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Incorporating outlier information into diffusion MR tractogram filtering for robust structural
brain connectivity and microstructural analyses
Viljami Sairanen,Mario Ocampo-Pineda,Cristina Granziera,Simona Schiavi,Alessandro Daducci

• We present a novel augmentation to tractogram filtering method that accounts for subject motion related signal dropout
artefacts in diffusion weighted images.

• Our method is validated with realistic Monte-Carlo whole brain simulations and evaluated with in vivo infant data.
• We show that even if data has 10% of motion corrupted slices our method is capable to mitigate their effect in structural

brain connectivity analyses and microstructural mapping.
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ABSTRACT
The white matter structures of the human brain can be represented using diffusion-weighted MRI
tractography. Unfortunately, tractography is prone to find false-positive streamlines causing a severe
decline in its specificity and limiting its feasibility in accurate structural brain connectivity analyses.
Filtering algorithms have been proposed to reduce the number of invalid streamlines but the currently
available filtering algorithms are not suitable to process data that contains motion artefacts which
are typical in clinical research. We augmented the Convex Optimization Modelling for Microstruc-
ture Informed Tractography (COMMIT) filtering algorithm to adjust for these signal drop-out motion
artifacts. We demonstrate with comprehensive Monte-Carlo whole brain simulations and in vivo in-
fant data that our robust algorithm is capable in properly filtering tractography reconstructions despite
these artefacts. We evaluated the results using parametric and non-parametric statistics and our results
demonstrate that if not accounted for, motion artefacts can have severe adverse effect in the human
brain structural connectivity analyses as well as in microstructural property mappings. In conclusion,
the usage of robust filtering methods to mitigate motion related errors in tractogram filtering is highly
beneficial especially in clinical studies with uncooperative patient groups such as infants. With our
presented robust augmentation and open-source implementation, robust tractogram filtering is readily
available.

1. Introduction
Diffusion-weightedmagnetic resonance imaging (dMRI)

of the human brain (Basser et al., 1994) has various applica-
tions ranging from early clinical stroke diagnostics (Hors-
field and Jones, 2002) to investigations of themicrostructural
properties of the tissue (Alexander et al., 2019; Novikov
et al., 2019) and structural brain connectivitymapping (Griffa
et al., 2013; Delettre et al., 2019; Zhang et al., 2021). The lat-
ter two are gaining popularity in clinical research (Kamiya
et al., 2020) to investigate various brain diseases and neu-
rological conditions of adults (Fieremans et al., 2013; Ben-
itez et al., 2014) and development of the growing brain in
children and adolescents (Genc et al., 2017; Huber et al.,
2019). Furthermore, with the latest advances in automatic
brain segmentation with tools like Infant FreeSurfer (Zöllei
et al., 2020), it is likely that the amount of brain connectiv-
ity studies of infants (Kunz et al., 2014; Pannek et al., 2018;
Pecheva et al., 2019) will grow in the near future too.

The clinical dMRI research comes with its own chal-
lenges to solve, with one most difficult being the patient mo-
tion. The subject motion can be unavoidable when imaging
infants or patients in discomfort or pain, resulting in com-
plex missing data problems (Sairanen et al., 2017, 2018).
In short, rapid subject motion can result in slicewise signal
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dropout artefacts. For readers interested in why this hap-
pens, we recommend the section "Origin of the dropout"
by (Andersson et al., 2016). Therefore, the processing of
the motion corrupted images requires specialized algorithms
and robust methods to minimize motion induced bias in the
results. While robust modeling has been considered in the
contexts of diffusion and kurtosis tensor estimations (Chang
et al., 2005, 2012; Tax et al., 2015) as well as in higher order
models (Pannek et al., 2012) that could be used for tractog-
raphy purposes, it has not been investigated thoroughly in
the context of the brain structural connectivity analyses.

Structural brain connectivity analyses are based on the
rapidly developing dMRI tractography (Basser et al., 2000)
algorithms that represent the brain white matter structures
with streamlines. These streamlines can be used to investi-
gate which gray matter regions might have a structural link.
In general, the tractography algorithms are sensitive but they
lack specificity and they find great number of false stream-
lines connections (Thomas et al., 2014; Maier-Hein et al.,
2017). This means that two gray matter regions could be
linked by tractography streamlines despite that the brain tis-
sue does not form a true structural link. This is a known issue
in structural connectivity analyses (Drakesmith et al., 2015;
Zalesky et al., 2016; Yeh et al., 2020) to which tractogram
filtering has been proposed as one solution. Tractogamfilter-
ing can be achieved with different approaches (Zhang et al.,
2021), one being the Convex Optimization Modelling for
Microstructure InformedTractography (COMMIT) (Daducci
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et al., 2015) which we will use in this study to demonstrate
possible effects of subject motion to the filtering and mi-
crostructural mapping as well as how it can be accounted
and corrected for.

There are three alternative post-scan approaches to ad-
dress the outliers caused by the subject motion. The first ap-
proach is to find outliers in dMRI data manually or automat-
ically with statistical methods or deep-learning and simply
exclude the artefactual dMRI data or even the whole subject
from the analysis (Oguz et al., 2014; Samani et al., 2019).
The second approach is to use a model to predict what the
measurements should look like, locate the outliers based on
differences to model predictions and replace themwith these
predictions if differences are deemed large enough (Lauzon
et al., 2013; Andersson et al., 2016). The third approach is
to detect the outliers, but instead of replacing or completely
excluding them, their weight is reduced in all subsequent
model estimation steps (Sairanen et al., 2018).

Manual outlier detection can be laborious and exclud-
ing whole subjects from clinical studies with relatively small
number of participants might not be the optimal choice. The
outlier replacement approach relies on the quality and ro-
bustness of the chosen model and method to represent the
measured dMRI signal. If multiple dMRI measurements are
corrupted by motion artifacts, this initial modeling and pre-
diction step can fail altogether (Sairanen et al., 2018). Even
in the best case, the replaced data points are simply inter-
polations based on the chosen model and the data points
used in the modeling therefore it cannot increase the avail-
able information but leads to increased error propagation due
to subsequent model fittings. The third approach, on the
contrary, enables quantifying the amount of the motion cor-
rupted data and versatile subsequent modeling and analysis
options therefore being optimal for our purposes. In Discus-
sion section "Robust modeling or outlier replacement" we
provide further reasoning why we promote the use of robust
methods over replacement in dMRI.

While weighted and robust modeling has been imple-
mented before, they have mostly been used outside the scope
of tractogramfiltering. For example, in diffusion tensormod-
eling weighted linear least squares is typically the fastest and
most robust estimator (Veraart et al., 2013; Tax et al., 2015;
Sairanen et al., 2018). Robust modeling has been proposed
for higher order models as well (Pannek et al., 2012). In the
context of tractogram filtering, weighted cost functions have
been introduced earlier in e.g. SIFT (Smith et al., 2013,
2015), but it has only been evaluated with voxels affected by
partial voluming. SIFT algorithm states that their ’process-
ing mask’ is ’the square of the estimated white matter partial
volume fraction’ - which indeed should be beneficial in the
case of partial voluming. However, the approach in SIFT
does not account for outliers that are randomly occurring in
the measurements as our newly proposed augmentation to
COMMIT does.

In this work, we propose a robust augmentation to the
COMMIT filtering algorithm (Daducci et al., 2015) that
accounts for the unreliability of the original measurements.

We detail the theoretical changes to the algorithm as well as
provide open-source code1 of its implementation. We refer
to this newmethod as COMMIT_r throughout thismanuscript.
To evaluate the method, we use the data from the Human
Connectome Project (HCP) (Van Essen et al., 2013) as a base
for thorough Monte-Carlo simulations which emulate vari-
ous motion induced artifacts in synthetic but realistic whole
brain data. Synthetic data provides the necessary baseline
that can be used to isolate the bias arising from subject mo-
tion from noise effects in structural connectivity analyses as
well as how well motion artefacts can be amended using our
robust augmentation. In the context of this study, the mea-
surement unreliability is associated with outliers due to sub-
ject motion. However, it can readily be utilized to correct
for measurements that are affected by partial voluming, as
our preliminary results have demonstrated earlier (Sairanen
et al., 2021).

2. Materials and Methods
2.1. Implementation

We augmented the original cost function of COMMIT
(Daducci et al., 2015) with a voxelwise weighting factor W
that we used to down weight measurements that have de-
creased reliability due to subject motion or any other rea-
son. The original COMMIT is based on a minimization of
the difference between the original measurements and a for-
ward model prediction. The forward model prediction is cal-
culated by fitting a chosen microstructural model for each
streamline in every voxel. COMMIT assigns a weight to
each streamline that tells howmuch that streamline contributes
to the predicted signal. These streamline contributionweights
are iteratively updated until the difference between the mea-
surements and this prediction converges to a minimum. Any
streamline with contribution of zero is then removed as an
implausible streamline (i.e. not compatible with the mea-
sured signal).

If part of the measurements are artefactual due to subject
motion or any other reason, the original COMMIT algorithm
could converge to an incorrect solution. To avoid this and
decrease the impact of these artefactual measurements, we
propose the robust cost function shown in eq. 1. The weight-
ing factor (W) is used to multiply the difference between the
original measurements (y) and the product of model design
matrix (A) and estimated model coefficients (x) in the min-
imization problem. Our proposed idea is further illustrated
in Fig. 1 with a simple toy example. In future, these relia-
bility weightsW could be iteratively updated along with the
model coefficients x to help in estimating model coefficients
in voxels that do not fit to the chosen model perfectly due to
heart beat related pulsation or other uncertainties.

argmin
x̂≥0

‖W (Ax̂ − y)‖22 . (1)
The robust cost function in eq. 1 is intended to be used

with outlier detection with tools such as SOLID (Sairanen
1https://github.com/daducci/COMMIT
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Figure 1: A toy example to illustrate the augmentation of COMMIT framework with the measurement reliability based weighing.
(A) A synthetic phantom consists of two slices both consisting of two voxels. For visualization purposes the 4th dimension i.e.
diffusion weighted signals is omitted and observed signal is visualized using a fiber orientation distribution (FOD). To illustrate
the subject motion artefact, the second slice in DWI #2 is affected by slicewise artefact and FOD of corresponding voxels 3 and
4 is biased. In tractography, this is seen as an implausible streamline Fiber 3. (B) Data is vectorized to visualize the linear model
problem. Vector y contains the simulated signals, diagonal of matrix W contains the reliability weights that are decreased for
voxels 3 and 4 in DWI #2, A is the design matrix that depicts the modeled compartments (e.g., stick for streamlines and ball for
isotropic compartments), and x contains the streamline wise contributions. With the successful downweighing, the contribution
of Fiber 3 is set to zero and the implausible streamline is thus removed.

et al., 2018). SOLID detects slicewise outliers based on ro-
bust statistical analysis of the original dMRI data and can be
used either to exclude outliers or down weight them depend-
ing how strong outliers are. This down weighting scheme
is likely a better option to outlier replacement that is pro-
posed in earlier studies (Lauzon et al., 2013; Andersson
et al., 2016). If the outlier is replaced with a prediction from
a tensor or a gaussian model, then COMMIT would try to
minimize the difference from those model predictions to its
own model prediction. Since these models can be different
and therefore capture different details of the dMRI signal,
it is more straightforward to use robust modeling with the
proposed weighted cost function. For interested readers, we
provide more reasoning for this claim in the Discussion sec-
tion "Robust modeling or outlier replacement".
2.2. Simulations

To investigate the outlier effect on the tractogram filter-
ing, we developed a comprehensive Monte-Carlo simulation
pipeline delineated in Fig. 2. Simulations were based on
T1-weighted and dMRI data from the HCP subject 100308
whichwere processedwith current state-of-the-art methods (Van Es-
sen et al., 2013). We do not expect or imply that this ground

truth connectivity matrix depicted in Fig. 3 would represent
the true structural connections in a human brain. It simply
provides us the necessary ground truth connectivity that we
can use to evaluate the noise and outlier effects in theMonte-
Carlo simulations with more realistic picture of the whole
brain than typical fiber phantoms as it contains realistic brain
structures such as kissing an crossing fibers as well as the
modeled partial voluming effects.
Ground truth data

We segmented the T1-weightedHCP datawith FreeSurfer
(Fischl, 2012) to obtain 85 regions-of-interests (ROIs) based
on the Desikan-Killiany atlas (Desikan et al., 2006). Instead
of the full brainstem, we used only its inferior part ofmedulla
as the last ROI.We used these brain segments to compute the
ground truth connectivity matrix as well as to ensure that we
used only the connecting streamlines in our analyses.

To calculate awhole brain tractogram from theHCP dMRI
data, we used the anatomically constrained probabilistic trac-
tography (iFOD2) (Tournier et al., 2010; Smith et al., 2012)
implemented in MRTrix3 software (Tournier et al., 2019).
We used the white matter mask as a seed region for three
million streamlines. The tracking parameters were: step size
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Figure 2: A flow chart describing how the whole-brain simulations were obtained from the HCP dataset. The dMRI and T1-
weighted data were used to obtain the ground truth connectome from which the ground truth dMRI signals were predicted using
normal COMMIT forward modeling. The ground truth data was used to perform 100 Monte-Carlo simulations to evaluate the
effects of noise and outliers to the structural brain connectome. The Monte-Carlo iteration setups shown inside the dashed
rectangle were repeated for outlier percentages 5% and 10% both with the uniform and clustered outlier schemes.

0.5, turning angle 45 degrees, min length value 5, max length
250, cutoff value 0.05, trials number 1000. Finally, we re-
moved all non-connecting streamlines based on the 85 ROI
segmentation of T1-image.

For ground truth tractogram filtering, we used the orig-
inal COMMIT (Daducci et al., 2015) because data did not
contain slicewise outliers. We chose the stick-zeppelin-ball
(SZB) as the forward model with following parameters: 1.7 ⋅
10−3mm2∕s for parallel stick and zeppelin diffusivities, 0.61⋅
10−3mm2∕s for perpendicular zeppelin diffusivity, and two
ball compartments of 1.7 ⋅ 10−3mm2∕s and 3.0 ⋅ 10−3mm2∕s
to account for partial volumeing with gray matter as well as
in cerebrospinal fluid (Panagiotaki et al., 2012).

The filtered tractogramwas used to form the ground truth
connectivitymatrixwith the information fromT1-segmentation
(Fig. 3). The network edges in the ground truth connectivity
matrix were defined as the sum of the COMMIT streamline
weights multiplied by the length of the tract and normalized
by the average tract length between each gray matter parcel-
lation as was done in (Schiavi et al., 2020). We combined
this information with the final streamline contributions to
form the synthetic whole brain prediction of dMRI data us-
ing the HCP’s three-shell gradient scheme. This produced
270 noise free diffusion-weighted whole brain images that
we used as a ground truth for our Monte-Carlo simulations.

Monte-Carlo data
Our Monte-Carlo simulations were based on the ground

truth synthetic whole brain dMRI data obtained from HCP
subject. We split the simulations in two groups: Baseline
and Test. Baseline group provides the means to evaluate the
pure noise effects on the connectome whereas Test group
provides the means to isolate and evaluate the outlier effects.
Network analyzes used for Test groupwere identical with the
ground truth case.

In Baseline group, random Rician noise was added be-
fore repeating the normal COMMIT filtering with the origi-
nal non-filtered but connecting streamlines. TheRician noise
had signal-to-noise ratio of 20 based on the non-diffusion
weighted signal which is roughly similar with signal-to-noise
ratios in clinical research. We used the same filtering param-
eters that were used to form the ground truth data. This pro-
cess was repeated to obtain 100 whole brain baseline images
and connectomes.

In Test group, outliers were introduced to the data before
adding the same Rician noise that was used for the Base-
line group. Test group was filtered with both the normal
COMMIT as well as the proposed robust COMMIT_r us-
ing the same streamlines and parameters that were used for
the Baseline group. This process was repeated to obtain 100
whole brain test imageswith outliers and corresponding con-
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Figure 3: The ground truth connectivity matrix used in this
study was based on one subject. While, this connectivity ma-
trix might not represent the real human brain connections, it
provided the necessary ground truth control for our Monte-
Carlo simulations. Deviations from this network in the simula-
tions would be due to noise, outliers, or both.

nectomes from normal and robust filtering methods.
The outlier selection for the Test group was done with

two different schemes by replacing axial slices with signal
decrease outliers in an interleaved manner to 5% and 10%
of the dMRI data per shell. The first scheme represented
the worst possible situation where outliers were clustered in
the q-space (e.g. Fig. 4) whereas the second scheme repre-
sented the best possible situation where outliers were uni-
formly placed in the q-space based on their electrostatic re-
pulsion (Sairanen et al., 2017). Futher details whywe did not
use purely random selection of outliers is provided in Dis-
cussion section "Robust modeling or outlier replacement".
Statistical analysis

We investigated global brain connectivity as well as in-
dividual network edges using analysis of variance (ANOVA)
accompanied by Tukey’s honestly significant difference (HSD)
test and non-parametric Friedman’s test accompanied by two-
sample Kolmogorov-Smirnov tests. The reason for having
these different test statistics is that outliers can lead to skewed
and long tailed distributions that might not be correctly in-
vestigated solely by parametric tests. It should be noted that
the added Rician noise has a non-zero positive mean value.
This means that all groups are likely shifted to some direc-
tion from the ground truth prediction. This is the reason,
why the Baseline group is needed as that is affected only by
noise and can be used to isolate corresponding shifting ef-
fect.

While we report p-values from these tests, we argue that

Figure 4: An illustration how clustered outliers were selected
from all the gradient directions. The three shells used in the
HCP gradient scheme are shown with the transparent spheres
and gradient directions with black dots. The initial direction
(�, �) of was selected randomly after which the opening an-
gle of the cone was increased until wanted number of outliers
from each shell remained inside it. This approach ensured the
maximal gap in the q-space sampling and the chance to find
error prone schemes.

the effect sizes are more interesting as they describe how
different the tested groups are. The effect sizes are mea-
sured using Cohen’s D for parametric tests and Kolmogorov-
Smirnov statistic for non-parametric tests. The test statistics
we employ are widely used and they provide information
about average differences and differences in the shapes of
the Monte-Carlo simulated distributions. For details about
these tests, we recommend any textbook that covers paramet-
ric and non-parametric statistics such as Sheskin’s handbook
(Sheskin, 2004). Having these two different tests seemed
necessary during designing this study. Of course, as we did
multiple tests, we also performed multiple comparison cor-
rection to all the p-values in pair-wise tests. In total, there
was 80 different tests andwe corrected for them usingBenjamini-
Hochberg False Discovery Rate (FDR) test (Benjamini and
Hochberg, 1995) with alpha 0.05. However, as seen from the
results later, neither mean based or distribution shape based
analysis might not be sufficient to provide absolute conclu-
sions.
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2.3. In vivo measurements
Infant data

We obtained preliminary data from an on-going infant
study to evaluate our method with in vivo measurements.
T1-weighted image and dMRI data were obtained with 3T
MRI Siemens Skyra system (Erlangen, Germany) with a 32
channel head coil. The dMRI acquisition consisted of 13
non-diffusion weighted images that were interspersed be-
tween 60 diffusion-weighted imageswith b-value of 750s∕mm2

and 74 diffusion-weighted imageswith b-value of 1800s∕mm2

eachwith uniquely oriented gradients. Bipolar gradient scheme
was used to minimize geometrical distortions due to eddy
currents. The image resolution was isotropic 2mm with 80
× 80 × 44 imaging matrix. The in-plane acceleration fac-
tor was 2 (SENSE) and multi-band acceleration factor was
2. Only anterior-posterior phase encoded images were ac-
quired as the reverse phase encoding required manual ad-
justment during the scan which was deemed infeasible at the
corresponding clinical scan environment. The use of infant
data in this work was approved by the relevant Ethics Com-
mittee of the Helsinki University Hospital.
Infant analyses

Weused ExploreDTI (Leemans et al., 2009)with SOLID-
plugin (Sairanen et al., 2018) to simultaneously detect slice-
wise outliers and to correct for subject motion and eddy cur-
rents as well as registered the data to anatomical T1-image
to correct for geometrical distortions. Additionally, we used
Gibbs ringing correction (Perrone et al., 2015). We did not
correct for signal drift (Vos et al.) as it was not observed in
the measurements.

Processing of this data was limited to specific computers
in the hospital network which preventedmemory demanding
tasks such as segmentation with Infant Freesurfer (Zöllei
et al., 2020). Problematically, the T1-image contrast of this
subject was not suitable for white and grey matter segmen-
tations using traditional options. This, unfortunately, pre-
vented us from performing full network analyses on the in-
fant dataset as there was no reliable way to perform graymat-
ter segmentation and we had to content to a simpler analysis
that consisted of comparing signal fraction maps between
normal and robust filtering method. We obtained a WM
mask frommulti-shell multi-tissue constrained spherical de-
convolution (Jeurissen et al., 2014) implemented in MR-
Trix3 (Tournier et al., 2019) and used that as a seed mask for
probabilistic whole-brain tractography (iFOD2) (Tournier
et al., 2010) to generate three million streamlines.

We filtered the generated streamlines with normal COM-
MIT (Daducci et al., 2015) and the proposed robust COM-
MIT_r to evaluate the improvements in the overall fit from
root mean squared error (RMSE) maps as well as to see the
impact of outliers in intracellular and isotropic signal frac-
tions. We used the stick-ball model for both filtering meth-
ods with the following parameters: 1.7 ⋅10−3mm2∕s for par-
allel signal diffusivity, and 1.7⋅10−3mm2∕s and 3.0⋅10−3mm2∕s
for the isotropic signal diffusivities.

3. Results
3.1. Simulations

We investigated the effects of noise to the structural brain
connectivity by comparingBaseline group. Test groups (COM-
MIT and COMMIT_r) could not be directly compared to
the ground truth due to Rician noise bias. With the Rician
noise bias we imply the effect that adding noise with non-
zero mean (Gudbjartsson and Patz, 1995) to data leads to a
shift in overall baseline. Therefore, outlier effects were in-
vestigated by comparing Test groups to Baseline group. We
evaluated these differences in both global connectivity ma-
trix score as well as in network edge individually.
Global Connectivity

The global connectivity difference was defined as an av-
erage absolute difference between the elements upper trian-
gle of the connectivity matrices from Monte-Carlo groups
and the corresponding ground truth values. The results of
this comparison calculated are shown in Fig. 5 with all violin
plots being based on 100Monte-Carlo simulations each. The
noise effect on the global connectivity (Baseline) is shown
with the first violin from the left, the uniform outlier effect
is shown in the middle, and the clustered outlier effect is
shown on the right. The percentage of outliers (5% or 10%)
is shown on different sides of each violin.

Both, Baseline and robust COMMIT_r produced simi-
lar global results with differences ranging from 3.5 ⋅ 10−4
to 4.0 ⋅ 10−4. This demonstrates that on average, the pro-
posed robust filtering method is capable to mitigate the out-
lier effect. On the contrary, the results from normal COM-
MIT ranged from 3.25 ⋅10−4 to 6.5 ⋅10−4 demonstrating that
outliers can have a much stronger effect than noise on the
global connectivity values.
Parametric statistical analysis. The global connectivity
differences with ANOVA detail that the group averages were
statistically different with p-value less than 0.05. Tukey’s
HSD test results are shown in Table 1 along with all other
statistical tests results. Statisticall significant results after
multiple comparison correctionwith FDR alpha 0.05 are shown
with bolded p-values. The results depict that normal COM-
MIT had significantly different mean to both Baseline and
COMMIT_r results and the effect sizes evaluated with Co-
hen’s D were systematically larger. Importantly, differences
between Baseline and COMMIT_r were not statistically sig-
nificant with relatively small effect sizes. These effect sizes
indicate that in our realistic simulations with 5% and 10%
of outliers, the average bias caused by outliers quickly in-
creases and compromises the connectivity analyses if data is
not processed robustly.
Non-parametric statistical analysis. The Friedman’s test
reported also p-value less than 0.05 therefore providing addi-
tional support for the graphical analysis and ANOVA results.
We applied the two-sample Kolmogorov-Smirnov test to de-
tect which of the distributions were different. All these test
results are reported in Table 1. Comparisons between Base-
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Figure 5: Impact of noise (Baseline) and outliers (COMMIT
and COMMIT_r) to the global structural brain connectivity.
Left and right sides of the violins represent simulations with
5% and 10% outliers, respectively. The y-axis indicates the
distance to the ground truth as an average absolute differ-
ence. The augmented COMMIT_r shown with the pink vio-
lins produced similar distributions with the Baseline in all cases
whereas the normal COMMIT shown with orange violins differs
from the Baseline already in the 5% cases. As expected, the
clustered outlier scheme produced the largest deviations with
the highest variability in the normal COMMIT distributions.
Interestingly, the uniform outlier scheme resulted two different
distributions for normal COMMIT compared to the Baseline.
This highlights the need for the robust processing as the exact
effect of outliers can be very challenging to predict.

line and normal COMMIT were all statistically significant
with large effect sizes whereas comparisons between Base-
line and COMMIT_r were not statistically significant with
5% outliers. With 10% outliers non-parametric differences
between Baseline and COMMIT_r were significant but the
effect size remained small.
Network edges

We investigated the network edge-wise differences be-
tween the Monte-Carlo connectivity matrices with paramet-
ric and non-parametric statistics as complementary informa-
tion to the global results. The three violin plots in Fig. 6
depict the connectivity values from medulla to the right pre-
central gyrus. These streamlines are visualised in Fig. 7 and
are likely a part of the corticospinal tract and therefore a
known true connection. The results of the parametric and
non-parametric tests performed to this network edge are de-
picted in Table 1.

The noise effect results in a systematic over estimation of
the connectivity strength as depicted by Baseline in Fig. 6.
However, outliers have a more random effect depending on
the affected dMRI measurements. This can either decrease
or increase the connectivity strength and can counteract the
noise effect. Therefore, group comparisons against Baseline
were more meaningful than comparisons against the known
ground truth value would be. For example, in this case the
normal COMMIT produces an average connectivity strength
that is closer to the ground truth than Baseline despite the

Figure 6: Impact of noise (Baseline) and outliers (COMMIT
and COMMIT_r) to one specific network edge that represents
connection between medulla and right precentral gyrus. The
y-axis indicates the strength of this edge connectivity. Left and
right sides of the violins represent simulations with 5% and 10%
outliers, respectively. The augmented COMMIT_r shown with
the pink violins produced similar distributions with the Baseline
in all cases whereas the normal COMMIT shown with orange
violins is heavily affected already in the 5% cases. As expected,
the clustered outlier scheme produced the largest deviations
with the highest variability in the normal COMMIT distribu-
tions. The normal COMMIT simulations with the clustered
outlier scheme demonstrate why it is necessary to compare re-
sults against the Baseline instead of ground truth because the
outlier effect can surpass the noise effect. This can lead to
the shown situation where the difference to ground truth on
average would be smaller due to a very wide distribution.

Figure 7: Illustration of the network edge that connects
medulla to right precentral gyrus. This edge or connection
was selected for closer inspection as it forms a part of the
corticospinal tract which is well known true connection in a
healthy human brain. Shape of the tractogram is nearly verti-
cal therefore perpendicular to the introduced slice-wise outliers
in the axial plane.

distribution is wider.
Parametric statistical analyses. The connectivity-wise dif-
ferences between Baseline and normal COMMIT as well as
Baseline and robust COMMIT_r are shown in Fig. 8. The
color map indicates the effect size measured with Cohen’s
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Figure 8: Differences in the network edges due to outliers
measured using parametric statistics. The color scale indi-
cates the average effect size calculated using Cohen’s D with
unequal variances. The left and right columns show the differ-
ence from Baseline to normal and robust COMMIT. The top
and bottom rows show the results from uniform and clustered
outlier schemes. Robust augmentation clearly improves the
COMMIT filtering if the data contains outliers as the effect
sizes remain very small in all edges in both outlier schemes.
While the uniform outlier scheme produced larger effect sizes
for normal COMMIT than the clustered, it can be easily ex-
plained because Cohen’s D is inversely proportional to the sam-
ple variance which is very high in the clustered outlier schemes.

D. Only elements that were deemed significantly different
(p-value less than 0.05) based on ANOVA and Tukey’s HSD
were drawn. The comparison between Baseline and normal
COMMIT resulted in more elements with significant dif-
ferences than the comparison between Baseline and COM-
MIT_r. The effect sizes between Baseline and normal COM-
MIT ranged from 0 up to 3 indicating that outliers can have
strong adverse effects on specific connectivity matrix ele-
ments. The overall smaller effect sizes between Baseline and
robust COMMIT_r highlight that our augmentation is well
capable to mitigate the outlier effects even on individual net-
work edge level.
Non-parametric statistical analysis. The connectivity-
wise distributional differences between Baseline and normal
COMMIT as well as Baseline and robust COMMIT_r are
shown in Fig. 9. The color map indicates the effect size mea-
sured with Kolmogorov-Smirnov statistic. Only elements
that were deemed statistically significantly different (p-value
less than 0.05) based on Kolmogorov-Smirnov tests were
drawn. Similar to the parametric counterpart, the differences
between Baseline and normal COMMIT were again more
frequent than differences betweenBaseline and robust COM-

Figure 9: Differences in the network edges due to outliers
measured using non-parametric statistics. The color scale
indicates the average effect size calculated as Kolmogorow-
Smirnov statistic. The left and right columns show the differ-
ence from Baseline to normal and robust COMMIT. The top
and bottom rows show the results from uniform and clustered
outlier schemes. Robust augmentation produces smaller effect
sizes which means that the distributions between the Baseline
and COMMIT_r were very similar in both outlier schemes. For
normal COMMIT, the uniform outliers produced larger effect
sizes than the clustered. This is the outcome of the cumulative
distribution function based statistics where the uniform outliers
results in distributions with a high precision but low accuracy
which do not overlap with the Baseline whereas the clustered
outlier results in distributions with a very low precision but
moderate accuracy which do overlap with the Baseline.

MIT_r. Also the effect sizes between Baseline and normal
COMMIT ranged from 0 to nearly 1 which is the maximum
of the used statistic. This indicates that outliers can lead
to very large distributional differences. The differences be-
tween Baseline and robust COMMIT_r remained relatively
small with effect sizes ranging from 0 to 0.2.
3.2. In vivo measurements

Besides tractogram filering, we calculated the intracellu-
lar and isotropic signal fractions calculated using the COM-
MIT framework (Daducci et al., 2015) and the proposed ro-
bust COMMIT_r. Fig. 10 shows the results for outlier detec-
tion, RMSE, and signal fraction maps obtain from the infant
data. On average, the amount of missing data i.e. how much
confidence in fitting was decreased per slice position ranged
from 5% to 19%.

The RMSE map of normal COMMIT was clearly af-
fected by the outliers resulting in visible stripes in the im-
age. On the contrary, the COMMIT_r RMSE map that de-
scribes the robust cost function does not have such stripes
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Table 1
Summary of the parametric and non-parametric test results. Bolded p-values indicate
statistically significant findings with FDR based correction for multiple comparisons using
0.05 alpha.

Global, 5% outliers Global, 10% outliers CST, 5% outliers CST, 10% outliers
ANOVA Friedman ANOVA Friedman ANOVA Friedman ANOVA Friedman

score p-value score p-value score p-value score p-value score p-value score p-value score p-value score p-value
124.51 <0.05 224.10 <0.05 281.80 <0.05 290.88 <0.05 12.93 <0.05 152.86 <0.05 1.81 0.13 115.26 <0.05

Groups Cohen’s D p-value K-S stat. K-S p-value Cohen’s D p-value K-S stat. K-S p-value Cohen’s D p-value K-S stat. K-S p-value Cohen’s D p-value K-S stat. K-S p-value
Baseline Uniform COMMIT 2.06 0.00 0.73 0.00 3.82 0.00 0.96 0.00 2.71 0.00 0.89 0.00 2.11 0.13 0.75 0.00
Baseline Uniform COMMIT_r 0.22 0.72 0.15 0.21 0.46 0.43 0.24 0.01 0.29 0.90 0.14 0.28 0.28 0.90 0.14 0.28
Baseline Cluster COMMIT 1.76 0.00 0.69 0.00 1.89 0.00 0.78 0.00 0.29 0.01 0.48 0.00 0.08 0.88 0.52 0.00
Baseline Cluster COMMIT_r 0.18 0.83 0.13 0.37 0.31 0.75 0.23 0.01 0.22 0.90 0.15 0.21 0.41 0.90 0.22 0.02
Uniform COMMIT Uniform COMMIT_r 2.28 0.00 0.75 0.00 3.28 0.00 0.93 0.00 2.53 0.00 0.84 0.00 1.94 0.21 0.72 0.00
Uniform COMMIT Cluster COMMIT 0.61 0.00 0.44 0.00 3.23 0.00 0.98 0.00 0.25 0.05 0.46 0.00 0.13 0.59 0.52 0.00
Uniform COMMIT Cluster COMMIT_r 2.18 0.00 0.77 0.00 3.42 0.00 0.93 0.00 2.49 0.00 0.84 0.00 1.68 0.27 0.62 0.00
Uniform COMMIT_r Cluster COMMIT 1.89 0.00 0.71 0.00 2.05 0.00 0.82 0.00 0.25 0.05 0.48 0.00 0.06 0.90 0.52 0.00
Uniform COMMIT_r Cluster COMMIT_r 0.03 0.90 0.13 0.37 0.15 0.90 0.10 0.70 0.05 0.90 0.11 0.58 0.16 0.90 0.18 0.08
Cluster COMMIT Cluster COMMIT_r 1.85 0.00 0.72 0.00 2.00 0.00 0.81 0.00 0.26 0.04 0.48 0.00 0.05 0.90 0.52 0.00

therefore the fitting is not affected by outliers. The differ-
ence RMSE map visualises the stripy pattern more promi-
nently and ranges from 0 to 30%. The outlier effect on in-
tracellular and isotropic signal fractions was less prominent
in visual analysis i.e. less or no stripes. However, the dif-
ference between normal COMMIT and robust COMMIT_r
depicts that the differences ranged from -10% to +10% even
in regions that were less affected by outliers for intracellular
signal fraction. For isotropic signal fraction the differences
ranged from -7% to +7%.

4. Discussion
We demonstrated that tractogram filtering is severely af-

fected by subject motion artefacts and that with our proposed
robust augmentation these effects can be mitigated. In clini-
cal research with uncooperative patients such as infants, it is
highly likely that motion to some degree occurs during scan-
ning. This leads to corrupted measurements which should
not affect any modeling methods applied to the data. To best
of our knowledge, this is the first time that motion related
outliers are considered in the context of tractogram filtering
therefore this update is crucial to enable tractogram filtering
in clinical research.

The reason why we evaluated the proposed augmented
cost function with simulated brains instead of real brain data
was simply to ensure that nothing else in the relatively long
dMRI processing pipeline might affect the results. For ex-
ample, it is currently unknown issue, how outliers affect con-
strained spherical deconvolution based probabilistic tractogra-
phies. While there have been proposals for robust higher
order model estimators (Pannek et al., 2012), such are not
widely available. Furthermore, developing and evaluation
of robustness of currently available constrained spherical de-
convolution tractography algorithms are beyond the main
scope of this study.
Comparison to other filtering methods

While similar weighted cost function as in eq. 1 has been
proposed before in SIFT filtering algorithm (Smith et al.,
2013), those have been designed and tested to account for
partial voluming related artefacts - not subject motion. The
main difference in these artefact types is that partial volum-
ing affects all dMRI data whereas subject motion affects only
part of the dMRI data randomly. Therefore, adjusting for

partial voluming requires one three-dimensional reliability
image whereas adjusting for subject motion requires four-
dimensional reliability image as the measurement reliability
must be accounted for each dMRI data separately. This dif-
ference in the implementations of the algorithms also makes
the accurate comparison of them fall outside the scope of
this study.
Correcting for artefacts

Our proposed algorithm (Fig. 1) can also be used to ad-
just for partial voluming but the necessity of that depends
on the forward model used in COMMIT. For example, with
ball and sticks model, voxels containing cerebrospinal fluid
or gray matter can be described with an increased contribu-
tion from a ball compartment therefore the contribution of a
stick compartment could be correct even without additional
reliability weighting. If reliability weights are used, then the
estimate for ball compartment would likely be improved but
that should not still affect the filtered tractogram.

Withmotion induced artefacts, the outliers cause anisotropic
signal deviations (Sairanen et al., 2017) affecting only part of
the dMRI data. Therefore, COMMIT cannot adjust for those
deviations simply by increasing the contribution of the ball
compartment as the deviations are not isotropic over dMRI
measurements. This is demonstrated in Fig. 10 where nor-
mal COMMIT obtains incorrect estimates for isotropic sig-
nal fraction maps i.e. ball compartments. Issue propagates
causing also incorrect estimates for intracellular signal frac-
tion maps i.e. stick contributions. Therefore, a local motion
artefact can have a global adverse effect in tractography fil-
tering if not accounted for.
Statistical analysis

The global connectivity differences (Fig. 5) showed that
normal COMMIT results varied heavily depending on the
used outlier scheme (uniform or cluster) as well as on the
outlier percentage (5% and 10%) whereas the robust COM-
MIT_r results remained relatively intact in all cases. Statisti-
cal tests 1 depicted that global connectivity was significantly
affected by outliers with normal COMMIT producing also
large effect sizes when compared against Baseline. On the
contrary, comparison between Baseline and robust COM-
MIT_r resulted in small effect sizes despite two-sampleKolmogorov-
Smirnov tests reporting statistically significant differences
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Figure 10: Summary of the evaluation with in vivo infant data. Coronal images visualize the slicewise artefacts that typically
occur in the axial plane. Due to rotational subject motion (yaw, pitch, and roll), the acquired axial plane becomes an oblique
plane during the image transformations that are necessary to align images to same spatial coordinates. On the left, an average
reliability or confidence map and T1-image visualize the artefactual regions in the measurements after the image alignment. The
bottom image in the left column shows a sagittal slice in which the red line indicates the position of the coronal slice. The three
columns from the right are results for normal COMMIT, robust COMMIT_r and their difference, respectively. The first row
details the results for root mean squared error (RMSE), the second row for intracellular signal fractions, and the third row for
isotropic signal fractions. In this case, the signal drop outliers are seen as increased diffusivity in random directions and normal
COMMIT tries to adjust for it by increasing isotropic signal fraction in the affected slices. This results in an inceased RMSE in
the corresponding slices as well as slightly overestimated isotropic signal fraction which can is easiest to see in the corresponding
difference map. This leads to interesting problem elsewhere in the brain (not affected by outliers) where normal COMMIT
overestimates the intracellular signal fraction. It should be noted that this is a case example which likely cannot be generalized
as the effect of outliers is difficult to predict and and depends on the affected gradient directions as well as the underlying brain
structures.

in 10% outlier simulations. It is possible that the amount of
simulated outliers (%10) was already reaching the limit after
which the missing data problem becomes too severe even for
robust modeling methods. This could also be related to sam-
ple size being so large that Kolmogorov-Smirnov test finds
any differences statistically significant despite having rela-
tively small effect sizes. Therefore, in future studies some
other non-parametric test could provide better results.

Amore in-depth analysis of the connection frommedulla
to the right precentral gyrus (Figs. 6 and 7) revealed that
ANOVA failed to find statistically significant differences be-
tween the groups with a p-value of 0.13 in 10% outlier sim-
ulations whereas significant differences were found in 5%
outlier simulations with p-value less than 0.05. The non-
parametric Friedman’s tests indicated for both outlier per-
centages that differences existed between the groups with
a p-value less than 0.05. Notably, the effect sizes in com-
parison between Baseline and robust COMMIT_r remained
much smaller than in comparisons betweenBaseline and nor-

mal COMMIT providing support for our proposed method
being capable to mitigate these artefacts even for individual
network edges.

In summary, it remains unsolvedwhat test statistic would
be the most suitable to analyse such data that is affected by
outliers in anisotropic manner. We used two alternative ap-
proaches to evaluate the differences in group averages (ANOVA)
and group distributions (Kolmogorov-Smirnov). Average
based analyses are likely inefficient to locate all differences
arising from outliers in the data whereas non-parameteric
test can be even too sensitive to baseline shifts. Therefore,
instead of statistical significance, the obtained effect sizes
are likely more meaningful results.
Robust modeling vs outlier replacement

This section extends outside the main scope of this study
and is intended for the readers interested in slicewise out-
liers and how they should be addressed in dMRI in general.
We added this section because we feel that the use of out-
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lier replacement in diffusion weighted literature is not truly
justified and should not be continued in its current state. To
understand our reasoning, readers are encouraged to famil-
iarize the concept of outlier replacement which in statistics
is known as data imputation. For this, we recommend the
textbook Statistical analysis with missing data by Little and
Rubin (Little, 2002).

Outlier replacement in dMRI is a form of multiple impu-
tation which has been developed to correct for missing data
in statistical analyses. Benefits of well performed imputa-
tion include decreased bias, increased precision, and most
conveniently the ability to apply standard statistical tests and
model estimators. For example, applying the standard t-test
on sample that contains many missing or incorrect measure-
ments could result in highly incorrect outcome whereas us-
ing a fixed sample that contains correctly imputed data could
provide more reasonable results. This is, of course, the rea-
son why outlier replacement seems so tempting in the con-
text of dMRI: simply replace outliers and use the rest of the
analysis pipeline as it is.

Imputation methods range from naive neighborhood in-
terpolation (outlier is replaced e.g. by the average of its
neighbors) and sample statistic based replacements (outlier
is replaced by e.g. the mean or median value of the sample)
to complex model prediction based replacements. Some of
these ideas have already been transferred to dMRI usage by
replacing outliers by their q-space neighborhood (Nietham-
mer et al., 2007) or model based estimations (Lauzon et al.,
2013; Andersson et al., 2016; Koch et al., 2019). These
methods have in common that they depend on perfect out-
lier detection which can be problematic if there are many
outliers. If some of the outliers are not correctly detected,
this can lead into bias in the interpolation or modeling used
in imputation which would propagate to the diffusion mod-
eling that is performed using a normal estimator.

The idea in robust modeling is to account for the unre-
liability of the measurements and weigh each data point ac-
cordingly. In dMRI, such reliability can be obtained from
voxelwise residuals (outliers tend to have large residuals)
which has been implemented in algorithms suchs as RE-
STORE (Chang et al., 2005) and REKINDLE (Tax et al.,
2015) for tensor model fitting. Similar approach can be ap-
plied to nearly any model.

Voxelwise outlier detection, however, is suboptimal in
dMRI because artefacts in the echo-planar imaging result
in whole slices being incorrect. Therefore, detecting sub-
ject motion related outliers in slicewise manner and assign-
ing the reliability to all voxels in those slices is arguably be
more powerful approach (Andersson et al., 2016; Sairanen
et al., 2018). Moreover, slicewise outliers can be used as
complementary information for voxelwise estimators to ad-
just for more local sources of uncertainties e.g. pulsation due
to heartbeat.

To illustrate the performance of the aforementioned ideas,
we provide a minimal example in which we compare naive
outlier replacement to simple robust model estimation. We
used the constrained spherical deconvolution (CSD) algo-

rithm implemented in DIPY (Tournier et al., 2007; Gary-
fallidis et al., 2014) in this evaluation as evaluating the dif-
ferences using COMMIT framework would be computation-
ally inefficient (and well beyond the purpose of the current
study). We reason that if this simpler analysis cannot provide
support for using outlier replacement, there is little reason to
test it in a more complex analysis.

In CSD, we used the default DIPY-library parameters
withLmax 8, tau 0.1, 362 vertices on the symmetrical sphere,
relative peak threshold of 0.5, minimal peak difference angle
of 25 degrees, and 50 iterations. We developed four stream-
line setups that are described in Fig. 11. All setups consisted
of three axial slices in which the middle slice was affected by
a full signal dropout artefact. We investigated what happens
to CSD signal prediction if i) nothing was done to the outlier,
ii) outlier was replaced with a naive neighborhood interpo-
lation, and iii) spherical harmonic coefficients used in CSD
were obtained using a robust in-house version of CSD algo-
rithm. The in-house algorithm simply decreased the outlier
weight to zero in the linear least squares estimation of the
spherical harmonic coefficients.

We used infinite signal-to-noise ratio to evaluate only the
effects of the signal dropout. Outliers were introduced incre-
mentally from 0 to 9 of one of the HCP gradient scheme shell
with b-value of 2000s∕mm2 using three different schemes in
outlier selection. The first scheme represented the worst pos-
sible situation where outliers were clustered in the q-space
(e.g. Fig. 4), the second scheme represented the best possi-
ble situation where outliers were uniformly placed in the q-
space based on their electrostatic repulsion (Sairanen et al.,
2017), and the third scheme represented randomly selected
outliers. In the first two cases we evaluated all possible 90
caseswhereas the random scheme consisted of 500 combina-
tions. Signal predictions from these schemes were compared
to prediction from the ground truth fit that was not affected
by outliers. In this simulation we did not add Rician noise,
therefore direct comparison to ground truth is sound.

It should be noted that random outlier replacement is a
very poor method to evaluate these effects in dMRI due to
the extremely large number of possible combinations and we
performed it only for illustrative purposes. For example, se-
lecting 9 outliers out of 90 diffusion weighted images can be
performed in 7.06251̇011 different ways therefore selecting
500 of these randomly might not represent the population
well. Since evaluating all possible combinations is possible
only for a smaller number of gradient directions (Sairanen
et al., 2017), it is far more informative to investigate the best
(uniform) and the worst (clusters) extreme cases.

Results of these four setups, shown in Fig. 12 demon-
strate that if nothing is done to the outliers, the difference to
ground truth increases linearly as the number of outliers in-
crease. Of course, after the mathematical problem becomes
ill-conditioned amore chaotic results would be expected (Saira-
nen et al., 2017) but this is likely to occur with much larger
number of outliers. Based on the Fig. 12 the naive outlier re-
placement outperformed robust modeling only in the Setup
A in which the outlier was replaced by identical informa-
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tion from the neighboring voxels. In setups B, C, and D
with more complex and perhaps realistic streamline combi-
nations robust modeling outperformed outlier replacement
by providing results that were closer to the ground truth.

It can be reasonably argued that the rather naive outlier
replacement we implemented here could be improved with
already available proposals of q-space neighborhood (Ni-
ethammer et al., 2007) or model based estimations (Lau-
zon et al., 2013; Andersson et al., 2016; Koch et al., 2019).
However, same applies to the in-house robust spherical har-
monic linear least squares estimator we developed for this
task which simply down weighs the outlier measurements.
However, while it might be possible to fine tune outlier re-
placement in dMRI to the degree that matches the robust
modeling, outlier replacement would still lack the ability to
evaluate the uncertainty in the fitted model rendering it less
useful method for clinical usage that might require or benefit
from knowledge of the method’s uncertainty (e.g. surgery or
radiotherapy).

The reader might be confused by the previous statement
that imputation could not contain information about uncer-
tainties while even the text book by Little and Rubin (Lit-
tle, 2002) we cited has a chapter called "Estimation of Im-
putation Uncertainty". To understand this, remember that
the imputed sample in dMRI is generally an axial slice in a
three dimensional stack of slices that are a part of four di-
mensional series of diffusion weighted images. MRI scan of
the whole series takes several minutes during which the pa-
tient’s head tends to move and especially rotate (yaw, pitch,
and roll). These rotated images must be aligned with some
reference image before model fitting but by doing so the im-
age registration transforms the axial (outlier) slice into an
oblique plane which is an interpolation between the slice and
its neighbors.

This process of image alignment is described in Figure
1. of Sairanen et al. 2018 (Sairanen et al., 2018) but in
short, afterwards it is likely impossible to accurately distin-
guish an imputed signal fraction from a normal signal. This
means that likelihood based estimators or bootstrap meth-
ods (Whitcher et al., 2008) no longer can estimate the uncer-
tainty of the fitted diffusion model. On the contrary, robust
modeling that is based on measurement reliability weights
would still be able to tell this difference. Therefore, any
clinical application that might benefit of these uncertainty
estimates would be hindered by using outlier replacement.
To avoid such bottleneck in the future of dMRI, we argue
that it would be highly beneficial for the dMRI community
to avoid using the outlier replacement in its current form.
Even in basic neuroscience, it could be beneficial to know
the voxelwise distributions of model derived values such as
fractional anisotropy (e.g., FA = 0.6 ± 0.03) to perform
sound statistical analyses.
Where to go from here?

We considered only post-scan motion corrections in this
study because during-scan corrections should be able to pro-
duce data that does not need these correction algorithms.

The problem with during-scan corrections is their limited
availability due to external hardware requirements or still ex-
perimental software. Due to the long time span of tens of
years required to advance MRI technology in clinical use, it
is unlikely that these during-scan correction methods would
be so widely available in clinical research centers that post-
scan corrections such as our proposal are rendered obsolete
any time soon. While the post-scan corrections are more like
a remedy to the symptom instead of cure to the cause, novel
studies on clinical patients and even infants are increasingly
proposed and carried out therefore the need for robust tools
is current and cannot wait decades for hardware based solu-
tions.

5. Conclusion
We proposed a augmentation to a tractogram filtering

algorithm COMMIT that renders it robust towards subject
motion caused outliers in the measurements. This addition
is necessary for conducting tractogram filtering in clinical
research where subject motion is often unavoidable. While
robust data processing has been implemented before in the
context of diffusion tensor and higher order model estima-
tions, it has not been previously implemented for tractogram
filtering. We used realistic whole brainMonte-Carlo simula-
tions that account for kissing and crossing fiber structure as
well as partial volumeing to successfully demonstrate that
our augmentation is capable to accurately map the struc-
tural brain connectivity in the presence of such outliers in
the data. We also demonstrated that if this correction is
not done, the structural connectivity estimates can become
strongly biased. With this update any clinical study investi-
gating structural connectomics of children or uncooperative
patient populations can robustly perform their analyses with-
out the need to exclude subjects with outliers from them.
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Figure 12: Outlier replacement compared to robust modeling in constrained spherical deconvolution (CSD). Upward triangles
(▵) indicate clustered outliers, dots (◦) indicate randomly placed outliers, and downward triangles (▿) indicate uniformly placed
outliers. All values are calculated as an average residual from ground truth (GT) signal prediction. Red markers (OUT) are
results from normal CSD, green markers (REP) are results from normal CSD with outlier replacement, and blue markers (ROB)
are results from the robust CSD. The clustered outliers (▵) result in the largest differences in all cases and the uniform outliers
(▿) result in the smallest differences. Random cases (◦) are generally closer to the uniform situation as the extreme outliers
tend to result in heavily tailed distributions. Outlier replacement provided better results only in the Setup A in which the outlier
could be replaced with similar data that was missing. In all other cases, where the spatial neighborhood did not exactly represent
the missing measurement, the outlier replacement produced larger difference to the ground truth than the robust estimator. As
the complexity of the streamline phantom increases in Setups C and D, the difference between replacement and robust methods
become smaller. Importantly, both the robust modeling and outlier replacement improved the CSD prediction compared to the
baseline case (OUT).

bias in graph theoretical analyses of neuroimaging data. NeuroImage
118, 313–333. URL: https://www.sciencedirect.com/science/article/
pii/S1053811915003912, doi:10.1016/j.neuroimage.2015.05.011.

Fieremans, E., Benitez, A., Jensen, J.H., Falangola, M.F., Tabesh, A., Dear-
dorff, R.L., Spampinato, M.V.S., Babb, J.S., Novikov, D.S., Ferris, S.H.,
Helpern, J.A., 2013. Novel White Matter Tract Integrity Metrics Sensi-
tive to Alzheimer Disease Progression. American Journal of Neurora-
diology 34, 2105–2112. URL: http://www.ajnr.org/content/34/11/2105,
doi:10.3174/ajnr.A3553. publisher: American Journal of Neuroradiology
Section: Brain.

Fischl, B., 2012. FreeSurfer. NeuroImage 62, 774–781. URL: https://
www.sciencedirect.com/science/article/pii/S1053811912000389, doi:10.
1016/j.neuroimage.2012.01.021.

Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S.,

Descoteaux, M., Nimmo-Smith, I., 2014. Dipy, a library for the analysis
of diffusion MRI data. Frontiers in Neuroinformatics 8, 8. URL: https:
//www.frontiersin.org/article/10.3389/fninf.2014.00008, doi:10.3389/
fninf.2014.00008.

Genc, S., Malpas, C.B., Holland, S.K., Beare, R., Silk, T.J., 2017. Neurite
density index is sensitive to age related differences in the developing
brain. NeuroImage 148, 373–380. URL: https://www.sciencedirect.
com/science/article/pii/S105381191730023X, doi:10.1016/j.neuroimage.
2017.01.023.

Griffa, A., Baumann, P.S., Thiran, J.P., Hagmann, P., 2013. Structural con-
nectomics in brain diseases. NeuroImage 80, 515–526. URL: https://
www.sciencedirect.com/science/article/pii/S1053811913004035, doi:10.
1016/j.neuroimage.2013.04.056.

Gudbjartsson, H., Patz, S., 1995. The rician distribution of noisy mri

V Sairanen et al.: Preprint submitted to Elsevier Page 14 of 16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.06.09.447697doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S1053811915003912
https://www.sciencedirect.com/science/article/pii/S1053811915003912
http://dx.doi.org/10.1016/j.neuroimage.2015.05.011
http://www.ajnr.org/content/34/11/2105
http://dx.doi.org/10.3174/ajnr.A3553
https://www.sciencedirect.com/science/article/pii/S1053811912000389
https://www.sciencedirect.com/science/article/pii/S1053811912000389
http://dx.doi.org/10.1016/j.neuroimage.2012.01.021
http://dx.doi.org/10.1016/j.neuroimage.2012.01.021
https://www.frontiersin.org/article/10.3389/fninf.2014.00008
https://www.frontiersin.org/article/10.3389/fninf.2014.00008
http://dx.doi.org/10.3389/fninf.2014.00008
http://dx.doi.org/10.3389/fninf.2014.00008
https://www.sciencedirect.com/science/article/pii/S105381191730023X
https://www.sciencedirect.com/science/article/pii/S105381191730023X
http://dx.doi.org/10.1016/j.neuroimage.2017.01.023
http://dx.doi.org/10.1016/j.neuroimage.2017.01.023
https://www.sciencedirect.com/science/article/pii/S1053811913004035
https://www.sciencedirect.com/science/article/pii/S1053811913004035
http://dx.doi.org/10.1016/j.neuroimage.2013.04.056
http://dx.doi.org/10.1016/j.neuroimage.2013.04.056
https://doi.org/10.1101/2021.06.09.447697
http://creativecommons.org/licenses/by-nc-nd/4.0/


Robust Tractogram Filtering

data. Magnetic Resonance in Medicine 34, 910–914. doi:10.1002/mrm.
1910340618.

Horsfield, M.A., Jones, D.K., 2002. Applications of diffusion-weighted
and diffusion tensor MRI to white matter diseases - a review. NMR
in Biomedicine 15, 570–577. URL: http://doi.wiley.com/10.1002/nbm.
787, doi:10.1002/nbm.787. publisher: John Wiley & Sons, Ltd.

Huber, E., Henriques, R.N., Owen, J.P., Rokem, A., Yeatman, J.D., 2019.
Applying microstructural models to understand the role of white mat-
ter in cognitive development. Developmental Cognitive Neuroscience
36, 100624. URL: https://www.sciencedirect.com/science/article/

pii/S1878929318301348, doi:10.1016/j.dcn.2019.100624.
Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers,

J., 2014. Multi-tissue constrained spherical deconvolution for im-
proved analysis of multi-shell diffusion MRI data. NeuroImage 103,
411–426. URL: https://www.sciencedirect.com/science/article/pii/

S1053811914006442, doi:10.1016/j.neuroimage.2014.07.061.
Kamiya, K., Hori, M., Aoki, S., 2020. NODDI in clinical research.

Journal of Neuroscience Methods 346, 108908. URL: https://

www.sciencedirect.com/science/article/pii/S0165027020303319, doi:10.
1016/j.jneumeth.2020.108908.

Koch, A., Zhukov, A., Stöcker, T., Groeschel, S., Schultz, T., 2019.
SHORE-based detection and imputation of dropout in diffusion MRI.
Magnetic Resonance in Medicine 82, 2286–2298. doi:10.1002/mrm.
27893.

Kunz, N., Zhang, H., Vasung, L., O’Brien, K.R., Assaf, Y., Lazeyras,
F., Alexander, D.C., Hüppi, P.S., 2014. Assessing white matter mi-
crostructure of the newborn with multi-shell diffusionMRI and biophys-
ical compartment models. NeuroImage 96, 288–299. URL: https://
www.sciencedirect.com/science/article/pii/S1053811914002183, doi:10.
1016/j.neuroimage.2014.03.057.

Lauzon, C.B., Asman, A.J., Esparza, M.L., Burns, S.S., Fan, Q., Gao, Y.,
Anderson, A.W., Davis, N., Cutting, L.E., Landman, B.A., 2013. Simul-
taneous Analysis and Quality Assurance for Diffusion Tensor Imaging.
PLoS ONE 8. URL: http://journals.plos.org/plosone/article/file?
id=10.1371/journal.pone.0061737&type=printable, doi:10.1371/journal.
pone.0061737.

Leemans, A., Jeurissen, B., Sijbers, J., Jones, D., 2009. Ex-
ploreDTI: a graphical toolbox for processing, analyzing, and
visualizing diffusion MR data. Proceedings 17th Scientific Meet-
ing, International Society for Magnetic Resonance in Medicine
17, 3537–3537. URL: http://www.mendeley.com/research/

exploredti-a-graphical-toolbox-for-processing-analyzing-and-visualizing-diffusion-mr-data/

%5Cnhttp://www.exploredti.com/ref/ExploreDTI_ISMRM_2009.pdf.
Little, R.J.A., 2002. Statistical analysis with missing data. Edition: Second

edition. ISBN: 9781118625866 Place: Hoboken, New Jersey Publica-
tion Title: Statistical analysis with missing data.

Maier-Hein, K.H., Neher, P.F., Houde, J.C., Côté, M.A., Garyfallidis, E.,
Zhong, J., Chamberland, M., Yeh, F.C., Lin, Y.C., Ji, Q., Reddick, W.E.,
Glass, J.O., Chen, D.Q., Feng, Y., Gao, C., Wu, Y., Ma, J., Renjie, H.,
Li, Q., Westin, C.F., Deslauriers-Gauthier, S., González, J.O.O., Paque-
tte, M., St-Jean, S., Girard, G., Rheault, F., Sidhu, J., Tax, C.M., Guo,
F., Mesri, H.Y., Dávid, S., Froeling, M., Heemskerk, A.M., Leemans,
A., Boré, A., Pinsard, B., Bedetti, C., Desrosiers, M., Brambati, S.,
Doyon, J., Sarica, A., Vasta, R., Cerasa, A., Quattrone, A., Yeatman,
J., Khan, A.R., Hodges, W., Alexander, S., Romascano, D., Barakovic,
M., Auría, A., Esteban, O., Lemkaddem, A., Thiran, J.P., Cetingul,
H.E., Odry, B.L., Mailhe, B., Nadar, M.S., Pizzagalli, F., Prasad, G.,
Villalon-Reina, J.E., Galvis, J., Thompson, P.M., Requejo, F.D.S., La-
guna, P.L., Lacerda, L.M., Barrett, R., Dell’Acqua, F., Catani, M., Pe-
tit, L., Caruyer, E., Daducci, A., Dyrby, T.B., Holland-Letz, T., Hilge-
tag, C.C., Stieltjes, B., Descoteaux, M., 2017. The challenge of map-
ping the human connectome based on diffusion tractography. Nature
Communications 8, 1–13. URL: www.nature.com/naturecommunications,
doi:10.1038/s41467-017-01285-x. publisher: Nature Publishing Group.

Niethammer, M., Bouix, S., Aja-Fernández, S., Westin, C.F., Shenton,
M.E., 2007. Outlier Rejection for Diffusion Weighted Imaging. Med-
ical image computing and computer-assisted intervention : MICCAI ...
International Conference on Medical Image Computing and Computer-

Assisted Intervention 10, 161–168. URL: https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC2788769/.
Novikov, D.S., Fieremans, E., Jespersen, S.N., Kiselev, V.G., 2019.

Quantifying brain microstructure with diffusion MRI: Theory and
parameter estimation. NMR in Biomedicine 32, e3998. URL:
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.

1002/nbm.3998, doi:10.1002/nbm.3998. publisher: John Wiley & Sons,
Ltd.

Oguz, I., Farzinfar, M., Matsui, J., Budin, F., Liu, Z., Gerig, G.,
Johnson, H.J., Styner, M., 2014. DTIPrep: quality control of
diffusion-weighted images. Frontiers in Neuroinformatics 8, 4–
4. URL: http://journal.frontiersin.org/article/10.3389/fninf.2014.
00004/abstract, doi:10.3389/fninf.2014.00004.

Panagiotaki, E., Schneider, T., Siow, B., Hall, M.G., Lythgoe, M.F.,
Alexander, D.C., 2012. Compartment models of the diffusion MR sig-
nal in brain white matter: A taxonomy and comparison. NeuroImage
59, 2241–2254. doi:10.1016/j.neuroimage.2011.09.081. publisher: Aca-
demic Press.

Pannek, K., Fripp, J., George, J.M., Fiori, S., Colditz, P.B., Boyd,
R.N., Rose, S.E., 2018. Fixel-based analysis reveals alterations is
brain microstructure and macrostructure of preterm-born infants at term
equivalent age. NeuroImage: Clinical 18, 51–59. URL: https://

www.sciencedirect.com/science/article/pii/S2213158218300032, doi:10.
1016/j.nicl.2018.01.003.

Pannek, K., Raffelt, D., Bell, C., Mathias, J.L., Rose, S.E., 2012.
HOMOR: Higher Order Model Outlier Rejection for high b-
value MR diffusion data. NeuroImage 63, 835–842. URL: http:

//ac.els-cdn.com/S1053811912007331/1-s2.0-S1053811912007331-main.

pdf?_tid=a24e94d6-66e5-11e7-8034-00000aab0f02&acdnat=1499852391_

e4092d37b6ed2c857b0f48df076fe8d2, doi:10.1016/j.neuroimage.2012.07.
022.

Pecheva, D., Tournier, J.D., Pietsch, M., Christiaens, D., Batalle, D.,
Alexander, D.C., Hajnal, J.V., Edwards, A.D., Zhang, H., Counsell,
S.J., 2019. Fixel-based analysis of the preterm brain: Disentan-
gling bundle-specific white matter microstructural and macrostructural
changes in relation to clinical risk factors. NeuroImage: Clinical 23,
101820. URL: https://www.sciencedirect.com/science/article/pii/

S2213158219301706, doi:10.1016/j.nicl.2019.101820.
Perrone, D., Aelterman, J., Pižurica, A., Jeurissen, B., Philips, W., Lee-

mans, A., 2015. The effect of Gibbs ringing artifacts on measures de-
rived from diffusion MRI. NeuroImage 120, 441–455. URL: https://
linkinghub.elsevier.com/retrieve/pii/S105381191500573X, doi:10.1016/
j.neuroimage.2015.06.068.

Sairanen, V., Kuusela, L., Sipilä, O., Savolainen, S., Vanhatalo, S., 2017. A
novel measure of reliability in Diffusion Tensor Imaging after data rejec-
tions due to subjectmotion. NeuroImage 147. doi:10.1016/j.neuroimage.
2016.11.061.

Sairanen, V., Leemans, A., Tax, C., 2018. Fast and accurate Slice-
wise OutLIer Detection (SOLID) with informed model estimation for
diffusion MRI data. NeuroImage 181, 331–346. URL: https://

linkinghub.elsevier.com/retrieve/pii/S1053811918305950, doi:10.1016/
j.neuroimage.2018.07.003.

Sairanen, V., Ocampo-Pineda, M., Granziera, C., Schiavi, S., Daducci, A.,
2021. Enhancing reliability of structural brain connectivity with outlier
adjusted tractogram filtering, in: IEEE 18th International Symposium
on Biomedical Imaging (ISBI), IEEE.

Samani, Z.R., Alappatt, J.A., Parker, D., Ismail, A.A.O., Verma, R., 2019.
QC-Automator: Deep Learning-Based Automated Quality Control for
Diffusion MR Images. Frontiers in Neuroscience 13, 1456. doi:10.3389/
fnins.2019.01456.

Schiavi, S., Petracca, M., Battocchio, M., Mendili, M.M.E., Paduri,
S., Fleysher, L., Inglese, M., Daducci, A., 2020. Sensory-
motor network topology in multiple sclerosis: Structural connec-
tivity analysis accounting for intrinsic density discrepancy. Hu-
man Brain Mapping 41, 2951–2963. URL: https://onlinelibrary.

wiley.com/doi/abs/10.1002/hbm.24989, doi:10.1002/hbm.24989. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/hbm.24989.

Sheskin, D.J., 2004. Handbook of parametric and nonparametric statistical

V Sairanen et al.: Preprint submitted to Elsevier Page 15 of 16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.06.09.447697doi: bioRxiv preprint 

http://dx.doi.org/10.1002/mrm.1910340618
http://dx.doi.org/10.1002/mrm.1910340618
http://doi.wiley.com/10.1002/nbm.787
http://doi.wiley.com/10.1002/nbm.787
http://dx.doi.org/10.1002/nbm.787
https://www.sciencedirect.com/science/article/pii/S1878929318301348
https://www.sciencedirect.com/science/article/pii/S1878929318301348
http://dx.doi.org/10.1016/j.dcn.2019.100624
https://www.sciencedirect.com/science/article/pii/S1053811914006442
https://www.sciencedirect.com/science/article/pii/S1053811914006442
http://dx.doi.org/10.1016/j.neuroimage.2014.07.061
https://www.sciencedirect.com/science/article/pii/S0165027020303319
https://www.sciencedirect.com/science/article/pii/S0165027020303319
http://dx.doi.org/10.1016/j.jneumeth.2020.108908
http://dx.doi.org/10.1016/j.jneumeth.2020.108908
http://dx.doi.org/10.1002/mrm.27893
http://dx.doi.org/10.1002/mrm.27893
https://www.sciencedirect.com/science/article/pii/S1053811914002183
https://www.sciencedirect.com/science/article/pii/S1053811914002183
http://dx.doi.org/10.1016/j.neuroimage.2014.03.057
http://dx.doi.org/10.1016/j.neuroimage.2014.03.057
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0061737&type=printable
http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0061737&type=printable
http://dx.doi.org/10.1371/journal.pone.0061737
http://dx.doi.org/10.1371/journal.pone.0061737
http://www.mendeley.com/research/exploredti-a-graphical-toolbox-for-processing-analyzing-and-visualizing-diffusion-mr-data/%5Cnhttp://www.exploredti.com/ref/ExploreDTI_ISMRM_2009.pdf
http://www.mendeley.com/research/exploredti-a-graphical-toolbox-for-processing-analyzing-and-visualizing-diffusion-mr-data/%5Cnhttp://www.exploredti.com/ref/ExploreDTI_ISMRM_2009.pdf
http://www.mendeley.com/research/exploredti-a-graphical-toolbox-for-processing-analyzing-and-visualizing-diffusion-mr-data/%5Cnhttp://www.exploredti.com/ref/ExploreDTI_ISMRM_2009.pdf
www.nature.com/naturecommunications
http://dx.doi.org/10.1038/s41467-017-01285-x
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788769/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788769/
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.3998
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/nbm.3998
http://dx.doi.org/10.1002/nbm.3998
http://journal.frontiersin.org/article/10.3389/fninf.2014.00004/abstract
http://journal.frontiersin.org/article/10.3389/fninf.2014.00004/abstract
http://dx.doi.org/10.3389/fninf.2014.00004
http://dx.doi.org/10.1016/j.neuroimage.2011.09.081
https://www.sciencedirect.com/science/article/pii/S2213158218300032
https://www.sciencedirect.com/science/article/pii/S2213158218300032
http://dx.doi.org/10.1016/j.nicl.2018.01.003
http://dx.doi.org/10.1016/j.nicl.2018.01.003
http://ac.els-cdn.com/S1053811912007331/1-s2.0-S1053811912007331-main.pdf?_tid=a24e94d6-66e5-11e7-8034-00000aab0f02&acdnat=1499852391_e4092d37b6ed2c857b0f48df076fe8d2
http://ac.els-cdn.com/S1053811912007331/1-s2.0-S1053811912007331-main.pdf?_tid=a24e94d6-66e5-11e7-8034-00000aab0f02&acdnat=1499852391_e4092d37b6ed2c857b0f48df076fe8d2
http://ac.els-cdn.com/S1053811912007331/1-s2.0-S1053811912007331-main.pdf?_tid=a24e94d6-66e5-11e7-8034-00000aab0f02&acdnat=1499852391_e4092d37b6ed2c857b0f48df076fe8d2
http://ac.els-cdn.com/S1053811912007331/1-s2.0-S1053811912007331-main.pdf?_tid=a24e94d6-66e5-11e7-8034-00000aab0f02&acdnat=1499852391_e4092d37b6ed2c857b0f48df076fe8d2
http://dx.doi.org/10.1016/j.neuroimage.2012.07.022
http://dx.doi.org/10.1016/j.neuroimage.2012.07.022
https://www.sciencedirect.com/science/article/pii/S2213158219301706
https://www.sciencedirect.com/science/article/pii/S2213158219301706
http://dx.doi.org/10.1016/j.nicl.2019.101820
https://linkinghub.elsevier.com/retrieve/pii/S105381191500573X
https://linkinghub.elsevier.com/retrieve/pii/S105381191500573X
http://dx.doi.org/10.1016/j.neuroimage.2015.06.068
http://dx.doi.org/10.1016/j.neuroimage.2015.06.068
http://dx.doi.org/10.1016/j.neuroimage.2016.11.061
http://dx.doi.org/10.1016/j.neuroimage.2016.11.061
https://linkinghub.elsevier.com/retrieve/pii/S1053811918305950
https://linkinghub.elsevier.com/retrieve/pii/S1053811918305950
http://dx.doi.org/10.1016/j.neuroimage.2018.07.003
http://dx.doi.org/10.1016/j.neuroimage.2018.07.003
http://dx.doi.org/10.3389/fnins.2019.01456
http://dx.doi.org/10.3389/fnins.2019.01456
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.24989
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.24989
http://dx.doi.org/10.1002/hbm.24989
https://doi.org/10.1101/2021.06.09.447697
http://creativecommons.org/licenses/by-nc-nd/4.0/


Robust Tractogram Filtering

procedures. 2 ed., Chapman & hall/CRC. Boca Raton, FL.
Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A., 2012.

Anatomically-constrained tractography: Improved diffusion MRI
streamlines tractography through effective use of anatomical informa-
tion. NeuroImage 62, 1924–1938. URL: https://www.sciencedirect.
com/science/article/pii/S1053811912005824, doi:10.1016/j.neuroimage.
2012.06.005.

Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A., 2013. SIFT:
Spherical-deconvolution informed filtering of tractograms. NeuroImage
67, 298–312. URL: https://www.sciencedirect.com/science/article/

pii/S1053811912011615, doi:10.1016/j.neuroimage.2012.11.049.
Smith, R.E., Tournier, J.D., Calamante, F., Connelly, A., 2015.

SIFT2: Enabling dense quantitative assessment of brain white mat-
ter connectivity using streamlines tractography. NeuroImage 119,
338–351. URL: https://www.sciencedirect.com/science/article/pii/

S1053811915005972, doi:10.1016/j.neuroimage.2015.06.092.
Tax, C.M., Otte, W.M., Viergever, M.A., Dijkhuizen, R.M., Leemans, A.,

2015. REKINDLE: Robust Extraction of Kurtosis INDices with Linear
Estimation. Magnetic Resonance in Medicine 73, 794–808. URL: http:
//www.ncbi.nlm.nih.gov/pubmed/24687400, doi:10.1002/mrm.25165.

Thomas, C., Ye, F.Q., Irfanoglu, M.O., Modi, P., Saleem, K.S., Leopold,
D.A., Pierpaoli, C., 2014. Anatomical accuracy of brain connections de-
rived from diffusionMRI tractography is inherently limited. Proceedings
of the National Academy of Sciences 111, 16574–16579. URL: https://
www.pnas.org/content/111/46/16574, doi:10.1073/pnas.1405672111. pub-
lisher: National Academy of Sciences Section: Biological Sciences.

Tournier, J.D., Calamante, F., Connelly, A., 2007. Robust de-
termination of the fibre orientation distribution in diffusion
MRI: Non-negativity constrained super-resolved spherical de-
convolution. NeuroImage 35, 1459–1472. URL: https:

//ac.els-cdn.com/S1053811907001243/1-s2.0-S1053811907001243-main.

pdf?_tid=0cc8bf52-b016-11e7-b3cd-00000aab0f02&acdnat=1507899621_

73160e2ff259de716aeddbdefabdc8de, doi:10.1016/j.neuroimage.2007.02.
016.

Tournier, J.D., Calamante, F., Connelly, A., 2010. Improved probabilistic
streamlines tractography by 2nd order integration over fibre orientation
distributions , 1.

Tournier, J.D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch,
M., Christiaens, D., Jeurissen, B., Yeh, C.H., Connelly, A., 2019. MR-
trix3: A fast, flexible and open software framework for medical im-
age processing and visualisation. NeuroImage 202, 116137–116137.
doi:10.1016/j.neuroimage.2019.116137. publisher: Academic Press Inc.

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E.,
Ugurbil, K., 2013. The WU-Minn Human Connectome Project: An
overview. NeuroImage 80, 62–79. doi:10.1016/j.neuroimage.2013.05.
041. publisher: Academic Press.

Veraart, J., Sijbers, J., Sunaert, S., Leemans, A., Jeurissen, B., 2013.
Weighted linear least squares estimation of diffusion MRI param-
eters: Strengths, limitations, and pitfalls. NeuroImage 81, 335–
346. URL: http://www.ncbi.nlm.nih.gov/pubmed/23684865%5Cnhttp:

//ac.els-cdn.com/S1053811913005223/1-s2.0-S1053811913005223-main.

pdf?_tid=55f8cfae-2b2a-11e6-9dbe-00000aab0f01&acdnat=1465137331_

fea523c85254148e1704c9a54f576827, doi:10.1016/j.neuroimage.2013.05.
028.

Vos, S.B., Tax, C.M.W., Luijten, P.R., Ourselin, S., Leemans, A., Froeling,
M., . The Importance of Correcting for Signal Drift in Diffusion MRI
URL: http://www., doi:10.1002/mrm.26124.

Whitcher, B., Tuch, D.S., Wisco, J.J., Sorensen, A.G., Wang, L., 2008. Us-
ing the wild bootstrap to quantify uncertainty in diffusion tensor imag-
ing. Human Brain Mapping 29, 346–362. URL: http://doi.wiley.

com/10.1002/hbm.20395, doi:10.1002/hbm.20395. publisher: John Wiley &
Sons, Ltd.

Yeh, C.H., Jones, D.K., Liang, X., Descoteaux, M., Connelly, A., 2020.
Mapping Structural Connectivity Using Diffusion MRI: Challenges and
Opportunities. Journal of Magnetic Resonance Imaging , 1–17doi:10.
1002/jmri.27188.

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L.L., van den Heuvel, M.P.,
Breakspear, M., 2016. Connectome sensitivity or specificity: which is

more important? NeuroImage 142, 407–420. doi:10.1016/j.neuroimage.
2016.06.035. publisher: Academic Press Inc.

Zhang, F., Daducci, A., He, Y., Schiavi, S., Seguin, C., Smith, R., Yeh,
C.H., Zhao, T., O’Donnell, L.J., 2021. Quantitative mapping of the
brain’s structural connectivity using diffusion MRI tractography: a
review. arXiv:2104.11644 [q-bio] URL: http://arxiv.org/abs/2104.

11644. arXiv: 2104.11644.
Zöllei, L., Iglesias, J.E., Ou, Y., Grant, P.E., Fischl, B., 2020. Infant

FreeSurfer: An automated segmentation and surface extraction pipeline
for T1-weighted neuroimaging data of infants 0–2 years. NeuroImage
218, 116946. URL: https://www.sciencedirect.com/science/article/

pii/S1053811920304328, doi:10.1016/j.neuroimage.2020.116946.

V Sairanen et al.: Preprint submitted to Elsevier Page 16 of 16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 6, 2021. ; https://doi.org/10.1101/2021.06.09.447697doi: bioRxiv preprint 

https://www.sciencedirect.com/science/article/pii/S1053811912005824
https://www.sciencedirect.com/science/article/pii/S1053811912005824
http://dx.doi.org/10.1016/j.neuroimage.2012.06.005
http://dx.doi.org/10.1016/j.neuroimage.2012.06.005
https://www.sciencedirect.com/science/article/pii/S1053811912011615
https://www.sciencedirect.com/science/article/pii/S1053811912011615
http://dx.doi.org/10.1016/j.neuroimage.2012.11.049
https://www.sciencedirect.com/science/article/pii/S1053811915005972
https://www.sciencedirect.com/science/article/pii/S1053811915005972
http://dx.doi.org/10.1016/j.neuroimage.2015.06.092
http://www.ncbi.nlm.nih.gov/pubmed/24687400
http://www.ncbi.nlm.nih.gov/pubmed/24687400
http://dx.doi.org/10.1002/mrm.25165
https://www.pnas.org/content/111/46/16574
https://www.pnas.org/content/111/46/16574
http://dx.doi.org/10.1073/pnas.1405672111
https://ac.els-cdn.com/S1053811907001243/1-s2.0-S1053811907001243-main.pdf?_tid=0cc8bf52-b016-11e7-b3cd-00000aab0f02&acdnat=1507899621_73160e2ff259de716aeddbdefabdc8de
https://ac.els-cdn.com/S1053811907001243/1-s2.0-S1053811907001243-main.pdf?_tid=0cc8bf52-b016-11e7-b3cd-00000aab0f02&acdnat=1507899621_73160e2ff259de716aeddbdefabdc8de
https://ac.els-cdn.com/S1053811907001243/1-s2.0-S1053811907001243-main.pdf?_tid=0cc8bf52-b016-11e7-b3cd-00000aab0f02&acdnat=1507899621_73160e2ff259de716aeddbdefabdc8de
https://ac.els-cdn.com/S1053811907001243/1-s2.0-S1053811907001243-main.pdf?_tid=0cc8bf52-b016-11e7-b3cd-00000aab0f02&acdnat=1507899621_73160e2ff259de716aeddbdefabdc8de
http://dx.doi.org/10.1016/j.neuroimage.2007.02.016
http://dx.doi.org/10.1016/j.neuroimage.2007.02.016
http://dx.doi.org/10.1016/j.neuroimage.2019.116137
http://dx.doi.org/10.1016/j.neuroimage.2013.05.041
http://dx.doi.org/10.1016/j.neuroimage.2013.05.041
http://www.ncbi.nlm.nih.gov/pubmed/23684865%5Cnhttp://ac.els-cdn.com/S1053811913005223/1-s2.0-S1053811913005223-main.pdf?_tid=55f8cfae-2b2a-11e6-9dbe-00000aab0f01&acdnat=1465137331_fea523c85254148e1704c9a54f576827
http://www.ncbi.nlm.nih.gov/pubmed/23684865%5Cnhttp://ac.els-cdn.com/S1053811913005223/1-s2.0-S1053811913005223-main.pdf?_tid=55f8cfae-2b2a-11e6-9dbe-00000aab0f01&acdnat=1465137331_fea523c85254148e1704c9a54f576827
http://www.ncbi.nlm.nih.gov/pubmed/23684865%5Cnhttp://ac.els-cdn.com/S1053811913005223/1-s2.0-S1053811913005223-main.pdf?_tid=55f8cfae-2b2a-11e6-9dbe-00000aab0f01&acdnat=1465137331_fea523c85254148e1704c9a54f576827
http://www.ncbi.nlm.nih.gov/pubmed/23684865%5Cnhttp://ac.els-cdn.com/S1053811913005223/1-s2.0-S1053811913005223-main.pdf?_tid=55f8cfae-2b2a-11e6-9dbe-00000aab0f01&acdnat=1465137331_fea523c85254148e1704c9a54f576827
http://dx.doi.org/10.1016/j.neuroimage.2013.05.028
http://dx.doi.org/10.1016/j.neuroimage.2013.05.028
http://www.
http://dx.doi.org/10.1002/mrm.26124
http://doi.wiley.com/10.1002/hbm.20395
http://doi.wiley.com/10.1002/hbm.20395
http://dx.doi.org/10.1002/hbm.20395
http://dx.doi.org/10.1002/jmri.27188
http://dx.doi.org/10.1002/jmri.27188
http://dx.doi.org/10.1016/j.neuroimage.2016.06.035
http://dx.doi.org/10.1016/j.neuroimage.2016.06.035
http://arxiv.org/abs/2104.11644
http://arxiv.org/abs/2104.11644
https://www.sciencedirect.com/science/article/pii/S1053811920304328
https://www.sciencedirect.com/science/article/pii/S1053811920304328
http://dx.doi.org/10.1016/j.neuroimage.2020.116946
https://doi.org/10.1101/2021.06.09.447697
http://creativecommons.org/licenses/by-nc-nd/4.0/

