<0.01). Likewise, 87 

RBPs and 41 RBPs were upregulated in CD4+ T cells with a low and with a high cytotoxic 

score, respectively (Figure 6E, Supplementary Table 6). 

Intriguingly, the differential RBP expression between CD8+ and CD4+ T cells with a low or 

high cytotoxic score was strikingly similar (Figure 6F). 13 RBPs were upregulated in CD8+ and 

CD4+ T cells with a low cytotoxic score (Figure 6F), which included 8 ribosomal proteins, e.g. 

RPL13A, RPL10 and RPL4 which are accessory to the translation regulation (68), and the 

translation initiation factor EEF1G (Figure 6G, H). 25 RBPs that were upregulated in both 

CD8+ and CD4+ T cells with a high cytotoxic score (Figure 6F) included cytidine deaminases 

APOBEC3G and APOBEC3C, the poly(G) binding protein ANXA2 (69), the viral dsRNA 

binder OASL (70) and the translational repressor PATL2 (Figure 6G, H, (71)). In summary, 

CD8+ and CD4+ T cells with a high cytotoxic potential express a specific set of RBPs.   
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Discussion 

In this report, we provide a comprehensive RBP expression map based on the transcriptome 

and proteome of human B cells and T cells. We found that the overall expression pattern of 

RBPs is remarkably well conserved. It overlaps for >90% with that of HeLa-S3 cells and K562 

cells. Nonetheless, differential expression analysis of RBPs clearly distinguishes B cells from 

T cells. RBPs also alter their expression profile upon differentiation. This finding suggests that 

- similar to what is observed for transcription factors (15,16) - the relative abundance of RBPs 

defines the fate of RNA and of translation into proteins, and thus the differentiation status of 

lymphocyte subsets.  

Intriguingly, the differential expression of RBPs upon lymphocyte differentiation resulted in a 

shift of functional annotations of the expressed RBPs. For instance, plasmablasts are enriched 

for RBPs annotated for RNA transport, a feature that may support their antibody producing 

function. Effector and effector memory type CD4+ and CD8+ T cells also showed a preference 

of RBPs annotated for RNA transport, albeit to a lesser extent. Conversely, central memory 

CD4+ T cells, and naïve and central memory CD8+ T cells preferentially express RBPs that are 

annotated for translation regulation. This finding is in line with recent studies that indicated a 

tight gene-specific regulation of translation in naïve T cells (72–75), and the concept of 

translational preparedness of naïve and memory T cells (72). It is therefore tempting to 

speculate that the enrichment for RBPs involved in translation regulation we find here 

contributes to the translation control in naïve and memory T cells.  

Also, cytotoxic T cells display a unique RBP expression profile. Compared to non-cytotoxic T 

cells, cytotoxic T cells express lower mRNA levels of several ribosomal proteins. Whether the 

differences at the mRNA level for ribosomal proteins is also reflected at the protein level is still 

unknown. In addition, whether some of these ribosomal proteins display any transcript 

specificity, as was shown for RPL10A and RPS25 (68), remains to be defined. In addition, we 

noticed an increased expression of the mRNA cytidine deaminases APOBEC3C and 

APOBEC3G. Previous studies reported that APOBEC expression increases upon T cell 

activation (76), which was primarily associated with viral restriction (77). It is also conceivable 

that increased APOBEC expression is involved in regulating the fate of endogenous mRNAs in 

cytotoxic T cells. Interestingly, the specific RBP profile linked to cytotoxicity is shared by 

CD4+ T cells and CD8+ T cells, a feature which may point to a similar differentiation program 

towards cytotoxicity.  
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RNA-binding proteins are critical mediators in shaping lymphocyte differentiation and effector 

function (24–28,30–33). The RBP expression map we provide here could help to further dissect 

the role of RBPs in B cell and T cell differentiation and function. It is important to note that the 

RBP expression map we provide here primarily serves as a resource, and thus as a starting point 

for uncovering the RBP-mediated regulation in lymphocyte differentiation. RBP expression by 

itself cannot be interpreted as direct interaction of RBPs with RNA. In fact, RBP interactions 

with RNAs can be highly versatile and are subject to rapid changes upon extrinsic signals. For 

instance, the RBP ZFP36L2 is expressed to a similar extent in memory T cells and re-activated 

T cells, yet only blocks translation in resting memory T cells (33). Similarly, a large fraction of 

ribosomal proteins does not interact with ribosomal RNA. The mode of action of these non-

ribosomal RNA binding RPs is to date enigmatic and requires further investigation. Lastly, in 

addition to classical RBPs, recent studies have revealed the presence of enigmatic RBPs, which 

are primarily annotated for other cellular functions. This is exemplified by metabolic enzymes 

from the TCA cycle (78,79). Their relative contribution to RNA regulation during lymphocyte 

differentiation and effector function is yet to be experimentally confirmed. Nonetheless, the 

role of RBPs in genetic diseases is becoming appreciated (80), and defining the RBP expression 

presented in the study presented here may contribute to deciphering dysregulated RBP 

expression and function also in immune-related diseases. 
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Material and Methods 

Data sets 

Raw RNA-sequencing (RNA-seq) data were retrieved from the gene expression omnibus 

repository (GEO, NCBI) or from the European Nucleotide Archive (ENA). Data from CD19+ 

B cells and from B cell differentiation subsets (n=4 donors with 4 B cell populations each), 

from CD4+ T cells (n=3-4 donors with 7-8 CD4+ T cell populations each) and CD8+ T cells and  

respective differentiation subsets (n=4 donors with 4 CD8+ T cell populations each) were 

retrieved from  Monaco et al. ((38); accession number: GSE107011)). RNA seq data to of CD4+ 

T cell subsets (n=5 donors with 3 CD4+ T cell populations each) were retrieved from Ranzani 

et al. ((81); PRJEB5468). RNA-seq data of HeLa-S3 cells and K562 cells were obtained from 

Martinez et al. ((39); GSE125218). Quantitative mass spectrometry (MS) data of CD19+ B 

cells, CD4+ and CD8+ T cells and the respective differentiation subsets were retrieved from 

Rieckmann et al. ((40) n=4 donors). Lymphocyte subsets in the RNA-seq and MS data sets 

were prepared as follows: CD19+ B cells: naïve (RNA-seq: CD27- IgD+, MS: CD27- 

Mitotracker-), memory (RNA-seq: CD27+ CD38- IgD-, MS: CD27+ CD38- Mitotracker-) and 

plasmablasts (RNA-seq: CD27+ CD38+ IgD-, MS: CD27+ CD38+ Mitotracker-); CD4+ T cells: 

naïve (RNA-seq: CCR7+ CD45RA+ CD45RO-, MS: CCR7+ CD45RA+), memory (RNA-seq: 

CCR7+ CD45RA- CD45RO+, MS: CCR7+ CD45RA-), and effector memory (RNA-seq: CCR7- 

CD45RA- CD45RO+, MS: CCR7+ CD45RA-); CD8+ T cells: naïve (CCR7+ CD45RA+), 

memory (CCR7+ CD45RA-), effector memory (CCR7- CD45RA-) and effector CD8+ T cells 

(CCR7- CD45RA+).  

Single-cell RNA-sequencing (scRNA-seq) data of blood-derived CD4+ and CD8+ T cells were 

retrieved from the GEO repository: Zheng et al. (67); GSE98638, Guo et al. (65); GSE99254, 

Zhang et al. (82); GSE108989. 

 

RBP reference list 

The list of annotated human RBPs was created by aggregating published data of RNA 

interaction capture assays that were performed on HEK293, HeLa, MCF7, MCF10A, U2OS 

and Jurkat cells (34–36), which resulted in a list of 2355 RBPs. This list was supplemented with 

975 computationally identified RBPs from Gerstberger et al. (37), and the EuRBP-DB ((36),  

http://eurbpdb.syshospital.org/, accessed on 19-11-2019. This RBP list with 3333 proteins was 
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manually curated to exclude histones (18 histones), possible contaminants (ITGA1 and ITGB1), 

and mitochondrial RBPs (80 RBPs), resulting in a list of 3233 RBPs.  

 

RNA-sequencing analysis 

RNA-sequencing reads were quasi-mapped using Salmon (version 1.0, (83)) onto the human 

coding transcriptome GRCh38 from Gencode (v36, May 2020). Of the CD4+ T cell, CD8+ T 

cell and CD19+ B cell samples retrieved from Monaco et al. (38), an average of 12.5 x 106 reads 

was quasi-mapped onto the human coding transcriptome. For the CD4+ T cell differentiation 

samples, retrieved from Ranzani et al. (81), an average of 11.4 x 106 reads was quasi-mapped 

onto the human coding transcriptome. Transcript-level estimates were imported and 

summarized to the gene-level by using the tximport function (tximport package, version 1.16.1 

(84)). To define the overall expression of RBPs subsets were grouped together as indicated. 

Differential gene expression analysis was performed using DESeq2 (version 1.28.1 (85)). 

Genes were considered differentially expressed with an absolute log2 fold change (LFC) >0.5 

and a p-adjusted <0.01. For differential gene expression analysis of total B cells, CD4+, and 

CD8+ T cells populations, we averaged the RNA-seq counts of differentiation subsets per donor. 

TPM (transcript per kilobase per million) counts were calculated by Salmon and used for 

plotting. Of note, TPM counts are corrected for library depth, library size, and transcript length, 

and thereby allow a fair comparison between populations. The number of detected RBPs per 

cell type, and the RBP expression rank were based on averaged TPM per cell type. Top 20 

differentially expressed proteins were identified based on the log2 fold change values. 

 

Single cell RNA-seq data analysis 

ScRNA-seq datasets were analysed using Seurat (version 4.0.1;(86)). Count matrices of 

(65,67,82) were filtered for “PTC”, corresponding to peripheral blood-derived CD8+ T cells 

(CD3+CD8+). To identify conventional blood-derived CD4+ T cells, count matrices of 

references (65,67,82) were filtered for “PTH” (CD3+CD4+CD25-) and “PTY” 

(CD3+CD4+CD25int). To correct for dataset specific effects from the three individual scRNA-

seq datasets, we employed a published scRNA-seq data integration method (87). The inter-

individual donor batch-effect was corrected using the vars.to.regress argument in SCTransform 

(Seurat v4). Unsupervised clustering was performed on Uniform Manifold Approximation and 
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Project (UMAP) dimensional reduction using the top 30 principal components (PCs). Cells 

expressing high levels of naive T cell associated genes like CCR7, LEF1 and SELL (88,89) 

were excluded from downstream analysis. Differential gene expression analysis was performed 

using the Model-based Analysis of Single-cell Transcriptomics (MAST) test (90). Genes were 

considered differentially expressed based on a p-adjusted < 0.05 and an absolute log2 fold 

change > 0.5.  

 

Cytotoxic score calculation 

The cytotoxic score of CD4+ T cells and CD8+ T cells was obtained from the scRNA-seq data 

by selecting for the top 7 most correlated (Pearson’s correlation) genes with FGFBP2 

expression (9). (Supplementary Figure 6A, B). To obtain the cytotoxic score for each cell, a Z-

score of expression for each of the 8 cytotoxic genes (FGFBP2, GZMB, GZMH, PRF1, NKG7, 

CX3CR1, GNLY and ADGRG1) was calculated for the whole dataset. Z-scores from all 8 genes 

were averaged per cell and served as the cytotoxic score. Cells with high (top 10%), 

intermediate (10-90%) or low (bottom 10%) cytotoxic score were selected and used for 

analysis.  

 

Mass spectrometry analysis 

Differential protein expression analysis was performed with Differential Enrichment analysis 

of Proteomics data (DEP) (version 1.12.0, (91)) on label-free quantification (LFQ) values. 

Protein copy numbers (CN) were filtered for expression levels (CN > 1). The number of RBPs 

detected among the different cell types was based on averaged CN values across cell types 

obtained from 4 donors. RBP rankings according to protein abundance was performed by using 

averaged CN values per cell type. The top 20 differentially expressed proteins were identified 

based on the log2 fold change values. 

 

RBD annotation 

RNA-binding domain names were obtained from Gerstberger et al. (2014) and Liao et al. 

(2020). The existence of each RNA-binding domain was verified and updated based on 

information present in the protein families database (Pfam, (48)) (Supplementary Table 1). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.10.447413doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.10.447413
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Proteins containing RNA-binding domains were obtained from the PFAM database. When 

RBPs contained more than one RBD, each RBD was counted and included in the analysis. 

Human Protein Atlas annotations (HPA, https://www.proteinatlas.org on 28-03-2021; (50)) 

were used to classify proteins associated with RNA modification (keywords: “RNA AND 

Modification”), RNA splicing (keywords: “Spliceosome”), RNA stability (keywords: “RNA 

AND Stability”), RNA transport (keywords: “RNA AND Transport”), and Translation 

(keywords: “Translation”). Protein-protein association networks were generated using the 

STRING database (https://string-db.org/, (92)). Gene ontology analysis was performed with the 

Panther database (version 16.0, (93)) on differentially expressed RBPs. A statistical 

overrepresentation test (Fisher’s exact with FDR multiple test correction) was performed with 

a reference list composed of all Homo Sapiens genes in the database. Overrepresented GO terms 

(FDR<0.05) were filtered for RNA-related functions. Full lists of overrepresented GO terms 

are provided in Supplementary Table 7. 

 

Plots and graphs 

Plots and graphs were generated using ggplot2 (version 3.3; (94)). Principal components 

analysis was performed using the plotPCA function from DESeq2 (85). Heatmaps were 

generated using the Pheatmap package (version 1.0.12; (95)) in R (version 4.0.3). Venn 

diagrams were generated using the Venn diagram tool from the University of Gent (accessed at 

http://bioinformatics.psb.ugent.be/webtools/Venn/).  
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Figure legends 

Figure 1: Characterization of RNA-binding protein expression in human lymphocytes 

(A) Reference list of RNA binding proteins (RBPs) was generated by integrating  

experimentally validated RBPs (34–36) with computationally predicted RBPs based on the 

presence of a defined list of RNA-binding domains (36,37). (B) RBPs that are detected in 

human lymphocytes at RNA level (left panel), at protein level (middle panel), and at both RNA 

and protein level (right panel). RNA: n=3-4 donors. Protein: 4 donors. (>0.1 TPM) (C) RNA 

abundance in transcript per kilobase per million (TPM) and protein abundance in protein copy 

number (CN) for all genes (gray) and RBPs (red) in human B cells and T cells. (D) Expression 

levels of RBPs detected at RNA level (left panel) and at protein level (right panel) was ranked 

according to expression levels. Names of the top 20 expressed RBPs are indicated. (E) 

Frequency of RNA-binding domains among the 2983 RBPs that were detected at RNA level. 

(F) Left panel: RBPs detected at RNA level in human B and T lymphocytes that are annotated 

for RNA splicing, stability, subcellular localization of RNA, RNA modification, and translation 

(dark blue), or for other processes (light blue). Right panel: Distribution of RBPs annotated for 

the five RNA-related processes as indicated. Each line depicts one RBP. TPM: Transcripts per 

kilobase per million; CN: Protein copy number. 

 

Figure 2: Differential RBP expression between human B cells and T cells 

(A) Principal component analysis (PCA) of RBP RNA (left panel) and protein (right panel) 

expression in CD19+ B cells, CD4+ T cells and CD8+ T cells (n=4 donors). Each dot depicts 

one specific B cell or T cell subset from each donor. (B) Volcano plots of all differentially 

expressed genes (gray) and of differentially expressed RBPs (DE RBPs) (red) between CD19+ 

B cells, CD4+ T cells and CD8+ T cells (LFC>0.5, P-adjusted<0.01). (C-D) Heatmap of 

unsupervised clustering of DE RBPs at RNA (C) or at protein level (D) in CD19+ B cells, CD4+ 

T cells and CD8+ T cells. Each column corresponds to one T/B cell differentiation subset of a 

donor (n=4 donors). (E) Log2 Fold Change (LFC) of RBP mRNA expression between CD19+ 

B cells and CD4+ T cells (y-axis) and between CD19+ B cells and CD8+ T cells (x-axis). Red 

dots depict RBPs that are significantly upregulated in B cells, and blue dots indicate RBPs 

significantly upregulated in CD4+ T cells and CD8+ (significant in both comparisons, LFC>0.5, 

P-adjusted<0.01). (F) Left panels: RBPs annotated for RNA splicing, stability, subcellular 

localization of RNA, RNA modification, and translation (dark colors) or for other processes 
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(light colors) that are upregulated in CD19+ B cells (top row) or T cells (bottom row) as defined 

in (E) Middle panels: relative distribution between the 5 specific RBP classes. Right panels: 

Percentage of RBPs annotated for the indicated RNA-related biological processes. 

 

Figure 3: RBP expression alters upon B cell differentiation 

(A) Diagram depicting the analysed CD19+ B cell subsets. (B-C) Expression levels of RBPs 

detected in B cells at RNA level (B) and at protein level (C), ranked according to expression 

levels. Red dots indicate the top 20 most differentially expressed RBPs, ranked on Log2 Fold 

Change). (D-E) Heatmap of unsupervised clustering of DE RBPs at mRNA (D) and at protein 

level (E) between naïve CD19+ B cells, memory CD19+ B cells and plasmablasts. n=4 donors. 

(F) Left panels: RBPs annotated for RNA splicing, stability, subcellular localization of RNA, 

RNA modification, and translation (dark colors) or for other processes (light colors) in the three 

clusters defined in (D). Middle panels: relative distribution between the 5 specific RBP classes. 

Right panels: Percentage of RBPs annotated for the indicated RNA-related biological 

processes. (G-H) String analysis on splicing-related RBPs (G) identified in cluster 3 and on 

RNA transport-associated RBPs (H) identified in cluster 1. TPM: Transcripts per kilobase per 

million; CN: Protein copy number. 

 

Figure 4: RBP expression alters upon CD4+ T cell differentiation 

(A) Diagram depicting the analysed CD4+ T cell subsets. (B-C) Expression levels of RBPs 

detected at RNA (B) or protein level (C) in human CD4+ T cells ranked according to expression 

levels. Red dots indicate top 20 most differentially expressed RBPs based on Log2 Fold 

Change. (D-E) Unsupervised clustering of DE RBPs at RNA (D) or at protein level (E) between 

naïve (Tnaive), central memory (Tcm) and effector memory (Tem) CD4+ T cells depicted in a 

heatmap. RNA: n=5 donors, protein: n=4 donors. (F) Left panels: RBPs annotated for RNA 

splicing, stability, subcellular localization of RNA, RNA modification, and translation (dark 

colors) or for other processes (light colors) in the three clusters defined in (D). Middle panels: 

relative distribution between the 5 indicated RBP classes. Right panels: Percentage of RBPs 

annotated for indicated RNA-related biological processes. (G-H) String analysis on translation-

related RBPs (G) identified in cluster 3 and on RNA transport-associated RBPs (H) identified 

in cluster 2 . TPM: Transcripts per kilobase per million; CN: Protein copy number. 
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Figure 5: RBP expression alters upon CD8+ T cell differentiation 

(A) Diagram depicting the analysed CD8+ T cell subsets. (B-C) Expression levels of RBPs 

detected at RNA (B) and at protein level (C) in human CD8+ T cells ranked according to 

expression levels. Red dots indicate top 20 most differentially expressed RBPs based on Log2 

Fold Change. (D-E) Unsupervised clustering of DE RBPs at RNA (D) or protein level (E) 

between naïve (Tnaive), central memory (Tcm), effector memory (Tem) and effector (Teff) 

CD8+ T cells depicted in a heatmap. n=4 donors.  (F) Left panels: RBPs annotated for RNA 

splicing, stability, subcellular localization of RNA, RNA modification, and translation (dark 

colors) or for other processes (light colors) in the three clusters defined in (D). Middle panels: 

relative distribution between the 5 indicated RBP classes. Right panels: Percentage of RBPs 

annotated for indicated RNA-related biological processes. (G-H) String analysis on translation-

related RBPs (G) identified in cluster 3 and on RNA transport-associated RBPs (H) identified 

in clusters 2 and 3. TPM: Transcripts per kilobase per million; CN: Protein copy number. 

 

Figure 6: Cytotoxic CD4+ and CD8+ T cells share the RBP expression profile 

(A) Diagram indicating the cytotoxic gene signature shared by CD4+ T cells and CD8+ T cells 

as defined in Supplementary Figure 6E,F. (B, C) Uniform Manifold Approximation and 

Projection (UMAP) plot on non-naïve CD8+ T cells (B) and CD4+ T cells (C) with a high (top 

10%, red) or low (bottom 10%, green) cytotoxic score. (D, E) Volcano plot d DE RBPs (red) 

and other genes (gray) between non-naïve CD8+ T cells (D) and CD4+ T cells (E). Blue dot 

depicts ITGB1. (F) Log2 Fold Change values for RBPs with a high or low cytotoxic score of 

non-naïve CD4+ T cells (y-axis) and non-naïve CD8+ T cells (x-axis). Red and green dots 

indicate DE RBPs associated with a high and low cytotoxic score in both T cell types (LFC>0.5 

P-adjusted<0.05). (G, H) Violin plots depicting expression levels and expression density of 

selected RBPs in CD8+ T cells (G) or CD4+ T cells (H) with a high (top 10%), intermediate 

(10-90%) or low (bottom 10%) cytotoxic score.  
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