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Abstract 26 

The yeast Saccharomyces cerevisiae is an essential microorganism in food biotechnology; 27 

particularly, in wine and beer making. During wine fermentation, yeasts transform sugars present 28 

in the grape juice into ethanol and carbon dioxide. The process occurs in batch conditions and is, 29 

for the most part, an anaerobic process. Previous studies linked limited-nitrogen conditions with 30 

problematic fermentations, with negative consequences for the performance of the process and 31 

the quality of the final product. It is, therefore, of the highest interest to anticipate such problems 32 

through mathematical models. Here we propose a model to explain fermentations under 33 

nitrogen-limited anaerobic conditions. We separated the biomass formation into two phases: 34 

growth and carbohydrate accumulation. Growth was modelled using the well-known Monod 35 

equation while carbohydrate accumulation was modelled by an empirical function, analogous to 36 

a proportional controller activated by the limitation of available nitrogen. We also proposed to 37 

formulate the fermentation rate as a function of the total protein content when relevant data are 38 

available. The final model was used to successfully explain experiments taken from the 39 

literature, performed under normal and nitrogen-limited conditions. Our results revealed that 40 

Monod model is insufficient to explain biomass formation kinetics in nitrogen-limited 41 

fermentations of S. cerevisiae. The goodness-of-fit of the herewith proposed model is superior to 42 

that of previously published models, offering the means to predict, and thus control 43 

fermentations.  44 
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Importance: Problematic fermentations still occur in the winemaking industrial practise. 45 

Problems include sluggish rates of fermentation, which have been linked to insufficient levels of 46 

assimilable nitrogen. Data and relevant models can help anticipate poor fermentation 47 

performance. In this work, we proposed a model to predict biomass growth and fermentation rate 48 

under nitrogen-limited conditions and tested its performance with previously published 49 

experimental data. Our results show that the well-known Monod equation does not suffice to 50 

explain biomass formation. 51 

1 Introduction 52 

The yeast species Saccharomyces cerevisiae is the best-studied eukaryote. S. cerevisiae presents 53 

unique characteristics such as its fermentation capacity and its ability to withstand adverse 54 

conditions of osmolarity and low pH. These desirable properties have made of S. cerevisiae one 55 

of the workhorses of bio-industries including food, beverage -especially wine- and biofuel 56 

production industries (1). 57 

In winemaking, the fermentation turns grape must into an alcoholic beverage. Wine production 58 

occurs in a closed system (i.e. in batch conditions) and is, for the most part, an anaerobic process. 59 

During fermentation, yeasts transform sugars present in the must into ethanol and carbon 60 

dioxide. A complete alcoholic fermentation is achieved when the residual fermentable sugar is 61 

less than 2 g/L. Despite improvements in fermentation control, problematic fermentations such 62 

as, stuck - with a higher than desired sugar residual- and sluggish -unusually long- fermentations 63 

still occur in real practice. 64 
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Various studies have shown that insufficient levels of assimilable nitrogen contribute to stuck or 65 

sluggish fermentations (2). A minimum of 120–140 mg/L of assimilable nitrogen is required to 66 

achieve a standard fermentation rate, while nitrogen content in grape juice may be as low as 60 67 

mg/L (3). Therefore, it has become common practice to supplement nitrogen-deficient musts 68 

with diammonium phosphate (4). Nevertheless, both excessive or insufficient nitrogen can lead 69 

to the production of undesired metabolites affecting the organoleptic properties of wine (4, 5). 70 

The need to predict and control wine fermentation has motivated a quest for mechanistic models 71 

of alcoholic fermentation (see the reviews by (6, 7)). Previous studies proposed various 72 

alternatives that differ on the way they explain biomass formation and the relation of cell mass 73 

(or sometimes cell numbers) to fermentation rate. Dynamic kinetic models incorporate the 74 

Monod equation to describe biomass growth (8–10). The estimation of the Monod parameters 75 

requires nitrogen and sugars uptake data throughout the fermentation. Otherwise, lack of 76 

identifiability of the parameters will limit the predictive capability of the model, and thus logistic 77 

functions may be more suitable (11, 12). Both formulations, Monod or logistic, achieve a 78 

maximum biomass value which can not be exceeded. 79 

However, (13) showed that, for nitrogen-limited anaerobic fermentations of S. cerevisiae, there is 80 

a substantial increment in biomass content after the depletion of ammonia. Besides, 81 

measurements of protein and messenger RNA (mRNA) contents revealed that their 82 

concentrations stay stable while the concentration of carbohydrates increases. Similar effects 83 

have been detected in baker’s yeast exposed to nitrogen starvation but not in the carbon starved 84 

cells; see (14) for a fed-batch aerobic example, or (15) for a chemostat anaerobic example. These 85 

data would imply that, at least for ammonium deficient scenarios, the use of the Monod model 86 

would be insufficient. 87 
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Similarly, (16) showed that protein/carbohydrate fractions in the biomass of S. cerevisiae vary 88 

substantially throughout the fermentation of wine fermentations. To account for this dynamics, 89 

(17) and (18) included, in their flux balance analysis models, an empirical function that controls 90 

the concentration of carbohydrates in the newly formed biomass as a function of extracellular 91 

sugar. 92 

In what regards to the modelling of fermentation rate, previous studies proposed two alternatives. 93 

The first implies that the fermentation rate is proportional to biomass or cell numbers (8–10, 12, 94 

19). The second includes the role of hexose transporters as a separate entity that is dependent on 95 

the transport of ammonia (11, 20–23). 96 

The advantage of the second over the first is that it enables the simulation of the effect of 97 

nitrogen additions. Still, further experimental analysis of the underlying hypothesis is required. 98 

Also, a good adjustment to the data comes at the cost of a large number of estimated parameters. 99 

(17) and (18) proposed a third alternative. These authors assumed that cells use different hexose 100 

transporters at different fermentation stages based on previously published experimental data 101 

(24). However, this approach also requires the adjustment of the maximum transport rate for 102 

each hexose carrier. As the maximum transport rate is deemed to be a function of temperature 103 

and the initial nitrogen concentration, the modelling also involves the estimation of a substantial 104 

number of parameters. 105 

In this work, we propose a dynamic kinetic model capable of successfully explaining nitrogen-106 

limited fermentations. The model describes growth and fermentation rate while distinguishing 107 

protein from carbohydrate fractions of biomass. The Monod equation describes the growth, and 108 
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the carbohydrate accumulation observed after the depletion of ammonia is described by an 109 

empirical function, analogous to a proportional controller. 110 

We tested the model properties by fitting the data provided by (13) and (16) who explored 111 

fermentations under low and high nitrogen regimes. Our results show why standard Monod 112 

models often produce poor results in modelling nitrogen-limited fermentations of S. cerevisiae. 113 

Fermentation rate can be a function of the biomass or, as proposed here, a function of the protein 114 

fraction since the glycolytic enzymes are an important part of the protein pool. Remarkably, even 115 

if protein content is not measured, the model is identifiable provided the uptake of hexoses and 116 

nitrogen, as well as the production of ethanol, are measured over time. 117 

We compared the performance of the proposed model with the Monod model (25) and the model 118 

proposed by (8) who used it to explain nitrogen-limited fermentations. Our results showed that 119 

the proposed model captures the data more accurately than previously published alternatives and 120 

allowed the incorporation of macro-molecular biomass composition data (protein, mRNA and 121 

carbohydrates), which is relatively simple to obtain. The proposed mechanisms have a sound 122 

biological interpretation and were largely supported by the experimental data. In consequence, 123 

our model can be used to predict, and thus, control, S. cerevisiae fermentations. 124 

2 Results 125 

2.1 Modeling biomass formation during nitrogen-limited fermentation. 126 

The microbial growth rate was described as the sum of two different terms. The first, 𝜇𝑁, 127 

corresponds to the healthy cell division, mainly when assimilable nitrogen sources (YAN) are 128 
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abundant. The second, 𝜇𝐶, corresponds to a secondary increase in biomass after the depletion of 129 

nitrogen sources- which we assumed corresponds, mostly to carbohydrate accumulation. The 130 

biomass growth equation reads: 131 

𝑑𝑋

𝑑𝑡
= 𝑋 · (𝜇𝑁 + 𝜇𝐶) 

where X is the biomass (g/L). 132 

To model growth associated with cell division we used a Monod type kinetics (25) where 133 

nitrogen sources were considered the limiting nutrient: 134 

𝜇𝑁 = 𝑙𝑎𝑔(𝑡) · 𝑋 · 𝜇𝑚𝑎𝑥𝑁 ·
𝑁

𝑁 + 𝑘𝑠𝑁
 

where 𝜇𝑚𝑎𝑥𝑁 is the maximum specific growth rate, 𝑁 is extracellular YAN (g/L), 𝑘𝑠𝑁 is the 135 

Monod equation parameter and lag is a function of time (t) representing the lag phase. The lag 136 

phase is typically a period of adjustment in which a given microbial population adapts to a new 137 

medium before it starts growing exponentially. To model the lag we used the model proposed by 138 

(26): 139 

𝑙𝑎𝑔 =
𝑎0

𝑎0 + (1 − 𝑎0) · 𝑒
−𝜇𝑚𝑎𝑥𝑁·𝑡

 

where 𝑎0 is an estimated parameter and 𝜇𝑚𝑎𝑥𝑁 is the maximum growth rate associated with 𝜇𝑁. 140 

The secondary increase in biomass concentration (𝜇𝐶) is activated by the of decrease the 141 

concentration of YAN: 142 

𝜙𝑁 = (1 −
𝑁

𝑁 + 𝑘𝜙
) 
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where 𝑘𝑠𝑁 is a parameter controlling the half-maximal inactivation of 𝜇𝑁 which is modeled with 143 

an empirical expression analogous to a proportional controller: 144 

𝜇𝐶 = 𝑙𝑎𝑔(𝑡) · 𝜇𝑚𝑎𝑥𝐶 · 𝜙𝐶 · (𝜃𝐶 −
𝑋𝐶
𝑋
) 

where 𝜃𝐶 is the set-point (target value) for the ratio of carbohydrates in the biomass content 145 

(𝑋𝐶/𝑋) and 𝜇𝑚𝑎𝑥𝐶 controls the velocity of the convergence towards that reference point. 146 

On the contrary the formation of protein and mRNA are only affected by 𝜇 and their dynamics 147 

are described by: 148 

𝑑𝑋𝑃
𝑑𝑡

= 𝜆𝑃 · 𝜇 ⋅ 𝑋

𝑑𝑋𝑚𝑅𝑁𝐴

𝑑𝑡
= (1 − 𝜆𝑃 − 𝜆𝐶) · 𝜇 ⋅ 𝑋

 

where 𝜆𝑃 corresponds the biomass content of protein. 149 

Both M𝑀 and M𝑃 assume YAN consumption is proportional to 𝜇𝑁: 150 

𝑑𝑁

𝑑𝑡
= −

(1 − 𝜆𝐶) · 𝜇𝑁 · 𝑋

𝑌𝑋/𝑁
 

where 𝑌𝑋/𝑁 is the nitrogen to mRNA and protein biomass yield. 151 

For the sake of comparison we used two additional models: the first, regarded as M𝑀, 152 

corresponds to that for which the biomass follows the Monod description: 153 

𝑑𝑋

𝑑𝑡
= 𝜇𝑁 
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and the second, regarded as M𝐶, corresponds to the model proposed by (8) and subsequently 154 

used by (9) to explain nitrogen-limited fermentations. In this model, the biomass follows a 155 

Monod equation [eq:Monod] depending on the active biomass and the dynamics of cell mass 156 

includes a death rate proportional to the extracellular ethanol concentration. 157 

2.2 Modeling fermentation rate and production of extracellular metabolites. 158 

Regarding fermentation rate, we proposed two models with different underlying hypotheses: 159 

• M𝑃: assuming that fermentation rate is proportional to the total protein content (𝑋𝑃), 160 

• M𝑋: assuming that fermentation rate is proportional to the total biomass (𝑋) 161 

The uptake of glucose reads as follows: 162 

𝑀𝑃:
𝑑𝐺𝑙𝑥

𝑑𝑡
= −𝑙𝑎𝑔(𝑡) · 𝑋𝑃 · 𝑣𝐺𝑙𝑥 

𝑀𝑋:
𝑑𝐺𝑙𝑥

𝑑𝑡
= −𝑙𝑎𝑔(𝑡) · 𝑋 · 𝑣𝐺𝑙𝑥 

where 𝑣𝐺𝑙𝑥 is the expression governing glucose transport. A similar expression was also included 163 

for fructose (𝐹) transport (𝑣𝐹): 164 

𝑀𝑃:
𝑑𝐹

𝑑𝑡
= −𝑙𝑎𝑔(𝑡) · 𝑋𝑃 · 𝑣𝐹 

𝑀𝑋:
𝑑𝐹

𝑑𝑡
= −𝑙𝑎𝑔(𝑡) · 𝑋 · 𝑣𝐹 

Following (27), we used Micheaelis-Menten type kinetics kinetics coupled to ethanol inhibition 165 

to model hexose transport: 166 
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𝑣𝐺𝑙𝑥 = 𝑣𝑚𝑎𝑥,𝐺𝑙𝑥 ·
𝐺𝑙𝑥

𝐺𝑙𝑥 + 𝑘𝐺𝑙𝑥
𝜙𝐸𝑡ℎ 

where 𝑣𝑚𝑎𝑥,𝐺𝑙𝑥 is the maximum rate of glucose transport, 𝑘𝐺𝑙𝑥 is the Michaelis-Menten constant 167 

and 𝜙𝐸𝑡ℎ ethanol inhibition. Ethanol has been reported as a non-competitive inhibitor (28) of 168 

hexose transport. Here, we modeled its effect as follows (27): 169 

𝜙𝐸𝑡ℎ =
1

1 + 𝐸𝑡ℎ/𝑘𝐸𝑖
 

where 𝐸𝑡ℎ is the extracellular ethanol concentration and 𝑘𝐸𝑖 defines the strength of the inhibitory 170 

effect. 171 

The excretion of extracellular metabolites was assumed to be proportional to the consumption of 172 

hexoses. In the case of ethanol, this is described by: 173 

𝑑𝐸𝑡ℎ

𝑑𝑡
= −𝑌𝐸/𝑆 · (

𝑑𝐺𝑙𝑥

𝑑𝑡
+
𝑑𝐹

𝑑𝑡
) 

where 𝑌𝐸/𝑆 is the ethanol yield produced from glucose and fructose. 174 

2.3 Calibration of candidate models. 175 

The Table 1 summarizes the main characteristics of the three candidate models. Additionally, a 176 

detailed description of models is given Supplementary Text S1. 177 

The structural identifiability analysis of the models revealed that it is possible to uniquely 178 

estimate parameter values provided the dynamics of biomass, glucose uptake, nitrogen sources 179 

uptake and ethanol are measured throughout the fermentation. Remarkably, it is not necessary to 180 
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measure protein for the identification of the model M𝑃. Interested readers might find additional 181 

details in the Supplementary Text S1. 182 

Candidate models were calibrated by data fitting using data-sets available in the literature. In 183 

particular we used data-sets taken from (13) (Exp𝑆) and (16) (Exp𝑉). The data-set Exp𝑆 included 184 

one experiment with a nitrogen sufficient condition. The data-set Exp𝑉 contained two 185 

experiments, with high (Exp𝑉 ↑ N) and low (Exp𝑉 ↓ N) nitrogen concentrations (50 and 300mg 186 

YAN). 187 

We performed 10 runs of the parameter estimation problem for each case, so to guarantee 188 

convergence to the best possible solution. Since we used a metaheuristic for the optimisation of 189 

parameters, we obtained a distribution of values. We selected the best fit for ulterior analyses. 190 

Bounds for the estimated parameters values are given in supplementary text S1. Particularly, 191 

parameters related to biomass composition were chosen such that carbohydrate content does not 192 

decrease after nitrogen depletion (i.e. 𝜆𝐶 > 𝜃𝐶). 193 

The parameters recovered with the estimation procedure are given in Supplementary Text S1. 194 

Table 2 and Figure 1 present the quality of the fits in terms of normalised root mean square error 195 

(NMRSE) for each model (M𝑀, 𝑀𝑋, M𝑃 and M𝐶) and data-sets (Exp𝑆 and Exp𝑉). Figures 1 A-B 196 

show that all models could explain the data within a 9% normalised root mean square error. 197 

However, the performance of different models differed substantially. The model proposed in this 198 

work, M𝑃, which explains total biomass dynamics using two terms (due to nitrogen and 199 

carbohydrates) produced NMRSE values that were 3.9 and 1.8 times lower than models M𝑀 and 200 

M𝐶. 201 
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Since the proposed models (M𝑃 and M𝑋) have more parameters than M𝐶 and M𝑀, we computed 202 

the corrected Akaike Information Criterion (AIC) to rule out any possible over-fitting. We 203 

computed AIC scores excluding the residuals corresponding to protein, carbohydrates and 204 

mRNA – as these variables are not included in M𝑀 and M𝐶– and considering the total number of 205 

parameters of each model (including 𝜆𝐶,𝜆𝑃, 𝐾𝑠𝐶 and 𝜇𝑚𝑎𝑥𝐶). Table 2 and Figures 1 C-D present 206 

the results. The model M𝑃 presented substantial differences (< −100) with respect to M𝑀 and 207 

M𝐶. Remarkably these differences are enough to guarantee that the extra parameters, used to 208 

characterise biomass composition are not inducing over-fitting and that this model is indeed the 209 

best to explain the data. 210 

2.4 Biomass formation. 211 

Our results suggest that Monod model is insufficient to explain biomass formation kinetics in 212 

nitrogen-limited fermentations of S. cerevisisae. Figure 2.A presents the NRMSE obtained for 213 

biomass in all data-sets and models. Results illustrate the proposed model M𝑃 represents better 214 

the data in all cases. The largest differences between models were found in the Exp𝑆 data-set. 215 

Remarkably, the normalised root mean square error obtained for the proposed model (NMSRE 216 

(M𝑃):1.91%) was approximately 9.7 times lower than the one obtained with the models M𝑀 and 217 

M𝐶 (NMSRE (M𝑀):18.60% and (M𝐶):18.56%, respectively). For the data-set Exp𝑉, differences 218 

were lower; still, the model (M𝑃) proposed in this work was always superior in the quality of fit 219 

to the biomass data. 220 

Figure 2.B presents the fit to the time-series data for all three considered experiments. In all three 221 

cases, the proposed model could recover the increase of biomass produced after YAN depletion. 222 

The improvement was more notorious in the Exp𝑆 data-set. Figure shows 𝑅2 values for the 223 
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proposed model are over 0.97 in all cases while M𝑀 and M𝐶 resulted in 𝑅2 of around 0.57 for 224 

the Exp𝑆. 225 

Figure 2.C shows how after nitrogen depletion, at around 20 hours (see also Figure 3.A, 226 

carbohydrates accumulate and would explain the role of 𝜇𝐶 in models M_𝑃 and M𝑋. Remarkably 227 

those models are able to recover the secondary growth observed in the biomass dynamics while 228 

M𝑀 and M𝐶 converge to a constant biomass value. 229 

2.5 Fermentation rate. 230 

All models, were able to recover the overall dynamics of hexose consumption and ethanol 231 

formation. Figure 3.A and B show the NRMSE scores for the measured variables (glucose, 232 

fructose, ethanol or glycerol) in the different experiments. Because both M𝑋 and M𝑃 performed 233 

well in describing biomass and share the same number of parameters, a comparison is straight-234 

forward. Remarkably the performance of the model M𝑃, which uses the protein instead of the 235 

biomass to explain the fermentation rate, was always superior to that of M𝑥. 236 

Figures 3.C and D show the trajectories for metabolically active cell mass for each candidate 237 

model. Models M𝑀 and M𝑋 do not distinguish between active and total biomass, thus curves 238 

shown in 3.C and D coincide with those in Figures 2.B). Model M𝐶 includes a decay term that 239 

may be observed in 3.C and D. In model M𝑃 active biomass is proportional to X𝑃. As shown in 240 

3.C and D for 𝑀𝑋 the metabolically active cell increases after YAN depletion while in 𝑀𝑀 and 241 

𝑀𝑃 it stays stable; and in 𝑀𝐶 there is an observable decay. 242 

Figures 3.E and F show the trajectories for all candidate models and the corresponding 243 

experimental data for measured external compounds. Results show that all models perform 244 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447824doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447824
http://creativecommons.org/licenses/by/4.0/


reasonably well describing the dynamics of glucose, ethanol and glycerol with 𝑅2 > 0.8. 245 

However, all models but M𝑃 experiment difficulties in fitting the data Exp𝑉 with low nitrogen. 246 

In this condition M𝑋 (and also M𝐶, M𝑀) presented glucose consumption and ethanol productions 247 

rates faster than those observed in the experimental data; an effect not observed in M𝑃, 248 

indicating that protein content is a helpful biomarker while modeling fermentation rate across 249 

multiple experimental conditions. 250 

3 Discussion 251 

In this study, we proposed two candidate models to explain nitrogen-limited fermentations of S. 252 

cerevisiae in industrially controlled conditions. We proposed two modifications to the standard 253 

modelling approaches: 1) the biomass growth accounts for protein and carbohydrates, and 2) 254 

fermentation rate is proportional to the total protein content. We reconciled candidate models to 255 

previously published data. 256 

Our results revealed that Monod model is insufficient to explain biomass formation kinetics in 257 

nitrogen-limited fermentations of S. cerevisisae. This is so because, during exponential growth, 258 

the biomass composition seems to remain unaltered with mRNA and protein comprising an 259 

important percentage of the biomass. However, this is not the case during secondary growth 260 

phase where 𝜇𝑁 fades and 𝜇𝐶 increases, as shown in (13) data. 261 

Several recent studies on the modelling of alcoholic fermentation of S. cerevisisae relied on 262 

logistic growth (12, 20), Monod or the use of kinetic constraints coupled to a stoichiometric 263 

model (which in practice holds similar results to Monod). 264 
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Logistic growth is well suited to explain cell numbers in nitrogen-limited fermentations. 265 

However, as pointed by (25), biomass and cell numbers are not necessarily equivalent. The 266 

author argued that the average size of cells varies considerably from one phase to another in the 267 

growth cycle, thus cell concentration and bacterial density, are not equivalent. However growth 268 

rate is the same independently of being estimated in terms of one or other variable. Also in the 269 

view of (25), much confusion has been created because this important distinction has been 270 

frequently overlooked. Indeed, the author highlights that in most of the experimental problems of 271 

bacterial chemistry, metabolism, and nutrition, the significant variable is bacterial density while 272 

cell concentration is essential only in problems where division is actually concerned, or where 273 

knowledge of the elementary composition of the populations is important. 274 

Thus, in light of our results, we argue the logistic curve model might also not adequately 275 

describe the delay during the transition from exponential growth (𝜇𝑁 >> 𝜇𝐶) due to 276 

carbohydrate accumulation (𝜇𝐶 >> 𝜇𝑁) and the different dynamics between 𝜇𝑁 and 𝜇𝐶 observed 277 

in cell mass data. 278 

From a practical point of view, nitrogen-limited Monod models seem to explain biomass 279 

formation until the nitrogen source is depleted but struggle to explain later stages. The 280 

formulation of M𝑃 implies that carbohydrates accumulation is solely responsible for the biomass 281 

increment after nitrogen depletion. In the case of Exp𝑆 and Exp𝑉 ↑ 𝑁, the 𝑅2 scores for YAN, 282 

dry-weight biomass, protein and mRNA are in line with the notion that biomass increment in 283 

secondary growth phase could be explained mostly by carbohydrate accumulation. 284 

The models proposed by (8, 9) distinguished active from inactive cells. The model M𝐶 (adapted 285 

from (8) ) was able to explain fermentation rate when data was fitted to a single experiment. 286 
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However, when the same model was applied to a data-set comprised by two different nitrogen 287 

conditions (Exp𝑉 ↓ 𝑁 and Exp𝑉 ↑ 𝑁) the same set of parameters had difficulties explaining 288 

hexose consumption of the low nitrogen experiment. 289 

(20) developed a fermentation model for oenological conditions that accounted for different 290 

temperatures and initial nitrogen concentrations. These authors estimated the number of hexose 291 

transporters present in the yeast cells as a function of time, temperature and nitrogen. The model 292 

represents glucose consumption data extremely well. However, it should be noted that it comes 293 

at the cost of a heavily parameterized and nonlinear hexose transport function that also includes 294 

inhibition by substrate and ethanol. Nevertheless, the notion that hexose transporters vary with 295 

nitrogen content along the fermentation is likely to find some overlap with our simpler model for 296 

glucose transport. 297 

(17) included the effect of ethanol inhibition on sugar transport and the existence of different 298 

hexose transporters with different maximum transport rates and substrate affinities. From a 299 

qualitative point of view, this model corresponded to a significant improvement over past 300 

models. Noticeably, the hexose transport functions considered the role of the initial nitrogen 301 

concentration and temperature. Additionally, (16) showed that the protein content of biomass is 302 

heavily dependent on the initial nitrogen concentration which supports the notion that hexose 303 

transport is likely to be better described by total protein content rather than biomass per se. Our 304 

model would support this hypothesis. Results obtained by M𝑃 model are superior to those 305 

obtained with the M𝑋 model, at least, for those cases in which initial nitrogen is restricted. 306 

Here we proposed an alternative modelling strategy which using a minimal number of 307 

parameters, that can be estimated from easily measured data, provides a considerable 308 
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improvement in the description of nitrogen-limited fermentations as compared to previously 309 

published models. It should be noted that the model can be easily applied to controlled 310 

fermentations -with a single starter- provided the grape must is well characterized, i.e. YAN and 311 

carbon sources are measured beforehand and their values are followed throughout fermentation, 312 

and biomass growth and desired products are monitored over time. 313 

4 Materials and Methods 314 

4.1 Data 315 

We considered data-sets from five different experiments as published in the literature. The first 316 

experiment (Exp1) data set was obtained from (13). The authors conducted a nitrogen-limited 317 

(165 mg NH3 and 50g of glucose) batch fermentation while measuring biomass, protein content 318 

of biomass along with several extracellular metabolites (glycerol, ethanol and ammonia). We 319 

also considered four data-sets from (9). The authors performed various experiments at different 320 

conditions. In this work we denote Exp2 as that performed at 11𝑜C, with high-sugar and low-321 

nitrogen; Exp3, the one performed at 15𝑜C, with normal sugar and low-nitrogen; Exp4, the one 322 

performed at 30𝑜C with normal sugar and normal nitrogen; and Exp5, the one performed at 35𝑜C 323 

with high-sugar and low-nitrogen. 324 

4.2 Model building 325 

The proposed model is composed of six ordinary differential equations (as presented in the 326 

section Results). Solutions for the system are of type: 327 

𝑦 = ∫ �̇�
𝑡𝐹

0

(𝜃, 𝑦, 𝑡)𝑑𝑡 
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where 𝑦 is the solution of the ODE system and corresponds to the dynamics of the relevant state 328 

variables - biomass, carbohydrates, protein, glucose, YAN, ethanol, glycerol- between the 329 

beginning and the end of the experiment (𝑡𝑓); �̇� represents the states time derivative. 330 

4.3 Structural identifiability analysis 331 

The proposed model depends on fourteen unknown parameters 𝛉 - namely 𝑎0, 𝜇𝑚𝑎𝑥𝑁, 𝑘𝑠𝑁, 332 

𝜇𝑚𝑎𝑥𝐶, 𝑘𝑠𝐶, 𝜃𝐶, 𝜆𝐶, 𝜆𝑃, 𝑌𝑋/𝑁, 𝑣𝑚𝑎𝑥,𝐺𝑙𝑥, 𝑘𝐺𝑙𝑥, 𝑘𝐸𝑖, 𝑘𝐸𝑡ℎ, 𝑘𝐺𝑙𝑦 - to be estimated from the 333 

experimental data. The proposed model introduces the description of the total protein content. 334 

However for some experimental set-ups protein was not measured. Therefore we performed a 335 

structural identifiability analysis ((29, 30)) to assess if all parameters of the model can be 336 

estimated even if protein measurements are not available. 337 

We performed the analysis using GenSSI2 toolbox (31). The toolbox uses symbolic 338 

manipulation to implement the so-called generating series of the model and to compute 339 

identifiability tableaus. 340 

4.4 Parameter estimation 341 

The aim of parameter estimation is to compute the unknown parameters - growth related 342 

constants and kinetic parameters - that minimize the weighted least squares function which 343 

provides a measure of the distance between data and model predictions (32). In the absence of 344 

error estimates for the experimental data a fixed value for each state, the maximum experimental 345 

data, was assumed in order to normalize the least squares residuals: 346 

𝐽𝑚𝑐(𝛉) = ∑ ∑∑(
𝑦𝑘,𝑗,𝑖(𝛉) − 𝑦𝑘,𝑗,𝑖

𝑚

𝑚𝑎𝑥(𝑦𝑘,𝑗)
)

2𝑛𝑠𝑡

𝑖=1

𝑛𝑜𝑏𝑠

𝑗=1

𝑛𝑒𝑥𝑝

𝑘=1

, 
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where 𝑛𝑒𝑥𝑝, 𝑛𝑜𝑏𝑠 and 𝑛𝑠𝑡 are, respectively, the number of experiments, observables, and 347 

sampling times. 𝑦𝑗
𝑚 represents each of the measured quantities and 𝑦𝑗(𝛉) corresponds to model 348 

predicted values. 349 

In our particular case, we used five different experiments: the first, taken from (13), and second 350 

to fifth, taken from (9). All experiments provided time series data of the biomass (𝑋), glucose 351 

uptake (𝐺𝑙𝑥), amonia consumption (𝑁) and ethanol production 𝐸𝑡ℎ. 352 

Parameters were estimated by solving a nonlinear optimization problem to find the unknown 353 

parameter values (𝛉) to minimize 𝐽𝑚𝑐(𝛉), subject to the system dynamics - the model- and 354 

parameter bounds (33). 355 

To avoid the risk of premature convergence by the optimization routine while searching for the 356 

optimal parameter set, the parameter estimation procedure was repeated 10 times for each 357 

candidate model starting from different initial guesses. 358 

4.5 Model selection 359 

Models were compared in terms of the Akaike’s information criterion (AIC). AIC compares 360 

multiple competing models (or working hypotheses) in those cases where no single model stands 361 

out as being the best. AIC is calculated using the number of data (𝑛𝑑), the number fitted 362 

parameters (𝑛𝜃) and the sum of squares of the weighted residuals (WRSS). For the purpose of 363 

model comparison, we computed the AIC as follows: 364 

𝐴𝐼𝐶 = 𝑛𝑑 · 𝑙𝑜𝑔(𝑊𝑅𝑆𝑆/𝑛𝑑) + 2𝑛𝜃 + 1 

The models were ranked by 𝐴𝐼𝐶, with the best approximating model being the one with the 365 

lowest 𝐴𝐼𝐶 value. The minimum AIC value (AIC𝑚𝑖𝑛) was used to re-scale the Akaike’s 366 
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information criterion. The re-scaled value 𝛥𝐴𝐼𝐶 = |𝐴𝐼𝐶𝑖 − 𝐴𝐼𝐶𝑚𝑖𝑛| was used to assess the 367 

relative merit of each model. Models such as 𝛥 ≤ 2 have substantial support, models for which 368 

4 ≤ 𝛥 ≤ 7 have considerably less support and models with 𝛥 > 10 have no support (34). 369 

4.6 Numerical methods and tools 370 

The parameter estimation and model selection were implemented in the AMIGO2 toolbox (35). 371 

The system of ODEs was compiled to speed up calculations and solved using the CVODES 372 

solver (36), a variable-step, variable-order Adams-Bashforth-Moulton method. The parameter 373 

estimation problem was solved using a hybrid meta-heuristic, the enhanced scatter search 374 

method (eSS, (37)). 375 

5 Supplemental Material 376 

All scripts and data required to reproduce results and figures can be accessed in 377 

https://sites.google.com/site/amigo2toolbox/examples. 378 
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Table1. Main characteristics of candidate models. The complete mathematical formulation, 470 

including all parameters and their units are reported in the Supplementary Text S1. 471 

Model identifier Model characteristics 

M𝑃 State variables: Biomass, YAN, Glucose, Ethanol,Glycerol, Protein,mRNA 

 Biomass is split into two terms, due to nitrogen and carbohydrates 

 Lag-phase 

 Fermentation rate is proportional to the total protein content 

M𝑋 State variables: Biomass, YAN, Glucose, Ethanol,Glycerol, Protein,mRNA 

 Biomass is split into two terms, due to nitrogen and carbohydrates 

 Lag-phase 

 Fermentation rate is proportional to the biomass 

M𝑀 State variables: Biomass, YAN, Glucose, Ethanol, Glycerol 

 Biomass follows Monod, being nitrogen the limiting substrate 

 Lag-phase 

 Fermentation rate is proportional to the biomass 

M𝐶 State variables: Active Biomass, YAN, Glucose, Ethanol, Glycerol 

 Lag-phase (not included in the original formulation) 

 Fermentation rate is proportional to the active biomass 
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Table2. Summary of candidate models characteristics and quality of fit scores. Observed 472 

variables regard the variables included in each model. $NData regards the amount of data used to 473 

compute the quality of fit scores. NPars regards the number of parameters to be fitted. NRMSE 474 

regards the normalised mean root squared error, AIC regards the corrected Akaike criterion and  475 

𝛥𝐴𝐼𝐶 the re-scaled Akaike. The table shows the model MP results in the minimum NRMSE and AIC 476 

values. Attending to the re-scaled Akaike criterion, MX is the closest model to the best. However, 477 

attending to 34, models with | 𝛥𝐴𝐼𝐶 |>10$, have no support. 478 

ExpS; Schulze et al. 1996 

 
MM MX MP MC 

NData 122 122 122 122 

NPars 9 14 14 10 

NRMSE 0.08 0.02 0.02 0.08 

AIC -574.64 -886.88 -899.61 -572.71 

𝛥𝐴𝐼𝐶 -324.97 -12.73 0 -326.9 

ExpV; Varela et al. 2004 

 
MM MX MP MC 

NData 99 99 99 99 

NPars 10 16 16 11 

NRMSE 0.05 0.04 0.02 0.05 

AIC -564.74 -597.38 -672.47 -564.52 

𝛥𝐴𝐼𝐶 -107.73 -75.09 0 -107.95 

 479 

 480 

 481 

 482 

 483 

 484 
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Figure 1. Comparison of candidate models. A-B Show the normalised root mean square error 485 

(NRMSE in %) o C-D present the corrected Akaike Information Criterion (AIC𝑐). Values 486 

correspond to all models and the two experimental data sets Exp𝑆 and Exp𝑉. For the case of 487 

AIC𝑐 only YAN, glucose, fructose, ethanol and glycerol residuals were compared, since those are 488 

the variables present in all models. Results show how the proposed model M𝑃 is superior in 489 

terms of both scores for both experimental data sets, differences are particularly important in the 490 

fit to Exp𝑉 in which high and low nitrogen fermentations are fitted simultaneously.  491 

 492 

Figure 2. Comparison of candidate models in the fitting of biomass data. Figure A presents 493 

the normalised root mean square error of dry-weight biomass and YAN in all candidate models 494 

and experiments. Figure B presents the time-course trajectories and data for YAN and dry-495 

weight biomass in all experiments. Figure C presents the time-course trajectories as obtained by 496 

model M𝑃 of the percentage of protein (100 ⋅ 𝑋𝑃/𝑋), mRNA (100 ⋅ 𝑋𝑚𝑅𝑁𝐴/𝑋) and 497 

carbohydrates (100 ⋅ 𝑋𝐶/𝑋) present in the biomass. Data-set Exp𝑉 is comprised by experiments 498 

Exp𝑉 ↑ 𝑁 and Exp𝑉 ↓ 𝑁 which were fitted in combination and share the same parameters. In 499 

contrast Exp𝑆 corresponds to a single experiment fitted in isolation. Model M𝑃, proposed here, 500 

results in better fits for dry-weight biomass in terms of NRMSE and AIC𝑐. The model can 501 

recover the increase in biomass observed in several experiments after YAN depletion. 502 

 503 

Figure 3. Comparison of candidate models in the fitting of fermentation data. Figures A and 504 

B present the NRMSE for the measured external compounds for the different experiments and 505 

models; Figures C and D present the time-course trajectories for the metabolically active cell 506 
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mass (𝑋, 𝑋𝐴 or 𝑋𝑃); Figures E and F present the time-course trajectories of the measured 507 

variables in all experiments. 𝑅2 values are reported for each observable; those values below 0.9 508 

are marked in red. Note that all models are quite successful in fitting the experimental data for 509 

Exp𝑆 while higher differences are observed for experiments Exp𝑉. Only, M𝑃 resulted in 𝑅2 510 

values above 0.9 for all states and conditions. 511 
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