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Abstract

Genetic alterations in cancer cells trigger oncogenic transformation, a process
largely mediated by the dysregulation of kinase and transcription factor (TF)
activities. While the mutational profiles of thousands of tumours has been
extensively characterized, the measurements of protein activities has been
technically limited until recently. We compiled public data of matched genomics and
(phospho)proteomics measurements for 1,110 tumours and 77 cell lines that we
used to estimate activity changes in 218 kinases and 292 TFs. Kinase activities are,
on average, not strongly determined by protein abundance but rather by their
phosphorylation state while the reverse is more common for TFs. Co-regulation of
kinase and TF activities reflects previously known regulatory relationships and allows
us to dissect genetic drivers of signalling changes in cancer. Loss-of-function
mutation is not often associated with dysregulation of downstream targets,
suggesting frequent compensatory mechanisms. Finally, we identified the activities
most differentially regulated in cancer subtypes and showed how these can be linked
to differences in patient survival. Our results provide broad insights into
dysregulation of protein activities in cancer and their contribution to disease severity.
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Introduction

Cancer is a highly heterogeneous disease that is generally caused by the acquisition
of somatic genomic alterations, including single nucleotide variants (SNVs), gene
copy-number variations (CNVs) and large chromosomal rearrangements (Pleasance
et al. 2010; Beroukhim et al. 2010; ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium 2020). The Cancer Genome Atlas (TCGA) has led to an
in-depth characterization of the genomic alterations of more than 10,000 tumours
from 33 cancer types (Hoadley et al. 2018; Ding et al. 2018). However, mutations in
key driver genes are just the first steps of a cascade of events that culminate in
tumour formation and cancer. These mutations generate the genetic diversity that
promotes the acquisition of multiple cancer hallmarks, including chronic proliferation,
resistance to cell death and tissue invasion and metastasis (Hanahan and Weinberg
2011). An understanding of the molecular mechanisms that underpin the
development of cancer is critical in order to study cancer biology and to develop
therapies.

While somatic alterations and gene expression changes across tumours have been
extensively studied, key driver genomic changes in cancer are thought to result in
changes in cell signalling including the misregulation of protein kinases and
transcription factors (Yaffe 2019; Blume-Jensen and Hunter 2001). As an example,
about 40% of melanomas contain the V600E activating mutation in the BRAF kinase,
resulting in constitutive signalling through the Raf to mitogen-activated protein kinase
(MAPK) pathway and increased cellular proliferation (Davies and Samuels 2010).
Likewise, aberrant transcription factors (TFs) activities is a key feature of cancer
cells (Garcia-Alonso et al. 2018). TFs are commonly dysregulated due to genomic
alterations in their sequences or in upstream signalling regulatory proteins (Oliner et
al. 1992; Ohh et al. 2000). Because of their role as signalling effectors, aberrant
kinase signalling may dysregulate the activities of TFs and alter the expression of
their target genes. Consequently, kinases and TFs often accumulate cancer driver
mutations, such as TP53 (Rivlin et al. 2011) and KRAS (Wang et al. 2015), and are
the targets of anti-cancer drugs (Bhagwat and Vakoc 2015; Bhullar et al. 2018).

Due to technical limitations, the study of protein signalling activities has been for
many years limited primarily to the study of a few key signalling proteins at a time
using antibodies, which was recently expanded to a few hundreds via the use of
reverse-phase protein arrays (RPPA) (J. Li et al. 2013). The Clinical Proteomic
Tumour Analysis Consortium (CPTAC) has revolutionized the study of cancer
proteomes, including proteins and respective post-translational modifications
(PTMs), through the application of Mass Spectrometry (MS)-based proteomics (Bing
Zhang et al. 2019). MS-based proteomic profiling of human cancers has the potential
to uncover molecular insights that might be otherwise missed by genomics- and
transcriptomics-driven cancer research. CPTAC enabled to (i) identify additional
cancer molecular subtypes (Mun et al. 2019; Gao et al. 2019), (ii) find that changes
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at the genomic and transcriptomic level are often buffered at the proteomic level
(Mertins et al. 2016; Bing Zhang et al. 2014; Gonçalves et al. 2017; Sousa et al.
2019) and (iii) uncover dysregulated signalling pathways by phosphoproteomics data
integration (Clark et al. 2019).

In efforts to find novel therapeutic opportunities from kinase and TF oncogenic
signalling, it is crucial to understand how the activities of these key signalling
proteins are changing across tumours. Previous studies found that TF mutations
were correlated with transcriptional dysregulation in cancer cell lines and primary
tumours, and that TF activities can act as predictors of sensitivity to anti-cancer
drugs (Garcia-Alonso et al. 2018). Similar results were found regarding the impact of
oncogenic mutations on kinase signalling. However, these studies were focused on
few kinases and cancer types (Guo et al. 2008; Guha et al. 2008; Creixell et al.
2015; Lundby et al. 2019). Despite all of these efforts, a systematic Pan-Cancer
analysis of the regulation of kinase and TF activities across tumours is still lacking.

In this study, we mined multi-omics datasets from patient tumours and cancer cell
lines to study the regulation of kinases and TFs across tumour types. We estimated
the activities of TFs and kinases from the gene expression levels and
phosphorylation changes of their targets, deriving activity profiles of 292 TFs and
218 kinases across 1,110 primary tumors from TCGA and CPTAC and 77 cancer cell
lines. We used these kinase and TF activities to study the principles of regulation of
these signalling proteins by mutations, changes in abundance or phosphorylation.
We show how their patterns of activity co-regulation reflect underlying signalling
relationships and we identify the signalling molecules that show high degree of
regulation in each tumour type. Finally, we show how these TF/kinase activities can
be predictive of differential survival across patients. The profile of protein activities
across over 1000 patient samples serves as a resource to study the misregulation of
signalling across different tumour types.

Results

Standardized multi-omics pan-cancer dataset

To study the regulation of protein activities of cancer cells, we compiled and
standardized multi-omics datasets made available by the CPTAC consortium (Figure
1A; Methods). These datasets comprised of cancer patient samples with matched
somatic mutations, gene copy number variation (CNV), mRNA expression, protein
abundance, phosphorylation and clinical data from 9 tissues: breast (Mertins et al.
2016; Cancer Genome Atlas Network 2012b), brain (Petralia et al. 2020), colorectal
(Bing Zhang et al. 2014; Cancer Genome Atlas Network 2012a; Vasaikar et al.
2019), ovarian (H. Zhang et al. 2016; Cancer Genome Atlas Research Network
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2011), liver (Gao et al. 2019), kidney (Clark et al. 2019), uterus (Dou et al. 2020),
lung (Gillette et al. 2020) and stomach (Mun et al. 2019). In addition, we collected
data for breast (Lapek et al. 2017; Lawrence et al. 2015) and colorectal (Roumeliotis
et al. 2017) cancer cell lines, for which multi-omics data were available (Figure 1A;
Methods). In summary, the assembled data provides the opportunity to build an
integrated picture of the cancer genome, transcriptome and (phospho)proteome, with
1008 samples (932 tumours and 76 cell lines) matching all data types available per
dataset.

We first calculated correlations between each protein and phosphosites that mapped
to the same protein, across up to 1008 samples. Across all pairs there is a
correlation of 0.49 (p-value < 2.2x10e-16), with an average protein-phosphosite
correlation of 0.39 (Figures S1A-S1B), in agreement with previous studies (Arshad
et al. 2019). This result shows that phosphorylation levels are, to some extent,
confounded by the corresponding protein abundance (Wu et al. 2011). To be able to
focus on phosphorylation changes that are not driven primarily by protein abundance
differences, we regressed-out matched protein abundance from the phosphorylation
data in our compiled dataset (Figures S1A-S1B; Methods).

Landscape of protein activities in cancer

The genomics characterization of tumour samples has so far been primarily focused
on stratifying samples by their mutational profiles or changes in abundance of
specific bio-molecules such as transcripts, protein or phosphorylation states. We and
others have shown that changes in phosphorylation and gene expression levels can
be used to infer the activation states of protein kinases and TFs (Ochoa et al. 2016;
Garcia-Alonso et al. 2018; Casado et al. 2013; Hernandez-Armenta et al. 2017).
Based on these methods we set out to define the landscape of kinase/TF activity
patterns across these tumour samples.

The kinase activities were estimated from the protein abundance-corrected
phosphorylation data using a z-test (Hernandez-Armenta et al. 2017) (Figure 1B;
Methods). Briefly, the activity of a given kinase in a sample is estimated by
comparing the changes in phosphorylation of its substrates with changes of all other
phosphosites. Similarly, the activation state of TFs were inferred from the changes in
gene expression of their known transcriptional targets using the DoRothEA regulons
(Garcia-Alonso et al. 2019) coupled with the VIPER algorithm (Alvarez et al. 2016)
(Figure 1B; Methods). In total, we estimated the activities of 292 TFs across 1,187
cancer samples (1,110 primary tumours and 77 cell lines) (Table S1). For the
estimation of kinase activities, we evaluated different lists of kinase substrates from
repositories (e.g. PhosphositePlus (Hornbeck et al. 2015)), computational text mining
(Bachman, Gyori, and Sorger 2019), kinase inhibitor experiments (Hijazi et al. 2020)
or phosphorylation of cell extracts (Sugiyama, Imamura, and Ishihama 2019)
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(Figures S2A-S2B). We tested each list in a compilation of phosphoproteomic
experiments where kinase regulation is known (Hernandez-Armenta et al. 2017)
(Methods) keeping those from repositories and text-mining as the most accurate
(Figures S3A-S3B). After applying this approach we inferred the activities of 218
kinases across 980 samples (930 tumours and 50 cell lines) (Table S1, Methods).

For some kinases, there are phosphosites within the kinase itself that are known to
activate or inhibit it. As a validation, we correlated the estimated activity scores with
the quantifications of activating phosphosites, finding the expected higher correlation
when compared with phosphosites without annotation (Figure 1C). A similar trend
was observed when excluding the kinase auto-regulatory phosphosites before
re-estimating the activities (Figure S3C). Finally, we benchmarked the kinase activity
scores using reverse phase protein array (RPPA) data from the TCGA program. We
first evaluated the agreement between the MS-based and the RPPA-based
phosphosite quantifications, and found that phosphosite pairs corresponding to the
same phosphosite show higher correlations than random pairs (Figure 1D). Then,
we found that the RPPA phosphosites correlate significantly better with the activity of
kinase bearing the phosphosites than with other kinase activities (Figure 1E).

The activity profiles of kinase and TFs across a large number of samples allows us
to ask how these activities are themselves regulated. We first selected 99 kinases
and 120 TFs that are strongly regulated in at least 5% of all samples (Figure S3D).
We then correlated these activities with changes in gene copy number (CNV), mRNA
and protein levels or changes in phosphorylation levels of the respective protein
(Table S2). We observed that 55% of kinase activities correlated with their
phosphorylation state and only 27% correlated with changes in protein abundance
(Figure 1F). Contrary to this, TF activities are most often correlated with changes in
abundance of the TF, as measured by RNA (91%) or protein (59%), with fewer cases
of significant correlations with phosphorylation levels (29%) (Figure 1F). TF
phosphosites predicted to be important for function (Ochoa et al. 2020) are more
likely to show significant correlations with the TF activity (Figure S3E).

Overall, these results showed that our kinase activity estimates are likely to capture
kinase regulatory events across different tumour types, and therefore the usefulness
of our multi-omics atlas to study kinase signalling in cancer.
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Figure 1. Multi-omics atlas and inference of protein activities. (A) Number of
samples by cancer dataset and data type. (B) Schematic representation of kinase
and TF activity inference. GES, gene expression signature. (C) Comparison of the
Pearson’s correlation distributions between the kinase activities and the
quantifications of phosphosites (log2 fold-changes) that mapped to the same kinase,
with (n = 126) and without (n = 793) annotation (activating) in PhosphoSitePlus. A
P-value from a Wilcoxon rank sum test is shown. (D) Pearson’s correlation between
the CPTAC MS-based and the TCGA RPPA-based phosphosite quantifications, for
the same phosphosite pair (n = 12) and others (n = 132). A P-value from a Wilcoxon
rank sum test is shown. (E) Comparison of the Pearson’s correlation between the
RPPA phosphosites and the kinase activities, for kinase-phosphosite pairs mapping
to the same kinase (auto-phosphosite) and other pairs. The activities were calculated
using the kinase substrates (n = 336 and n = 21) and the kinase regulatory
phosphosites (n = 94 and n = 13) (Methods). The P-values from Wilcoxon rank sum
tests are shown. (F) Percentage of kinases and TFs significantly and not significantly
correlated with the corresponding CNV, RNA, protein and phosphorylation levels.
The proteins without correlations due to lack of data or reduced number of samples
(n < 10) were labeled as unknown (blue).
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Impact of genetic variation on protein abundance and activities

The large number of cancer samples in this study constitutes a resource to measure
the effects of genetic alterations, i.e. somatic mutations and CNVs, on protein
abundances and activities. We first set out to assess the effects of CNVs on the
mRNA and protein abundances. Similarly to our previous reports, the CNVs showed
a stronger correlation with the mRNA than with the protein levels (Figures
S4A-S4B), highlighting mechanisms of post-transcriptional control and gene dosage
buffering at the protein level (Sousa et al. 2019; Gonçalves et al. 2017). We then
extended the analysis to globally assess the effects of mutations (Methods), and we
found that proteins carrying loss-of-function (LoF) alterations, including frameshift,
nonsense, splice site and stop codon loss, caused on average a significant decrease
in protein abundance. This was not observed with in-frame and missense mutations
(Figure S4C). To validate the decrease of protein abundance for LoF mutations, we
confirmed that this was also recapitulated in a proteomic dataset with 125 cancer cell
lines (CCLs) from the NCI60 and CRC65 panels (Frejno et al. 2020) (Figure S4D;
Methods). These observations confirm that the genetic alterations are often
recapilated at the protein level as captured by the MS data.

We next looked at the impact of genetic alterations on TF and kinase activity
estimates. On average we did not observe reduced activity for proteins carrying
different types of mutations in the tumour samples (Figure S5A), with only a very
modest average decrease in activities for frameshift mutations found in the cell line
data (Figure S5B). This observation did not depend on the degree of predicted
deleterious impact of the mutations (Figure S5C-S5D) nor on the purity of the
tumour samples (Figure S5E). To further characterize this unexpected result, we
focused on highly mutated cancer genes. As an example, we investigated the impact
of the BRAFV600E mutation on the predicted activities of proteins from the MAPK/ERK
signaling transduction pathway (Methods). Surprisingly, across all samples
BRAFV600E mutations were not significantly associated with changes in activity of key
pathway components, including BRAF itself, MAPK1, MAPK3, MAP2K1 and
MAP2K2 (Figure S5F). Instead, we found that CDK1 and CDK7 were more active in
samples carrying the mutation (FDR < 5%) (Figure S5G). This suggests that
samples carrying a BRAFV600E mutation will often have kinase activity levels that have
adapted to the mutational state, likely having increased proliferation, as indicated by
the CDK1 levels but not a higher level of activation of the pathway.

We then extended the analysis by systematically associating the activity of kinases
and TFs with the recurrent mutational status of any given gene mutated in at least 5
tumour samples (Methods). As seen for the BRAF example, we didn’t observe any
case where recurrent mutation of the kinase itself was associated with a significant
change in its activity as measured by the phosphorylation of its substrates. This
indicates that there is significant adaptation of the signalling state of the cell after
mutations. On the other hand, we found 193 significant associations (FDR < 5%)
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between mutations in other genes and changes in kinase activity levels (Figure 2A;
Table S3). For example, samples with mutations on STK11 (serine/threonine kinase
11) don’t show a pronounced change in activity of STK11 substrates but have
decreased activity for PRKACA kinase, a known activator of STK11 (FDR = 9.6e-5;
combined string network weight = 0.94) (Figure 2C). Other examples include
increased activity for CDK1 and MAPK13 in samples with mutations in TP53, and for
AKT3 when PTEN is mutated (FDR < 5%) (Figure 2C). Unlike for kinases, we found
several cases where the mutation of a TF was associated with a change in its own
activity as is the case for mutations in TP53, GATA6, SREBF2 and EBF1 (FDR
< 5%) (Figures 2B - inner plot, S6; Table S3). In addition we found 11,128
significant associations between a mutated gene and a changed TF activity (FDR
< 5%) (1,087 for FDR < 1%) (Figure 2B - outer plot; Table S3), including increased
activity for E2F4 and TFDP1 coupled with TP53 mutation (Figure 2D).

The association between mutated genes and altered protein activity contain several
examples of previously known functional relationships. To evaluate this more
broadly, we confirmed that our predicted associations were enriched in
protein-protein functional associations annotated in the STRING database, both for
the kinases and the TFs (P-value < 5%) (Figures 2E, 2F - top plots). We also
performed an enrichment analysis using the string network along multiple cutoffs of
adjusted P-values (Methods). The -log10 transformed P-values from the enrichment
test increased as the association cutoffs were incremented (Figures 2E, 2F -
bottom plots), validating the generality of the significant associations. Overall, the
genetic associations found are enriched in previously known functional associations,
containing potential novel regulatory relationships for future experimental
exploration.
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Figure 2. Genetic associations. (A) Volcano plot displaying the associations
between the mutational status of genes and the activity of kinases. The x-axis
contains the mutation coefficient (effect size) and the y-axis the adjusted P-values.
The associations are represented in the form of a mutated gene - kinase. The color
gradient represents the string network edge weight interval of the pair (grey if the
pair is not in the string network). (B) Same as (A) for the TFs. The inner plot shows
the effects of TF mutations on their own activities. (C) (D) Examples of the genetic
associations highlighted in the volcano plots. The x-axis represents the associations
and the y-axis the protein activities. The colors stratify the samples by their
mutational status in the respective genes. The outliers (defined as the data points
beyond Q1-1.5*IQR and Q3+1.5*IQR, where Q1 and Q3 are the first and third
quartiles and IQR is the interquartile range) were removed from the distributions for
representation purposes. The number of protein activity quantifications (including
outliers) are shown beneath each boxplot. The P-values from Wilcoxon rank sum
tests comparing both distributions are shown. All data points (including outliers) were
used to calculate the P-values. (E) Top panel. Density plots comparing the edge
weight distributions in the string network of the significant and non-significant
association pairs obtained with the kinases. (E) Bottom panel. Enrichment of the
associations in the string network (edge weight > 850) along multiple cutoffs of
statistical significance. The x-axis shows the adjusted P-value cutoffs (-log10) and
the y-axis the Fisher-test P-values (-log10). (F) Same as (E) for the TFs.
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An atlas of kinase and TF regulation in cancer

The estimation of kinase and TF activities across a large set of tumour samples from
different tissues provides a first look at the space of tumour signalling states as
measured by hundreds of regulators. We projected the activity profiles in a
lower-dimensional space using the uniform manifold approximation and projection for
dimension reduction algorithm (UMAP) (Methods). For both the kinases and TF
activities we observed that cancer samples were not clustered by experimental study
(Figures 3A, S7A). The same was also observed using a principal component
analysis (PCA) (Figures S7B-S7C). These results suggest that our normalization
procedures helped to mitigate the technical biases between studies, being likely
superimposed by biological variation.

After including only one kinase from sets of redundant kinases based on shared
substrates such as AKT1/AKT2 (Methods), we selected the 30 kinases with the
largest amount of variation along the samples (SD > median SD). As expected,
these kinases are highly correlated with the UMAP projections (Figures 3B). This
set of highly variable kinases contains known cancer drivers and kinases with
inhibitors already used in the clinic as cancer treatment, such as BRAF, AKT,
MAP2K1, SRC among others. Examining the tumour samples in this two
dimensional representation indicates that highly regulated kinases in the same
pathway tend to be activated or inhibited across the same samples (Figure 3C). For
example, we found that tightly co-regulated kinases from the MAPK signalling
pathway, including PRKCB (PKC), BRAF (RafB), MAP2K1 (MEK1) and MAPK1
(ERK), share the same activation pattern along the cancer samples (Figure 3C).
CDK1 is known to phosphorylate the casein kinase 2 (CSNK2A1). These kinases
together showed opposite correlations with the UMAP projections and, consequently,
a distinct regulatory state across the samples (Figures 3B-3C).

We obtained pairwise kinase regulatory relationships deposited in the OmniPath
database (Türei, Korcsmáros, and Saez-Rodriguez 2016) and correlated their
activities (Methods). We found that kinases that regulate each other were more
likely to have correlated patterns of activity across samples (Figure 3D). This was
still observed when taking into account cases where the pair of kinases shared some
substrates (Figure S7D; Methods). Similarly, we would expect that kinases and TFs
within the same pathway will tend to have similar patterns of activation across the
samples. To investigate this, we modelled the TF activities as a function of the kinase
activities using linear regressions (Methods), identifying 5,712 significant
associations at an FDR < 5% (3,130 for FDR < 1%) (Figure 3E; Table S4). These
associations were enriched in known kinase-TF functional interactions (Figure
S7E-S7F), including for example the relation between CDK1 activity and the
activities of E2F4 and TFDP1 (Spring et al. 2017; Jiao et al. 2017) (Figure S7G).
Altogether, these results corroborate that the variation in activities across the
samples is shaped to some extent by the underlying regulatory relationships.
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Our analysis can indicate the kinases that are most often misregulated in cancer. For
comparison, we also estimated kinase activity changes from phosphoproteomic
measurements in a large panel of other conditions (Ochoa et al. 2016). We observed
a correlation between the degree of regulation of kinases in cancer and non-cancer
conditions (r=0.78, p-value=2.2e-16), with AKT1 and the cell-cycle kinases CDK1/2
and AURKB being highly regulated in both sets of conditions (Figure 3F). Kinases
deviating from the regression line can be classified as preferentially regulated in the
tumours or in the other conditions (Methods). There were a larger number of
kinases specifically dysregulated in cancer (e.g including PRKACA, CSNK2A1 and
MAPK1) compared with other non-cancer conditions (Figure 3F). The kinases
MAPKAPK2, RPS6KB1 and RPS6KA3 were more often regulated in other conditions
when compared with their degree of regulation in tumours (Figure 3F). We
performed the same analysis by tissue type (Figure S8A). The number of
specifically dysregulated kinases was consistently higher in the tumours than the
non-cancer conditions in all tissues (Figures S8A-S8B). The inter-tissue variation
regarding the number of dysregulated kinases in tumours correlated with the number
of samples but not with the number of kinases quantified in the tissues (Figure S8C).
Some kinases (e.g. PRKACA, CSNK2A1 and MAPK1) were found specifically
dysregulated across multiple tumour types, but more than half were dysregulated in
just one tissue (68%) such as MYLK kinase in stomach cancer and PIM3 in kidney
cancer (Figure S8D).

Finally, using the activity profiles we clustered and stratified all samples into 8 cancer
activity subtypes (Methods). We characterized each of the subtypes by performing
over-representation analysis of clinical features and the activities that are most often
regulated in each of the clusters. We then used CARNIVAL (Dugourd et al. 2021; A.
Liu et al. 2019) to investigate the most plausible mechanistic links that could connect
the most regulated kinase and TF activities in each cluster (Methods). We provide
an extensive description of these 8 activity subtypes in Supplementary Results.
Some of these activity subtypes are enriched in specific tissue or subtypes
characterized by other approaches. For example, cluster 1 is enriched in high grade
serous ovarian cystadenocarcinoma (SOC) with consistent activation of ARID1A.
Cluster 5 is enriched in lung carcinoma and breast cancer samples with a general
high activity of ZEB2, a promoter of epithelial to mesenchymal transition (EMT),
metastasis and resistance in LUAD and breast cancer (Malvi et al. 2019; Bin Zhang,
Zhang, and Shen 2015). As an interesting example, Cluster 7 was found to be
enriched in CD8- inflammation tissues with consistent activation of the
proinflammatory JUN and NFKB1 TFs likely via the increased activity of PAK1.
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Figure 3. Regulation of protein activities in tumours and human perturbations.
(A) UMAP projection of the kinase activity matrix (kinases as variables). The
samples are colored by experimental study. (B) Pearson correlation coefficient
between the UMAP projections and the activity of non-redundant highly variable
kinases. (C) Kinase activity gradient along the samples for a selection of the kinases
shown in (B). (D) Spearman’s rank correlation coefficients between the activities of
kinases known to co-regulate each other. The pairwise kinase co-regulatory
relationships were obtained from the OmniPath database and stratified by their
presence in the OmniPath’s sources (as single source or in at least two different
sources). We only kept activating and consensual interactions along the sources.
The background corresponds to kinase pairs without known co-regulation events.
The distributions were compared to the background using Wilcoxon rank sum tests.
(E) Associations between the activity of kinases and TFs. The x-axis contains the
kinase coefficients (effect sizes) and the y-axis the adjusted P-values. Each
association is represented in the form of kinase - TF. The color gradient represents
the edge weight of the pair in the string network (grey if not present). (F) Linear
regression between the percentage of samples where the kinase is regulated in the
perturbed conditions and in the tumour samples. The trend line and the Pearson’s r,
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with the respective P-value, are shown. In red and green are the kinases preferably
regulated in the tumours and in the conditions, respectively. In blue are the kinases
regulated in both.

Differential protein activity is associated with changes in patients survival

Survival analyses from multi-omics datasets have been largely based on mutation,
gene or protein expression differences between groups of patients. However, kinase
and TF activities should capture the signalling state of the cancer samples and could
be also linked to overall patient survival (OS). To explore this we first performed a
log-rank test to compare the Kaplan-Meier (KM) survival curves between patients
with TF and kinase activities classified as inactive, neutral and active (Methods). We
found several TFs and kinases significantly associated with OS in different tumour
types (Figures 4A-4B; Table S5). For instance, the degree of MYC activity was
correlated with OS in brain and liver cancers (Figures 4C-4D). In both cases,
patients with high MYC activity showed less OS than patients with neutral and
inactivated MYC (Figures 4C-4D). According to the literature, MYC overexpression
is a poor prognosis factor in liver and pediatric brain tumours (Lin et al. 2010; Zheng,
Cubero, and Nevzorova 2017). To take into account the effects of possible
confounding covariates, we performed a multivariate Cox regression analysis using
the protein activity scores as a predictor, while controlling for conventional clinical
covariates and the genotype of recurrently mutated genes (Methods). Reassuringly,
our findings with the log-rank tests were largely recapitulated with the Cox models
(brain: hazard ratio (HR) = 1.50 (95% CI 1.27-1.76), adjusted P-value = 2.6e-5; liver
HR = 1.17 (95% CI 1.06-1.31), adjusted P-value = 1e-2). Interestingly, we also found
that high activity of FOXA1 and FOXM1 is a good and poor prognostic factor in liver
cancer, respectively (FOXA1: HR = 0.69 (95% CI 0.55-0.85), adjusted P-value =
4.7e-3; FOXM1: HR = 1.39 (95% CI 1.17-1.66), adjusted P-value = 1.9e-3) (Figures
S9A-S9B). These two proteins are known for their opposite role in
hepatocarcinogenesis. On the one hand, elevated expression of FOXM1 promotes
tumor cell proliferation and, on the other hand, FOXA1 inhibits tumour progression
by suppression of PIK3R1 expression (He et al. 2017; Yu et al. 2016).

Regarding the kinases, we found that elevated activity of MAP3K8 and PRKCA was
associated with less probability of survival in renal cancer (MAP3K8: HR = 10.5 (95%
CI 5.81-19), adjusted P-value = 1.1e-13; PRKCA: HR = 6.15 (95% CI 4.27-8.84),
adjusted P-value = 2.3e-21) (Figures 4E-4F). In agreement with these results, the
overexpression of both protein kinase C and mitogen-activated protein kinase 8 has
been associated with a higher invasiveness of kidney tumours (Engers et al. 2000; J.
Li and Gobe 2006; F. Liu et al. 2016; Su et al. 2015). Lastly, overactive AURKB was
correlated with a lower survival rate in breast cancer (HR = 27.2 (95% CI 11.2-66.2),
adjusted P-value = 5.1e-12) (Figures S9C), as previously found at the gene
expression level (Huang et al. 2019). Altogether, these results indicate that the
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inference of kinase and TF activities can be a relevant prognostic tool in cancer
studies.

Figure 4. Survival analysis using kinase and TF activities. (A) Heatmap of
log-rank test adjusted P-values (-log10) comparing Kaplan-Meier survival curves
between cancer samples with TF activities classified as inactive, neutral and active
(top 5 associations per tissue; FDR < 5%). (B) Same as (A) for the kinases
(associations with FDR < 20%). KM survival plots comparing the survival
probabilities (y-axes) as a function of time in days (x-axes) for MYC in (C) brain
(inactive = 71, neutral = 39, active = 67) and (D) liver (58, 59, 40) cancer and (E)
MAP3K8 (neutral = 95, active = 7) and (F) PRKCA (inactive = 3, neutral = 92, active
= 7) in renal cancer. The log-rank P-values are shown in the plots.
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Discussion

Kinases and TFs are important mediators of cell signalling regulation and sensitivity
to anti-cancer drugs. Here, we have compiled multi-omics datasets made available
by the TCGA and CPTAC consortia and cell line studies and we were able to
estimate the activities of 218 kinases and 292 TFs across 1,110 primary tumours and
77 cancer cell lines. Based on these we found that kinase activities appear to be
primarily regulated by phosphorylation level with fewer cases of significant
correlation with the predicted kinase protein abundance levels. Contrary to this, the
predicted TF activity is primarily correlated with the mRNA/protein level of the TF
itself with a smaller proportion of TFs with significant correlations with the
phosphorylation state. This difference in regulation is not simply due to lack of
detection of phosphosites as TFs have a median value of 6 phosphosites detected
compared to 9 for kinases. A larger fraction of the TF activities is correlated with their
mRNA levels than the protein abundance. This result is non-intuitive since the
protein abundance should be a better proxy for activity. It is possible that this is due
to the fact that TF activities are derived directly from the same mRNA datasets while
there will be some degree of technical variation due to sample preparation and
analysis when compared with the protein dataset.

Intuitively, the activity of a given protein (i.e., kinases and TFs) might be positively or
negatively affected by mutations in the same protein or in other proteins it interacts
with throughout the signalling networks. Our genetic analysis identified associations
between mutated genes and the activities of kinases and TFs which were
significantly enriched for known protein-protein interactions. Moreover, we found that
the activities of the transcription factors TP53 and SREBF2 were correlated with their
mutational status, as previously described (Garcia-Alonso et al. 2018). Nevertheless,
we did not observe a general correlation between deleterious mutations within a
kinase/TF and its activity including expected associations such as the BRAF V600E
mutation and the activities of BRAF itself or other members of the MAPK pathway.
These results were not due to issues linked with purity or immune infiltration as the
same was observed in cell lines. Nevertheless there may be issues in linking
mutations with signalling differences due to single-cell-level variances that can not
be systematically profiled in bulk (Lun and Bodenmiller 2020). In the future,
single-cell multi-omics profiling may allow us to consider intra-tumour genetic
heterogeneities. We speculate that these observations are more likely explained by
feedback loop mechanisms that are prevalent in signalling pathways (Lito, Rosen,
and Solit 2013). These results emphasize the difficulty in interpreting the impact of
mutations on signalling networks and the importance of studying directly the
dysregulation of signalling in cancer (Yaffe 2019).
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Known kinase regulatory pairs have strong patterns of co-regulation across the
compiled dataset. These results suggest that the kinase activity estimates are
meaningful, and that the variation in kinase activities along cancer samples is likely
driven by biological factors. We showed in a previous work that these co-regulation
signals can be used to predict kinase regulatory networks (Invergo et al. 2020).
Similarly, we found many significant associations between the activities of kinases
and TFs, which were significantly enriched in known functional interactions. This
indicates that this compendium of protein activities may be useful in the future
development of methods to reconstruct the signalling networks. Nevertheless, even
the strongest correlations were modest in aggregate: well studied kinase-kinase
regulatory pairs showed a median correlation of their predicted activities of 0.25
(Figure 3D). Our prior knowledge about kinase co-regulation is currently limited at
multiple levels, including yet to be found regulatory relationships and the extent that
these regulatory relationships depend on the tissue of origin or other factors. We
speculate that these and other confounding factors could explain the weak
kinase-kinase correlations.

By comparing the kinases most often differentially regulated across tumours and
after more acute perturbations, we have shown that most often regulated kinases are
the same in both contexts. These include kinases such as CDK1, AKT1 and AURKB.
The most plausible explanation for this would be that kinases that are often regulated
in acute perturbations are directly linked to the regulation of growth and cell-cycle
and other critical processes needed to be regulated in cancer cells. Alternatively, we
have shown that these highly regulated kinases occur in very central positions in the
signalling network (Ochoa et al. 2016) and that it is possible that some degree of
regulation of these kinases is almost unavoidable. Interestingly, this comparison
allowed us to identify kinases which show higher differential regulation in tumours
than acute perturbation such as PRKACA, MAPK1 and MAPK3.

Finally, we show how the estimated protein activity can be linked to differences in
patient survival. Given that the activities of kinases and TFs can often be estimated
via antibodies targeting regulatory phosphosites it may be possible to develop
biomarkers based on these findings. In addition, kinases are very trackable drug
targets with multiple kinase drugs already used to treat cancer patients. While
further studies in cell based and animal models will be required to evaluate the
significance of the findings presented here, this work provides kinase and TF
activities linked to specific tumour types and mutational contexts that could be
pursued for potential treatment.
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Methods

Data collection

Proteomics and phosphoproteomics

The mass spectrometry (MS)-based protein and phosphosite quantifications
(absolute [phospho]peptide intensities and ratios relative to controls) for the cancer
samples of brain (Petralia et al. 2020), breast (Mertins et al. 2016), colorectal (Bing
Zhang et al. 2014), kidney (Clark et al. 2019), liver (Gao et al. 2019), lung (Gillette et
al. 2020), ovarian (H. Zhang et al. 2016), stomach (Mun et al. 2019) and uterus (Dou
et al. 2020) were downloaded from the CPTAC data portal
(proteomics.cancer.gov/data-portal). For the colon cancer samples (Vasaikar et al.
2019), we downloaded the data from the linkedomics database
(linkedomics.org/login.php). The same data for the cancer cell lines of breast and
colorectal tumours was downloaded from the respective publications (Lapek et al.
2017; Lawrence et al. 2015; Roumeliotis et al. 2017). The proteins and phosphosites
were identified using gene symbols, in a process described by the common data
analysis pipeline (CDAP) from CPTAC. Additionally, we downloaded normalized
RPPA protein and phosphorylation quantification data (183 features across 7,694
samples from 31 TCGA tumours) from the TCPA (J. Li et al. 2013) database.

Transcriptomics

The RNA-seq data was obtained in the format of read counts and Fragments Per
Kilobase of transcript per Million mapped reads (FPKM). The data for the tumour
tissues of breast (Mertins et al. 2016), colorectal (Bing Zhang et al. 2014), kidney
(Clark et al. 2019), lung (Gillette et al. 2020), ovarian (H. Zhang et al. 2016) and
uterus (Dou et al. 2020) was downloaded from the GDC portal
(portal.gdc.cancer.gov/). The data for the brain cancer was compiled from the
pediatric cBioPortal (pedcbioportal.kidsfirstdrc.org/); for the liver (Gao et al. 2019)
from NODE (www.biosino.org/node/) (accession ID: OEP000321); for the stomach
(Mun et al. 2019) from GEO (ncbi.nlm.nih.gov/geo/) (accession ID: GSE122401);
and for the colon cancer (Vasaikar et al. 2019) from the authors. The cancer cell
lines (Lapek et al. 2017; Lawrence et al. 2015; Roumeliotis et al. 2017) data was
downloaded from the CCLE data portal (portals.broadinstitute.org/ccle/data).

Genomics - somatic mutations

The whole genome sequencing (WGS)-derived somatic mutations for the brain
cancer samples (Petralia et al. 2020) were downloaded from the pediatric cBioPortal
(pedcbioportal.kidsfirstdrc.org/) in Mutation Annotation Format (MAF) files. For the
breast (Mertins et al. 2016), colorectal (Bing Zhang et al. 2014) and ovarian (H.
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Zhang et al. 2016) cancers, the whole exome sequencing (WES)-derived MAF files
were downloaded from the cBioPortal (cbioportal.org). The MAF file for the colon
cancer samples (Vasaikar et al. 2019) was downloaded from the linkedomics
database (linkedomics.org/login.php). Regarding the kidney (Clark et al. 2019), lung
(Gillette et al. 2020) and uterus (Dou et al. 2020) cancers, we downloaded the
MuTect2-called and VEP-annotated VCF files from the GDC data portal
(portal.gdc.cancer.gov/). For the liver (Gao et al. 2019) and stomach cancers (Mun et
al. 2019), we obtained the somatic mutations from the publication and authors,
respectively. The mutation data for the colorectal and breast cancer cell lines (Lapek
et al. 2017; Lawrence et al. 2015; Roumeliotis et al. 2017) was obtained from the
DepMap portal (depmap.org/portal/).

Genomics - somatic copy number alterations

The somatic copy-number variation (CNV) data was downloaded as discretized
GISTIC2 scores (Beroukhim et al. 2007; Mermel et al. 2011) and segment-level log2
ratios between the tumor and normal samples. The GISTIC2 scores can be -2
(strong copy-number loss, likely a homozygous deletion), -1 (shallow deletion, likely
a heterozygous deletion), 0 (diploid), 1 (low-level gain of copy number, generally
broad amplifications) and 2 (high-level increase in copy number, often focal
amplifications). The GISTIC2 scores for the tumour samples of breast (Mertins et al.
2016), colorectal (Bing Zhang et al. 2014) and ovarian (H. Zhang et al. 2016), and for
the cancer cell lines (Lapek et al. 2017; Lawrence et al. 2015; Roumeliotis et al.
2017) were downloaded from the cBioPortal (cbioportal.org). The same data for the
brain cancer samples (Petralia et al. 2020) was downloaded from the pediatric
cBioPortal (pedcbioportal.kidsfirstdrc.org/); for the colon samples (Vasaikar et al.
2019) from linkedomics (linkedomics.org/login.php); and for the liver samples (Gao
et al. 2019) from NODE (biosino.org/node/index) (accession ID: OEP000321). The
segment-level log2 ratios for the kidney (Clark et al. 2019) and uterus (Dou et al.
2020) cancer samples were provided by the authors of the respective publications.

Clinical data

The metadata and clinical information from the patients of breast (Mertins et al.
2016), colorectal (Bing Zhang et al. 2014) and ovarian (H. Zhang et al. 2016)
cancers was obtained from the CPTAC (proteomics.cancer.gov/data-portal) and the
cBioPortal (cbioportal.org) databases. The survival data for these patients was
collected from (J. Liu et al. 2018), whereas the cancer subtypes were obtained from
the respective publications and also using the PanCancerAtlas_subtypes function
from the TCGAbiolinks R package (Colaprico et al. 2016). For the brain (Petralia et
al. 2020), kidney (Clark et al. 2019), liver (Gao et al. 2019), lung (Gillette et al. 2020),
stomach (Mun et al. 2019) and uterus (Dou et al. 2020) cancers, we downloaded the
clinical information from the CPTAC portal and from the respective publications. For
the colon cancer samples, we downloaded the data from the linkedomics database
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(inkedomics.org/login.php). The clinical data from the cancer cell lines donors (Lapek
et al. 2017; Lawrence et al. 2015; Roumeliotis et al. 2017) was obtained from the
CCLE data portal (portals.broadinstitute.org/ccle/data). Altogether, we collected the
following information about the cancer patients: age, gender, ethnicity, race, height,
weight, cancer histological type and subtype, tumour stage, overall survival and
survival time in days.

Data pre-processing and normalization

Proteomics

The label-free protein quantifications (precursor areas) for the colorectal tumours
(Bing Zhang et al. 2014) and the tandem mass tag (TMT) protein intensities for the
breast and colorectal cancer cell lines (Lapek et al. 2017; Lawrence et al. 2015;
Roumeliotis et al. 2017) were pre-processed and transformed to log2 fold-changes
as previously described (Sousa et al. 2019). For the brain (Petralia et al. 2020), lung
(Gillette et al. 2020) and stomach (Mun et al. 2019) cancers, the sample replicates
were combined by averaging the log2 fold-change values of each protein. After that,
we removed 6 outlier samples from colorectal cancer with an absolute median log2
fold-change distribution higher than 1 (2-fold). Altogether, we assembled a matrix
with 14,742 proteins and 1,266 samples (1,170 cancer samples and 96 cell lines)
belonging to 9 different tissues. This matrix contained 9,941,918 protein measures
(8,721,454 missing values) and 5,052 proteins quantified in at least 80% of the
samples.

Phosphoproteomics

The phosphorylation measures were acquired at the phosphosite level. Each
phosphosite is identified by a given protein, position and residue. The phosphosites
from the different datasets were harmonized against a common reference by only
keeping the phosphorylation sites that mapped correctly to the Ensembl human
proteins (GRCh37 - release 98). As the phosphorylation sites were annotated at the
gene symbol level (see data collection above), we mapped the phosphosites to the
protein sequences using the canonical transcripts from UniProt
(github.com/mskcc/vcf2maf/blob/main/data/isoform_overrides_uniprot). Duplicated
phosphosites, arising from multiple phosphopeptide intensities mapping to the same
phosphosite, were reduced to a single phosphosite if the log2 fold-change values
were the same across all samples from the respective experimental study. All
duplicated phosphosites were discarded otherwise. For the colorectal cancer cell
lines (Roumeliotis et al. 2017), the relative TMT intensities (obtained by dividing the
TMT intensities per the mean TMT intensity for each protein) were divided by 100
and transformed to log2. For the brain (Petralia et al. 2020), breast (Mertins et al.
2016), lung (Gillette et al. 2020) and stomach (Mun et al. 2019) cancers, the sample
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replicates were combined by averaging the log2 fold-change values of each
phosphosite. We removed 52 outlier samples with an absolute median log2
fold-change distribution higher than 1 (2-fold). Then, the log2 fold-change
distributions across samples were quantile normalized in order to ensure comparable
distributions, using the normalizeQuantiles function from the limma R package
(Ritchie et al. 2015). To detect phosphorylation changes that are independent of the
protein abundance, we regressed-out the protein levels from the respective
phosphosites using a multiple linear regression model. The phosphosite log2
fold-changes were set as the dependent variables while the protein log2
fold-changes, age and gender were set as the independent variables. The residuals
from the linear model were the phosphorylation changes not driven by the protein
abundance or other confounding effects (age and gender). The final
phosphoproteomic matrix contained 86,044 phosphosites across 980 samples (930
cancer samples and 50 cell lines) from 9 different tissues. Due to the sparseness of
the phosphorylation data (7,280,101 measures and 77,043,019 missing values), only
256 phosphosites were quantified in at least 80% of the samples (2,438 in 50%). For
the downstream analyses we only considered the phosphosites (69,599) that were
quantified from phosphopeptides phosphorylated at single positions.

Transcriptomics

The RNA-seq data (FPKMs and read counts) downloaded from the GDC and GEO
websites (see data collection above) were converted to tabular formats using
in-house R scripts. For the liver (Gao et al. 2019) and stomach (Mun et al. 2019)
cancer samples, we calculated FPKM expression values from the RSEM (B. Li and
Dewey 2011) expected counts using the rpkm function from the edgeR R package
(Robinson, McCarthy, and Smyth 2010). We obtained the gene lengths by
calculating the size (in base pairs) of the merged exons of each gene, using the
gtftools python script (H.-D. Li 2018) (genemine.org/gtftools.php) and the GENCODE
v19 human gene annotation (gencodegenes.org). After selecting the protein-coding
genes, as described in the GENCODE v19 annotation, we removed the genes
without expression (FPKM > 0) in at least 50% of the samples of the respective
dataset. The FPKMs of each gene were subsequently log2 transformed (adding a
pseudocount of 1 to avoid taking the log of 0) and converted to log2 fold-changes by
subtracting the log2 median FPKM across samples. The log2 fold-changes were
calculated for each dataset separately. The final gene expression matrix contained
17,056 genes across 1,187 samples and 9 tissues (1,110 cancer samples and 77
cell lines). 14,966 genes were expressed in at least 80% of the samples.

Genomics - somatic mutations

We processed the VEP-annotated VCF files from the kidney (Clark et al. 2019), lung
(Gillette et al. 2020) and uterus (Dou et al. 2020) cancer samples using the bcftools
split-vep plugin (samtools.github.io/bcftools/howtos/plugin.split-vep.html) with the
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following parameters: -f
'%CHROM\t%POS\t%REF\t%ALT\t%QUAL\t%FILTER\t%CSQ\n' -d -A tab. Only the
mutations passing all quality filters (FILTER == “PASS”) were selected for
downstream analyses. The mutations from these samples were then collected in a
single text file using in-house bash scripts. In all datasets, we selected the mutations
that were annotated using the canonical UniProt transcripts
(github.com/mskcc/vcf2maf/blob/main/data/isoform_overrides_uniprot) and classified
as frameshift and in frame insertions/deletions (Indels), missense, nonsense, stop
codon loss (readthrough mutations) and splice site. All mutations (except splice site)
were standardized against the Ensembl human proteins (GRCh37 - release 98) by
filtering out those mutations whose reference (wild type) residues did not match the
protein sequences in the mutation positions. The reference/mutated residues and
protein position of the mutations were extracted from the HGVSp codes. In total, we
collected 284,882 mutations in 17,305 protein-coding genes, across 1,168 samples
(1,079 tumours and 89 cell lines) from 9 different tissues.

Genomics - somatic copy number alterations

GISTIC2 (version 2.0.23) was used to process the segment-level log2 ratios for the
kidney (Clark et al. 2019) and uterus (Dou et al. 2020) cancer samples and define
the gain/loss events of each gene (see data collection above), using the default
parameter settings (-genegistic and -savegene parameters were both set to 1). After
obtaining the discretized GISTIC2 CNV scores for each dataset, only protein-coding
genes were selected as described in the GENCODE v19 human gene annotation.
The final CNV matrix contained 16,520 genes across 1,025 samples and 7 tissues
(947 tumours and 78 cell lines).

Normalization of gene and protein expression data

The confounding factor related to the experimental batch (e.g. CPTAC-breast,
CPTAC-brain, etc.) was removed using a linear regression model. This model was
implemented with the mRNA expression or protein abundance of a given gene as a
dependent variable and the experimental batch as independent variable. The
residuals from the linear model were the protein or mRNA variation not driven by the
technical differences between cancer datasets.

NCI60 and CRC65 cell lines - data collection and pre-processing
The proteomics and phosphoproteomics data for the NCI60 and CRC65 cancer cell
lines (trypsin-digested version) were downloaded from (Frejno et al. 2020). The
phosphorylation residues were obtained by mapping the position of the modifications
to the UniProtKB/Swiss-Prot canonical and alternative (isoforms) protein sequences
(release 2020_02) (uniprot.org/downloads). Only the phosphosites mapping to
serine, threonine and tyrosine residues were selected. The log10 transformed
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phosphorylation and protein absolute abundances (iBAQ) were set to the original
values using powers of 10 (10^abundance). Phospho(peptide) abundances mapping
to the same phosphosite or protein were averaged per sample. The absolute
abundances were converted to relative values (fold-changes) by calculating the log2
ratio of the abundances over the median abundance across cell lines. This process
was performed for both cancer cell line sets. To detect net phosphorylation changes
we regressed-out the protein levels from the respective phosphosites using the
residuals of a linear regression model (y ~ x) where the phosphosites were set as
dependent variables (y) and the proteins as independent variables (x). In total, we
assembled 11,940 proteins and 45,557 phosphosites across 125 cell lines (60 from
NCI60 and 65 from CRC65).

The gene expression data was downloaded in the format of FPKMs
(discover.nci.nih.gov/cellminer/) and Transcripts Per Million (TPMs)
(depmap.org/portal/), for the NCI60 and CRC65 cell lines, respectively. Both gene
expression measures were log2 transformed and converted to fold-changes by
subtracting the log2 median FPKM/TPM across cell lines. In total, we calculated the
log2 fold-changes of 18,291 genes across 95 cell lines (60 and 35 from the NCI60
and CRC65 sets, respectively). The whole genome mutation data was downloaded
from the CellMiner (discover.nci.nih.gov/cellminer/) and the DepMap databases
(depmap.org/portal/) for the NCI60 and CRC65 cancer cell lines, respectively. Across
the NCI60 cell lines, we selected those mutations where more than 50% of the
respective reads contained the alternative allele. In both datasets, we selected the
mutations annotated as silent, missense, nonsense, stop codon loss, frameshift and
in frame Indels. The protein position of the mutations and respective
reference/mutated residues were obtained from the HGVSp codes. Altogether, we
collected 585,904 mutations in 17,259 genes along 96 cell lines (60 from NCI60 and
36 from CRC65).

Inference of kinase and TF activities
Kinase and TF activities were estimated using known kinase and TF regulatory
targets. The kinase-substrate relationships were obtained from (i) ProtMapper
(Bachman, Gyori, and Sorger 2019), a literature-based resource of kinase substrates
annotated at the phosphosite level. The resource contains phosphorylation sites
aggregated from five databases (BEL Large Corpus, NCI-PID, PhosphoSitePlus,
Reactome and SIGNOR) and three text-mining tools (REACH, RLIMS-P and
Sparser) and (ii) a collection of phosphosites derived from in vivo (Hijazi et al. 2020)
and in vitro (Sugiyama, Imamura, and Ishihama 2019) experiments. Only the
phosphorylation sites correctly mapped to the Ensembl human proteins (GRCh37 -
release 98) were considered for the subsequent analyses. In total, we collected the
phosphorylation targets of 573 kinases. The transcriptional targets of the TFs were
compiled from the DoRothEA R package (v1.2.0), using only interactions annotated
with confidence A, B and C. The kinase activities were inferred using a one sample
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z-test, which was shown to perform well (Hernandez-Armenta et al. 2017). The
activity of a given kinase in a given sample was estimated as follows:

[1] 𝑧 = 𝑥 − µ
σ / 𝑁

where 𝑧 corresponds to the z-score, 𝑥 the average log2 fold-change of the kinase
substrates, μ the average log2 fold-change of all phosphosites measured in the
sample (background), √N the square root of the number of kinase substrates (N) and
σ the standard deviation of the background. Then, the z-score was used to calculate
a two-tailed P-value using the pnorm R function [2×pnorm(-abs(𝑧))], which was
further log10 transformed and signed based on the position of the z-score in the
standard normal distribution. If the z-score was in the right part of the distribution, i.e.
positive, the kinase substrates showed an increase in phosphorylation in comparison
to the sample background. Thus, the activity of that kinase was also expected to be
increased (positive) in that sample, and vice-versa. This process was repeated for all
kinases across all samples. For the downstream analyses we selected the
kinase-substrate interactions from the databases and text-mining resources and the
kinase activities quantified with 3 or more substrates, resulting in 218 kinases with
activity estimates in an average of 437 cancer samples (of a total of 980 samples).

We also estimated kinases activities based on the phosphorylation changes of
phosphosites mapping to the kinases. We selected the phosphosites with known
regulatory status in PhosphositePlus or with unknown status but with a functional
score higher than 0.4 (1,534 of 4,247 kinase-mapping phosphosites). The functional
score was calculated using the FunscoR R package (evocellnet.github.io/funscoR/).
The scores range from 0-1 and reflect the functional consequence of the
phosphosites (Ochoa et al. 2020). The kinase activity inference method was the one
sample z-test as described above. TF activities were estimated using the VIPER
algorithm (Alvarez et al. 2016), using log2FC as gene level statistics (see Data
pre-processing and normalization - transcriptomic). VIPER was run with a minimum
limit of regulon size of 5, and using all provided gene level statistics as a background
(eset.filter = FALSE). VIPER returned a normalized enrichment score for 292 TFs
across 1,187 cancer samples.

Benchmark of the kinase targets
We validated the kinase activities calculated from the different sources of kinase
targets (database, text-mining, in vivo and in vitro) using a MS-based
phosphoproteomic dataset reporting the relative phosphorylation changes of 52,814
phosphosites in 103 human perturbation-dependent conditions (Ochoa et al. 2016;
Hernandez-Armenta et al. 2017). This data includes a gold standard dataset
composed of 184 kinase-condition pairs where kinase regulation is expected to
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occur. The z-test-based absolute kinase activity scores estimated from the different
kinase substrate sources were used as classifiers of kinase regulation. Given the
imbalance between the positive (gold standard) and negative (kinase-condition pairs
with unknown regulation) classes, we generated 100 random sets of negative cases
with the size of the positive set. The predictive skill of each classifier was evaluated
by the mean area under the receiver operating characteristic curves (AUROCs). As a
control, we replicated the 100 random sets of negative and positive pairs (53 pairs
each) along the different lists of kinase-substrates. The ROC curves and
corresponding AUCs were calculated using the prediction and performance functions
from the ROCR R package.

Genetic associations with the kinase and TF activities
The effects of mutations on the kinase and TF activities were assessed by
associating the activity of a given protein with the mutational status of the same
protein or other proteins it might interact throughout the cellular regulatory networks.
First, we built a binary mutation matrix M where the index Mij corresponds to 1 if the
sample i has a mutation in gene j and 0 otherwise. To do that, we selected the
mutations classified as frameshift and in frame Indels, missense, nonsense and stop
codon loss. Given the proteins X and Y, the association between the activity of Y
(Yact) and the mutational status of X (Xmut) was assessed across samples by fitting a
linear model that took into account possible confounding effects:

[2] Yact = 𝛃0 + 𝛃1Study + 𝛃2Xmut + ɛ

where Yact represents the activity of protein Y, 𝛃0 the intercept, 𝛃1 the regression
coefficient for the covariate experimental study, 𝛃2 the regression coefficient for the
mutational status of X and ɛ the noise term. This model was applied to assess the
effect of Xmut on the activity of the same protein (Xact ~ Xmut) and on the activity of
other proteins (Yact ~ Xmut). The P-values from the coefficients of Xmut (𝛃2) were
calculated using the t-statistic over a Student's t-distribution and adjusted for false
discovery rate (FDR) using the Benjamini-Hochberg method. The linear models and
respective statistics were calculated using the lm and p.adjust R functions.

The associations were performed with the genes mutated in more than 20 samples
and with the protein activities estimated in at least 10 samples. An association
between a pair Yact ~ Xmut or Xact ~ Xmut was performed if Xmut was mutated in at least
5 of all the samples in the pair. Regarding the Yact ~ Xmut associations, we tested
520,938 pairs between 208 kinases and 3,590 genes and 1,048,216 pairs between
292 TFs and 3,590 genes. In relation to the Xact ~ Xmut associations, we tested 40
pairs and 64 pairs with the kinases and TFs, respectively.

Projection of the protein activities in low-dimensional spaces
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We reduced the dimensionality of the kinase and TF activity matrices using the PCA
and UMAP methods. Given the sparseness of the kinase activity matrix, we imputed
the missing values using the missForest function from the missForest R package.
Prior to that, we selected the kinases (columns) with activity measures in at least
60% of the samples and the samples (rows) with measures in at least 80% of the
kinases. The imputed kinase activity matrix contained 90 kinases across 727
samples. The PCA analysis was performed using the prcomp R function (scale. = T,
center = T) and the UMAP analysis using the umap function from the umap R
package (with default parameters).

When correlating the kinase activities with the UMAP projections (Pearson
correlation coefficient), we excluded redundant kinases based on the degree of
shared substrates. We first performed a hierarchical clustering analysis (hclust R
function, agglomeration method = "complete") using the Jaccard Index (JI) of shared
substrates between kinases as distance measure (1-JI). Then, the kinase
dendrogram was cut at a specific level (height = 0.85) to identify clusters of
non-redundant kinases. We only kept one kinase per cluster (with the largest amount
of substrates), reducing the number of kinases from 304 to 208.

Correlation of kinase pairs
We obtained kinase-kinase regulation pairs from the OmniPath database
(omnipathdb.org/interactions). We selected the interactions reported as directed,
activating (stimulating relationships) and consensual along the resources
(databases). Then, we correlated the activity of the kinase-kinase pairs along the
samples using the Spearman’s rank correlation coefficient. The kinase pairs were
stratified by the number of databases in which the interaction was found as a way of
ascertaining the relevance of the interactions.

Strong correlations might be due to the amount of shared substrates between kinase
pairs and not because of co-regulation events. To control for this technical limitation,
we repeated the correlation analysis using a set of non-redundant kinases. This set
was obtained by performing a hierarchical clustering analysis (hclust R function,
agglomeration method = "complete") using the degree of shared substrates between
kinases as distance measure (1 - Jaccard Index of shared substrates). The
dendrogram tree was cut at a height cutoff of 0.8. Just one kinase was kept per
cluster (with the highest number of substrates). Using this approach, we reduced the
number of kinases from 304 to 231.

Associations between the activities of kinases and transcription factors
For a given protein pair K and T, where K is a kinase and T is a transcription factor,
we tested whether the changes in the activity of kinase K are linearly associated with
changes in the activity of the transcription factor T. To do that, we fitted a linear
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model to predict the activity of transcription factor T (Tact) using the activity of kinase
K (Kact), while adjusting for possible confounding effects:

[3] Tact = 𝛃0 + 𝛃1Study + 𝛃2Kact + ɛ

where Tact represents the activity of the transcription factor T, 𝛃0 the intercept, 𝛃1 the
regression coefficient for the covariate experimental study, 𝛃2 the regression
coefficient for the activity of kinase K and ɛ the noise term. The P-values from the
coefficients of Kact (𝛃2) were calculated using the t-statistic over a Student's
t-distribution and adjusted for false discovery rate (FDR) using the
Benjamini-Hochberg method. The linear models and respective statistics were
calculated using the lm and p.adjust R functions. Using this model we tested 26,280
kinase-TF associations between 90 kinases and 292 TFs.

Enrichment of the protein association pairs in the STRING network
The genetic and the kinase-TF associations were tested for enrichment in the
STRING protein-protein interactions network using Fisher's exact tests (fisher.test R
function, alternative = “greater”). The human network (version 11.0) was downloaded
from the STRING database (string-db.org) as a list of protein-protein interactions
with the corresponding combined scores. The scores range from 150 to 999 and
represent the confidence of the respective interactions. We filtered the network using
a minimum score of 850 to select the most confident protein-protein interactions.
Fisher's exact tests were performed by overlapping the protein association pairs with
the STRING network across increasing -log10 adjusted P-values. The backgrounds
corresponded to all the protein association pairs linearly modelled.

Kinase activity changes between tumours and perturbations
To study the differences of kinase signalling between tumours and
perturbation-dependent conditions, we estimated the activity of kinases across an
extended panel of perturbations with phosphoproteomic measurements (Ochoa et al.
2016). This dataset is composed of 76,379 phosphosites across 439 perturbations.
Next, we calculated the percentage of tumour samples and perturbations each
kinase was regulated in, using an absolute kinase activity cutoff of 1.75 as previously
used. We kept the kinases regulated in at least 1 tumour or perturbation. In order to
find the kinases preferentially regulated in the tumours and in the perturbations -
tumour or perturbation-specific kinases - we fitted a linear model between the
percentage of kinase regulation in the tumours and in the perturbations, as
independent and dependent variables, respectively. The most deviating kinases from
the regression line were considered to be differentially regulated. These kinases
were found by converting the residuals of the linear model to z-scores: while the
kinases with a residual z-score > 2 were classified as tumour-specific, the kinases
with a residual z-score < -2 were classified as perturbation-specific. This process
was performed across all cancer samples and by tissue type. The linear models and
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respective residuals were calculated using the lm and residuals R functions. The
residuals were standardized to z-scores using the scale R function.

Survival analysis
In order to construct Kaplan-Meier (KM) survival curves, cancer samples were
stratified based on their TF and kinase activity scores (AS). For each kinase and TF,
we classified the samples as: inactive if AS < -1.75; active if AS > 1.75; neutral if
-1.75 < AS < 1.75. The 1.75 activity cutoff was chosen based on a previous
publication (Ochoa et al. 2016). We estimated the KM survival curves by protein and
tissue. We tested if the differences on the activities of a given TF on a given tissue
were associated with the probability of survival across time if: more than 10 deaths
occurred and more than 10 samples were classified as active and inactive. Given the
lower number of activation/inactivation events for the kinases, we tested the
kinase-tissue pairs with more than 5 samples classified as active or inactive and with
more than 5 deaths. These filters resulted in 1,025 tests for the TFs (274 TFs and 5
tissues) and 195 tests for the kinases (81 kinases and 7 tissues). The survival
distributions of the cancer sample groups were compared using log-rank tests with
the survdiff function from the survival R package. The P-values were adjusted for
FDR using the Benjamini-Hochberg (BH) procedure (p.adjust R function). The KM
curves were plotted using the ggsurvplot function from the survminer R package.

To account for confounding covariates, we performed a multivariate statistical
analysis using Cox proportional-hazards regression models. The hazard function
was fitted using the protein activity scores as a continuous predictor, adjusted for
age, gender and the genotype (1 if mutated and 0 otherwise) of 28 recurrently
mutated genes in our atlas (at least 100 mutations). Such models were applied to the
protein-tissue pairs described above. We extracted the hazard ratios of the protein
activity coefficients and corresponding 95% confidence intervals and P-values from
the Cox models. The BH-corrected P-values were calculated using the p.adjust R
function. The Cox regression models were fitted using the coxph function from the
survival R package.
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Supplementary Figures

Figure S1. Pearson’s correlation between phosphorylation levels and
corresponding protein abundances. (A) Distribution of the correlations between
protein abundances and phosphorylation changes for protein-phosphosite pairs
(number of pairs beneath the boxplots) across all cancer samples. Given the
sparseness of the (phospho)proteomics data, we selected the protein-phosphosite
pairs with protein/phosphorylation measures in at least 1% (n > 10) of the total
cancer samples. Left: non-regressed-out phosphorylation data. Right: protein
regressed-out phosphorylation data (Methods). (B) Representation of the same data
as (A) by cancer dataset. Correlations were calculated for those protein-phosphosite
pairs with protein/phosphorylation measures in at least 10% (n > 5) of the samples of
each dataset. A small amount of correlation between phosphosites and proteins
remain as the regression was done across all of the dataset.

Figure S2. Lists of kinase-substrate associations compiled in this study. (A)
Number of kinase-substrate associations by source type. (B) Number of kinases and
substrates by source type.
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Figure S3. Validation of kinase-substrate sources and kinase activity estimates
in the cancer samples. (A) Receiver operating characteristic (ROC) curves
demonstrating the predictive performance of the Z-test-based kinase activities
across different sources of kinase-substrate interactions. As positives, we used a set
of 184 kinase-condition pairs where regulation is expected to occur, while as
negatives we generated 100 random sets of the same size as the positive set.
Curves display the average of 100 ROC curves and vertical bars the standard
deviation of the true positive rate at multiple points of false positive rate. The average
area under the ROC curve (AUC) is shown for each kinase-substrate list. The
averaged ROC curves and corresponding AUCs demonstrate the discriminative
power of each kinase-substrate list. (B) In contrast to the analysis shown in (A), here
we replicated the 100 sets of negative (53) and positive (53) regulatory pairs along
the different lists of kinase substrates. (C) Related to the main Figure 1C. Kinase
activities were re-estimated in cancer samples after removing the kinase
auto-regulatory phosphosites from the kinase targets. The boxplots show the
distribution of the Pearson’s correlation between kinase activities and phosphosite
quantifications that mapped to the same kinase, with (n = 118) and without (n = 743)
annotation (activating) in PhosphoSitePlus. (D) Fraction of kinases and TFs
classified as highly variable across the tumour samples. Kinases and TFs with
absolute activity measures higher than 1.75 and 3.89 (96.7th percentiles),
respectively, in at least 5% of the samples were classified as highly variable. (E)
Percentage of phosphosites in TFs significantly and not significantly correlated with
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the corresponding TF activities, stratified by their functional score. Analysis based on
1,183 phosphosites mapping to 178 TFs (n > 10).

Figure S4. Effects of genomic alterations on protein abundances. (A)
Comparison of the distribution of the correlations (Pearson's r) between the CNV
levels (GISTIC2) and the mRNA and protein abundances (log2 fold-changes).
Correlations were calculated for those genes with CNV, mRNA and protein
quantifications in at least 10 samples (11,624 genes). The experimental batch was
regressed-out from the mRNA and protein quantification data before computing the
correlations (Methods). (B) Same as (A) by tissue and experimental study. P-values
< 2.2e-16 in all cases (Wilcoxon rank sum test). The number of genes is indicated in
the plot. (C) Protein abundance distribution between mutation types from the CPTAC
tumours. One sample may have multiple mutations in the same protein. Therefore,
we selected the sample-protein pairs that were exclusive of each mutation type to
prevent the cases where different mutations in the same protein and sample have
the same protein abundance. The outliers (defined as the data points beyond
Q1-1.5*IQR and Q3+1.5*IQR, where Q1 and Q3 are the first and third quartiles and
IQR is the interquartile range) were removed from the distributions for representation
purposes. The number of protein quantifications (including outliers) is shown at the
left of each boxplot. The P-values from a two-sample T-test comparing each
distribution with the background (no mutation) are shown at the right. All data points
(including outliers) were used to calculate the P-values. (D) Same as (C) for the
cancer cell lines from the NCI60 and CRC65 panels.
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Figure S5. Effects of genomic alterations on protein activities. (A) Distribution of
kinase and TF activities between mutation types from the CPTAC tumours. Only the
sample-protein pairs that were specific of each mutation type were selected to
prevent the cases where different mutations in the same protein and sample have
the same protein activity. The outliers (defined as the data points beyond
Q1-1.5*IQR and Q3+1.5*IQR, where Q1 and Q3 are the first and third quartiles and
IQR is the interquartile range) were removed from the distributions for representation
purposes. The number of protein activity quantifications (including outliers) is shown
at the left of each boxplot. The P-values from a two-sample T-test comparing each
distribution with the background (no mutation) are shown at the right. All data points
(including outliers) were used to calculate the P-values. (B) Same as (A) for the
cancer cell lines from the NCI60 and CRC65 panels. (C) Scatterplots between the
-log10 SIFT score (x-axis) of missense mutations and the activity of kinases and TFs
(y-axis) from the CPTAC tumours. The linear regression line and the Pearson
correlation coefficient, with the respective P-value, are shown. Cases where the
same sample had multiple missense mutations in the same gene were removed to
prevent the assignment of the same protein activity to different SIFT scores. (D)
Same as (C) for the cancer cell lines from the NCI60 and CRC65 panels. (E) Same
as (C) for the CPTAC tumours with higher purity (greater than 0.8). The purity score
provides information about the degree of immune infiltration and was calculated from
the gene expression data using the ESTIMATE algorithm. (F) Volcano plot showing
the associations between the BRAFV600E mutation and the activity of kinases. The
x-axis contains the mutation coefficient (effect size) and the y-axis the adjusted
P-values. Highlighted are kinases from the MAPK/ERK signaling pathway and
CDK1/7 (significantly associated with the BRAFV600E mutation). (G) Differential
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activity of the CDK1 and CDK7 kinases between samples with and without BRAFV600E

mutation. The x-axis separates the cancer samples by mutation status (1 if mutated
and 0 otherwise) and the y-axis contains the kinase activities. The outliers were
removed from the distributions for representation purposes. The number of
quantifications (including outliers) are shown beneath each boxplot. A P-value from a
Wilcoxon rank sum test comparing both distributions is shown. All data points
(including outliers) were used to calculate the P-values.

Figure S6. Examples of associations between the mutational status of TFs and
their activities. Related to the main Figure 2B. The x-axis represents the TFs and
the y-axis the activities. The colors stratify the samples by their mutational status in
the respective TFs. The number of quantifications are shown beneath each boxplot.
The P-values from Wilcoxon rank sum tests comparing both distributions are shown.
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Figure S7. Projection of protein activities in low-dimensional spaces and
kinase-TF associations. (A) UMAP projection of the TF activity matrix (TFs as
variables). The samples are colored by experimental study. (B) PCA of the kinase
activities. The barplots indicate the percentage of total variance explained by the first
20 principal components (PCs) (out of 90 PCs). The scatter plots illustrate the
samples projected along the PC1 and PC2. The samples are colored by
experimental study. (C) Same as (B) for the TFs. The barplot contains 20 of 292
PCs. (D) Related to the main Figure 3D. Correlations between the activities of
non-redundant kinases with co-regulatory relationships. The co-regulatory
interactions were obtained from OmniPath (activating and consensual interactions
along the sources) and catalogued as present in a single source or in at least two
different sources. The background corresponds to kinase pairs for which
co-regulation is not known. The distributions were compared to the background
using Wilcoxon rank sum tests. (E) Top panel. String network edge weight
distributions between the significant and non-significant kinase-TF associations (224
and 7527 pairs). The significant associations were selected with a FDR < 5% and an
absolute effect size > 0.5. (E) Bottom panel. Enrichment of the kinase-TF
associations in the string network (edge weights > 850). The y-axis shows the
Fisher-test P-values (-log10) and the x-axis the adjusted P-value cutoffs (-log10) that
were used to select the associations. (F) Scatter plots of the kinase-TF associations
highlighted in the main Figure 3E.

33

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.09.447741doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447741
http://creativecommons.org/licenses/by/4.0/


Figure S8. Kinase activity regulation in tumours and perturbed human
conditions. (A) Related to the main Figure 3F. Linear regression models between
the percentage of kinase regulation in the perturbed conditions (x-axis) and in the
tumour samples (y-axis) by tissue type. (B) Number of kinases classified as
regulated in the tumours (red) and in the conditions (green) in each tissue. (C)
Correlation between the number of regulated kinases in tumours (x-axis) and the
number of quantified kinases and samples (y-axis) across tissues. The Pearson’s r
and respective P-value are shown. (D) Number of tissues where the kinases were
identified as regulated in the tumours (red) or in the conditions (green). The kinases
are mutually exclusive between them (no kinase found as regulated in the tumours
and in the conditions).
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Figure S9. The activities of FOXA1/FOXM1 and AURKB are associated with the
overall survival of liver and breast cancer patients. Related to the main Figures
4A-4B. KM survival plots for (A) FOXA1 (inactive = 29, neutral = 106, active = 22)
and (B) FOXM1 (46, 79, 32) in liver cancer and (C) AURKB (5, 58, 6) in breast
cancer. The tables beneath each plot contain the number of individuals at risk across
time. The log-rank P-values are shown in the plots.
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Supplementary Tables

Table 1. Kinase and TF activities estimated from the molecular data.
Table 2. Significant correlations between the protein activities and the corresponding
CNV, RNA, protein and phosphorylation levels.
Table 3. Genetic associations with protein activities.
Table 4. Associations between kinase and TF activities.
Table 5. Protein activities significantly associated with the overall survival of the
cancer patients.
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