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Incorporating outlier information into diffusion MR tractogram filtering for robust structural
brain connectivity and microstructural analyses
Viljami Sairanen,Mario Ocampo-Pineda,Cristina Granziera,Simona Schiavi,Alessandro Daducci

• We present a novel augmentation to tractogram filtering method that accounts for subject motion related signal dropout
artefacts in diffusion weighted images.

• Our method is validated with realistic Monte-Carlo whole brain simulations and evaluated with in vivo infant data.
• We show that even if data has 10% of motion corrupted slices our method is capable to mitigate their effect in structural

brain connectivity analyses and microstructural mapping.
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ABSTRACT
The white matter structures of the human brain can be represented via diffusion tractography. Un-
fortunately, tractography is prone to find false-positive streamlines causing a severe decline in its
specificity and limiting its feasibility in accurate structural brain connectivity analyses. Filtering al-
gorithms have been proposed to reduce the number of invalid streamlines but the currently available
filtering algorithms are not suitable to process data that contains motion artefacts that are typical in
clinical research. We augmented the Convex Optimization Modelling for Microstructure Informed
Tractography (COMMIT) filtering algorithm to adjust for signal drop-out artifacts due to subject mo-
tion present in diffusion-weighted images. We demonstrate with comprehensive Monte-Carlo whole
brain simulations and in vivo infant data that our robust algorithm is capable to properly filter trac-
tography reconstructions despite these artefacts. We evaluated the results using parametric and non-
parametric statistics and our results demonstrate that if not accounted for, motion artefacts can have
severe adverse effect in the human brain structural connectivity analyses as well as in microstructural
property mappings. In conclusion, the usage of robust filtering methods to mitigate motion related er-
rors in tractogram filtering is highly beneficial especially in clinical studies with uncooperative patient
groups such as infants. With our presented robust augmentation and open-source implementation, ro-
bust tractogram filtering is readily available.

1. Introduction
Diffusion-weightedmagnetic resonance imaging (dMRI)

of the human brain (Basser et al., 1994) has various applica-
tions ranging from early clinical stroke diagnostics (Hors-
field and Jones, 2002) to investigations of themicrostructural
properties of the tissue (Alexander et al., 2019; Novikov
et al., 2019) and structural brain connectivitymapping (Griffa
et al., 2013; Delettre et al., 2019; Zhang et al., 2021). The lat-
ter two are gaining popularity in clinical research (Kamiya
et al., 2020) to investigate various brain diseases and neu-
rological conditions of adults (Fieremans et al., 2013; Ben-
itez et al., 2014) and development of the growing brain in
children and adolescents (Genc et al., 2017; Huber et al.,
2019). Furthermore, with the latest advances in automatic
brain segmentation with tools like Infant FreeSurfer (Zöllei
et al., 2020), it is likely that the amount of brain connectiv-
ity studies of infants (Kunz et al., 2014; Pannek et al., 2018;
Pecheva et al., 2019) will grow in the near future too.

The clinical dMRI research comes with its own puzzles
to solve, with one most difficult being the patient motion.
The subject motion can be unavoidable when imaging in-
fants or patients in discomfort or pain, resulting in complex
missing data problems (Andersson et al., 2016; Sairanen
et al., 2017, 2018). Therefore, the processing of the mo-
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tion corrupted images requires specialized algorithms and
robust methods to minimize motion induced bias in the re-
sults. While robust modeling has been considered in the con-
texts of diffusion and kurtosis tensor estimations (Chang
et al., 2005, 2012; Tax et al., 2015) as well as in higher order
models (Pannek et al., 2012) that could be used for tractog-
raphy purposes, it has not been investigated thoroughly in
the context of the brain structural connectivity analyses.

Structural brain connectivity analyses are based on the
rapidly developing dMRI tractography (Basser et al., 2000)
algorithms that represent the brain white matter structures
with streamlines. These streamlines can be used to investi-
gate which gray matter regions might have a structural link.
In general, the tractography algorithms are sensitive but they
lack specificity and they find great number of false stream-
lines connections (Thomas et al., 2014; Maier-Hein et al.,
2017). This means that two gray matter regions could be
linked by tractography streamlines despite that the brain tis-
sue does not form a true structural link. This is a known issue
in structural connectivity analyses (Drakesmith et al., 2015;
Zalesky et al., 2016; Yeh et al., 2020) to which tractogram
filtering has been proposed as one solution. Tractogam fil-
tering can be achieved with different approaches, one be-
ing the Convex Optimization Modelling for Microstructure
Informed Tractography (COMMIT) (Zhang et al., 2021)
which we will use in this study to demonstrate possible ef-
fects of subject motion to the tractogram filtering and mi-
crostructural mapping as well as how it can be accounted
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and corrected for.
There are three alternative post-scan approaches to ad-

dress the outliers caused by the subject motion. The first ap-
proach is to find outliers in dMRI data manually or automat-
ically with statistical methods or deep-learning and simply
exclude the artefactual dMRI data or even the whole subject
from the analysis (Oguz et al., 2014; Samani et al., 2019).
The second approach is to use a model to predict what the
measurements should look like, locate the outliers based on
differences to model predictions and replace themwith these
predictions if differences are deemed large enough (Lauzon
et al., 2013; Andersson et al., 2016). The third approach is
to detect the outliers, but instead of replacing or completely
excluding them, their weight is reduced in all subsequent
model estimation steps (Sairanen et al., 2018).

Manual outlier detection can be laborious and exclud-
ing whole subjects from clinical studies with relatively small
number of participants might not be the optimal choice. The
outlier replacement approach relies on the quality and ro-
bustness of the chosen model and method to represent the
measured dMRI signal. If multiple dMRI measurements are
corrupted by motion artifacts, this initial modeling and pre-
diction step can fail altogether (Sairanen et al., 2018). Even
in the best case, the replaced data points are simply inter-
polations based on the chosen model and the data points
used in the modeling therefore it cannot increase the avail-
able information but leads to increased error propagation due
to subsequent model fittings. The third approach, on the
contrary, enables quantifying the amount of the motion cor-
rupted data and versatile subsequent modeling and analysis
options therefore being optimal for our purposes.

While weighted and robust modeling has been imple-
mented before, they have mostly been used outside the scope
of tractogramfiltering. For example, in diffusion tensormod-
eling weighted linear least squares is typically the fastest and
most robust estimator (Veraart et al., 2013; Tax et al., 2015;
Sairanen et al., 2018). Robust modeling has been proposed
for higher order models as well (Pannek et al., 2012). In the
context of tractogram filtering, weighted cost functions have
been introduced earlier in e.g. SIFT (Smith et al., 2013,
2015), but it has only been evaluated with voxels affected by
partial voluming. SIFT algorithm states that their ’process-
ing mask’ is ’the square of the estimated white matter partial
volume fraction’ - which indeed should be beneficial in the
case of partial voluming. However, the approach in SIFT
does not account for outliers that are randomly occurring in
the measurements as our newly proposed augmentation to
COMMIT does.

In this work, we propose a robust augmentation to the
COMMIT filtering algorithm (Daducci et al., 2015) that
accounts for the unreliability of the original measurements.
We detail the theoretical changes to the algorithm as well as
provide open-source code1 of its implementation. To eval-
uate the method, we use the data from the Human Connec-
tome Project (HCP) (Van Essen et al., 2013) as a base for
thorough Monte-Carlo simulations which emulate various

1https://github.com/daducci/COMMIT

motion induced artifacts in synthetic whole brain data with
Rician noise. Synthetic data provide the necessary baseline
that can be used to highlight the bias arising from subject
motion in structural connectivity analyses as well as how
well it can be amended using our robust augmentation.

In the context of this study, the measurement unreliabil-
ity is associated with outliers due to subject motion. How-
ever, it can readily be utilized to correct for measurements
that are affected by partial voluming, as our preliminary re-
sults have demonstrated earlier (Sairanen et al., 2021). This
proposed augmentation to tractogram filtering provides the
necessary update for them to be practically usable in clinical
research.

2. Materials and Methods
2.1. Implementation

We augmented the original cost function of COMMIT
(Daducci et al., 2015) algorithm with a voxelwise weight-
ing factorW that can be used to downweight data points that
have decreased reliability due to subject motion or any other
reason. The original COMMIT is based on a minimization
of the difference between the original measurements and a
forward model prediction. The forward model prediction
is calculated by fitting a chosen microstructural model for
each streamline in every voxel. COMMIT assigns a weight
to each streamline that tells how much that streamline con-
tributes to the predicted signal. These streamline contribu-
tion weights are iteratively updated until the difference be-
tween the measurements and this prediction converges to a
minimum. Any streamline with contribution of zero is then
removed as an implausible streamline (i.e. not compatible
with the measured signal). If the original measurement is
artefactual due to subject motion or any other reason, the al-
gorithm could converge to an incorrect solution. To decrease
the weight of these artefactual data points, we propose the
robust cost function shown in eq. 1. Our proposed idea is
further illustrated in Fig. 1 with a simple toy example.

argmin
x̂≥0

‖W (Ax̂ − y)‖22 . (1)

The robust cost function in eq. 1 is intended to be used
with outlier detection with tools such as SOLID (Sairanen
et al., 2018). SOLID detects slicewise outliers based on ro-
bust statistical analysis of the original dMRI data and can be
used either to exclude outliers or downweight them depend-
ing how strong outliers are. This downweighting scheme is
likely a better option to outlier replacement that is proposed
in earlier studies (Lauzon et al., 2013; Andersson et al.,
2016). If the outlier is replaced with a prediction from a ten-
sor or a gaussian model, then COMMIT would try to mini-
mize the difference from those model predictions to its own
model prediction. Since these models can be different and
therefore capture different details of the dMRI signal, it is
more straightforward to use robust modeling with the pro-
posed weighted cost function.
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Figure 1: A toy example to illustrate how the COMMIT framework was augmented with
the reliability weights. (A) A ground-truth synthetic phantom consists of two slices with
both having two voxels i.e. a 2x2 grid. A part of the dMRI measurements are affected by
slicewise outliers at the slice 2 position therefore fiber orientations in voxels 3 and 4 become
biased and resulting tractogram contains implausible streamline Fiber 3. (B) The data,
also the corrupted measurements, are in the vector y. Corresponding ODFs are overlaid
on the voxel positions. The diagonal vector of the reliability weight matrix W illustrates
how the data in the affected dMRI signals is downweighted during modeling. Artefactual
measurements are highlighted with red boundaries and 0 weights whereas normal data
have the full weight of 1. Same spatial voxel position in different dMRI volumes can have
different weights which is demonstrated with the 3rd ’dMRI data’ dimension. The design
matrix A depicts how each streamline is used in the forward modeling as a stick along with
additional compartments for e.g. CSF. The streamline contributions x are shown at the
bottom demonstrating the expected behaviour of the augmented COMMIT.

2.2. Simulations
To investigate the outlier effect on the tractogram fil-

tering, we developed a comprehensive Monte-Carlo simula-
tion pipeline delineated in Fig. 2. Simulations are based on
T1-weighted and dMRI data from the HCP subject 100308
whichwere processedwith current state-of-the-art methods (Van Es-
sen et al., 2013). We do not expect or imply that this ground-
truth connectivity matrix depicted in Fig. 3 would represent
the true structural connections in a human brain. It simply
provides us the necessary ground-truth connectivity that we
can use to evaluate the noise and outlier effects in theMonte-
Carlo simulations with more realistic picture of the whole
brain than typical fiber phantoms.

Ground-truth data
We segmented the T1-weightedHCP datawith FreeSurfer

(Fischl, 2012) to obtain 85 regions-of-interests (ROIs) based
on the Desikan-Killiany atlas (Desikan et al., 2006). Instead
of the full brainstem, we used only its inferior part ofmedulla
as the last ROI.We used these brain segments to compute the
ground-truth connectivity matrix as well as to ensure that we
used only the connecting streamlines in our analyses.

To calculate awhole brain tractogram from theHCP dMRI
data, we used the anatomically constrained probabilistic trac-
tography (iFOD2) (Tournier et al., 2010; Smith et al., 2012)
implemented in MRTrix3 software (Tournier et al., 2019).
We used the white matter mask as a seed region for threemil-
lion streamlines. The tracking parameters were left to their
default values and we removed all non-connecting stream-
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Figure 2: A flow chart describing how the whole-brain simulations were obtained from
the HCP dataset. The dMRI and T1-weighted data were used to obtain the ground-truth
connectome from which the ground-truth dMRI signals were predicted using COMMIT for-
ward modeling. The ground-truth data were used to perform 100 Monte-Carlo simulations
to evaluate the effects of noise and outliers to the structural brain connectome.

lines based on the 85 ROI segmentation of T1-image.
For tractogram filtering, we used the original COMMIT

(Daducci et al., 2015) as the data did not contain any slice-
wise outliers. The used forwardmodel was the stick-zeppelin-
ball (SZB) with 1.7 ⋅ 10−3mm2∕s for parallel stick and zep-
pelin diffusivities, 0.61 ⋅ 10−3mm2∕s for perpendicular zep-
pelin diffusivity, and 1.7 ⋅ 10−3mm2∕s and 3.0 ⋅ 10−3mm2∕s
for the isotropic (ball) diffusivities asmodel parameters (Pana-
giotaki et al., 2012). The filtered tractogram was used to
form the ground-truth connectivity matrix with the informa-
tion fromT1-segmentation (Fig. 3). Moreover, we combined
this information with the final streamline contributions to
form the synthetic whole brain prediction of dMRI data us-
ing the HCP’s three-shell gradient scheme. This produced
270 noise free diffusion-weighted whole brain images that
we used as a ground-truth for our Monte-Carlo simulations.
Monte-Carlo design

OurMonte-Carlo simulations were based on the ground-
truth synthetic whole brain dMRI data obtained from HCP
subject. We split the simulations in two groups: Baseline
and Test. Baseline group provides the means to evaluate the
pure noise effects on the connectome whereas Test group
provides the means to evaluate the outlier effects.

In Baseline group, random Rician noise was added be-

fore repeating the normal COMMIT filtering with the origi-
nal non-filtered but connecting streamlines. TheRician noise
had signal-to-noise ratio of 20 based on the non-diffusion
weighted signal which is roughly similar with signal-to-noise
ratios in clinical research. We used the same filtering param-
eters that were used to form the ground-truth data. This pro-
cess was repeated to obtain 100 whole brain baseline images
and connectomes.

In Test group, outliers were introduced to the data before
adding the same Rician noise that was used for the Base-
line group. Test group was filtered with both the normal
COMMIT as well as the proposed robust COMMIT using
the same streamlines and parameters that were used for the
Baseline group. This process was repeated to obtain 100
whole brain test imageswith outliers and corresponding con-
nectomes from normal and robust filtering methods.

The outlier selection for the Test group was done by re-
placing axial slices with signal decrease outliers in an in-
terleaved manner to 9 (10%) of the dMRI data per shell.
The chosen number is not completely arbitrary as it is re-
ported to be approximately the maximum amount of cor-
rupted data that robust pre-processing tools can tolerate (An-
dersson et al., 2016; Sairanen et al., 2018). To maximize the
missing data problem(Sairanen et al., 2017), the sampling
of outliers in q-space was done by picking the first gradient
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Figure 3: The ground-truth connectivity matrix used in this
study was based on one subject. While, this connectivity ma-
trix might not represent the real human brain connections,
it provided the necessary ground-truth control level for our
Monte-Carlo simulations. Any deviations from this connectiv-
ity matrix observed in the simulations would be due to noise,
outliers, or both.

direction randomly and the rest were selected based on the
smallest angular distances from the first one as illustrated in
Fig. 4. This was performed for each shell separately.
Statistical analysis

We investigated global brain connectivity as well as indi-
vidual connections using analysis of variance (ANOVA) ac-
companied by Tukey’s honestly significant difference (HSD)
test and non-parametric Friedman’s test accompanied by two-
sample Kolmogorov-Smirnov tests. The reason for having
these different test statistics is that outliers can lead to skewed
and long tailed distributions that might not be correctly in-
vestigated solely by parametric tests. For example, two-sample
Kolmogorov-Smirnov test is necessary as the outlier effect
can only be studied by comparing Test groups to Baseline
group. This is because Rician noise has a non-zero positive
average therefore it likely causes a bias that deviates even
Baseline group from the ground-truth values.

While we report p-values from these tests, we argue that
the effect sizes are more interesting as they describe how
different the tested groups are. The effect sizes are mea-
sured using Cohen’s D for parametric tests and Kolmogorov-
Smirnov statistic for non-parametric tests. The test statistics
we employ are widely used and they provide information
about average differences and differences in the shapes of
the Monte-Carlo simulated distributions. For details about
these tests, we recommend any textbook that covers paramet-
ric and non-parametric statistics such as Sheskin’s handbook

Figure 4: An illustration how a part of the gradient directions
were selected from the q-space to alter the corresponding dMRI
data with slicewise outliers. The initial direction (�, �) of was
selected randomly after which the opening angle of the selec-
tion cone was increased until the specified amount of outliers
from each shell remained inside it. This approach ensures the
maximal gap in the q-space sampling therefore having a high
chance to find error prone schemes.

(Sheskin, 2004).
2.3. in vivo measurements
Infant data

We obtained preliminary data from an on-going infant
study to evaluate our method with in vivo measurements.
T1-weighted image and dMRI data were obtained with 3T
MRI Siemens Skyra system (Erlangen, Germany) with a 32
channel head coil. The dMRI acquisition consisted of 13
non-diffusion weighted images that were interspersed be-
tween 60 diffusion-weighted imageswith b-value of 750s∕mm2

and 74 diffusion-weighted imageswith b-value of 1800s∕mm2

eachwith uniquely oriented gradients. Bipolar gradient scheme
was used to minimize geometrical distortions due to eddy
currents. The image resolution was isotropic 2mm with 80
× 80 × 44 imaging matrix. The in-plane acceleration fac-
tor was 2 (SENSE) and multi-band acceleration factor was
2. Only anterior-posterior phase encoded images were ac-
quired as the reverse phase encoding required manual ad-
justment during the scan which was deemed infeasible at the
used clinical scan environment. The use of infant data in this
work was approved by the relevant Ethics Committee of the
Helsinki University Hospital.
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Infant analyses
Weused ExploreDTI (Leemans et al., 2009)with SOLID-

plugin (Sairanen et al., 2018) to simultaneously detect slice-
wise outliers and to correct for subject motion and eddy cur-
rents as well as registered the data to anatomical T1-image
to correct for geometrical distortions. Additionally, we used
Gibbs ringing correction (Perrone et al., 2015). We did not
correct for signal drift (Vos et al., 2017) as it was not ob-
served in the measurements.

Processing of this data was limited to specific computers
in the hospital network which prevented memory demand-
ing tasks such as segmentation with infant Freesurfer (Zöllei
et al., 2020). Therefore, we opted for a simpler analysis that
consisted of comparison between normal and robust filtering
method outputs instead of full connectivity analyses. The
T1-image contrast of this subject was not suitable for white
and grey matter segmentations. We obtained a WM mask
from multi-shell multi-tissue constrained spherical decon-
volution (Jeurissen et al., 2014) implemented in MRTrix3
(Tournier et al., 2019) and used that as a seed mask for prob-
abilistic whole-brain tractography (iFOD2) (Tournier et al.,
2010) to generate three million streamlines.

We filtered the generated streamlines with normal COM-
MIT (Daducci et al., 2015) and the proposed robust COM-
MIT_r to evaluate the improvements in the overall fit from
root mean squared error (RMSE) maps as well as to see the
impact of outliers in intracellular and isotropic signal frac-
tions. We used the stick-ball model for both filtering meth-
ods with the following parameters: 1.7 ⋅10−3mm2∕s for par-
allel signal diffusivity, and 1.7⋅10−3mm2∕s and 3.0⋅10−3mm2∕s
for the isotropic signal diffusivities.

3. Results
3.1. Simulations

We investigated the effects of noise to the structural brain
connectivity by comparingBaseline group. Test groups could
not be directly compared to the ground-truth due to noise
bias. Therefore, outlier effects were investigated by com-
paring Test groups to Baseline group instead. We evaluated
these differences in both global connectivity matrix score
and individual connection strengths.
Global Connectivity

The global connectivity difference was defined as the
sum of the root mean squared differences between the up-
per triangle of the connectivity matrices from Monte-Carlo
groups and the corresponding ground-truth values. The re-
sults of this comparison calculated over all 100Monte-Carlo
simulations are shown in Fig. 5 with violin plots. The noise
effect on the global connectivity (Baseline) is shown with
the first violin from the left, the outlier effect is shown in the
middle, and the outlier effect with robust filtering is shown
on the right.

Both, Baseline and robust COMMIT_r produced simi-
lar global results with differences ranging from 0.2 to 0.24.
This demonstrates that on average, the proposed robust fil-
teringmethod is capable to mitigate the outlier effect. On the

Figure 5: The differences between the ground-truth connec-
tome and each Monte-Carlo simulated connectome depict the
global increase in the variability of connectivity values due to
outliers. The Baseline group did not have any outliers there-
fore the difference from the ground-truth is due to noise only.
The Test group with outliers was filtered with both normal
COMMIT and robust COMMIT_r. The normal COMMIT dif-
ferences were up to 35% higher than the Baseline connectivity
differences whereas the robust COMMIT_r was not affected
by the outliers as much and produced very similar distribution
with the Baseline.

contrary, the results from normal COMMIT ranged from 0.2
to 0.3 demonstrating that outliers can have a much stronger
effect than noise on the global connectivity values.
Parametric statistical analysis. The global connectivity
differences with ANOVA detail that the group averages were
statistically different with p-value less than 0.01. Tukey’s
HSD test depicted that normal COMMIT had significantly
different mean to both Baseline and COMMIT_r results with
p-value less than 0.01. We evaluated the effect size with Co-
hen’s D. The effect size between Baseline and normal COM-
MIT was 2.0 and the difference between robust COMMIT_r
to COMMIT was 2.2. The difference between Baseline and
COMMIT_r was not statistically significant with p-value of
0.56 and had a smaller effect size of 0.4. These effect sizes
indicate that in our highly realistic scheme with 10% of out-
liers, the average bias caused by outliers quickly increases
and compromises the connectivity analyses if data is not pro-
cessed robustly.
Non-parametric statistical analysis. The Friedman’s test
reported also p-value less than 0.01 therefore providing addi-
tional support for the graphical analysis and ANOVA results.
We applied the two-sample Kolmogorov-Smirnov test to de-
tect which of the distributions were different. Comparison
between Baseline and normal COMMIT as well as COM-
MIT_r and COMMIT resulted in statistically significant dif-
ferences between distributions with p-values less than 0.01.
Respective effect sizesmeasuredwithKolmogorov-Smirnovs
statistic were 0.84 and 0.85. The difference between Base-
line and robust COMMIT_r was not statistically significant
with p-value slightly above 0.05 and effect size of 0.19 being

V Sairanen et al.: Preprint submitted to Elsevier Page 6 of 12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447697doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447697
http://creativecommons.org/licenses/by-nc-nd/4.0/


Robust Tractogram Filtering

Figure 6: The differences between the ground-truth con-
nectivty and each Monte-Carlo simulated connectivity from
medulla to right precentral gyrus. The noise effect on this
connection causes Baseline to deviate from the ground-truth
value. The outlier effect is far more prominent than noise in
normal COMMIT results but leads to a situation where the
group average is closer to the ground-truth value than for the
other two methods. This is the reason why comparisons be-
tween Monte-Carlo simulations were performed against Base-
line instead of the ground-truth.

nearly 80% smaller compared to the non-robust counterpart.
Individual Connectivity

We investigated the element-wise differences between
the Monte-Carlo connectivity matrices with parametric and
non-parametric statistics as complementary information to
the global results. The three violin plots in Fig. 6 depict
the connectivity values from medulla to the right precentral
gyrus. These streamlines are visualised in Fig. 7 and are
likely a part of the corticospinal tract and therefore a known
true connection.

The noise effect results in a systematic over estimation of
the connectivity strength as depicted by Baseline in Fig. 6.
However, outliers have a more random effect depending on
the affected dMRI measurements. This can either decrease
or increase the connectivity strength and can counteract the
noise effect. Therefore, group comparisons against Baseline
were more meaningful than comparisons against the known
ground-truth value. For example, in this case the normal
COMMIT produces an average connectivity strength that is
closer to the ground-truth than Baseline despite the distribu-
tion is wider. Therefore, a simple observation of root mean
squared difference between theMonte-Carlo group and ground-
truth could be misleading.
Parametric statistical analyses. The connectivity-wise dif-
ferences between Baseline and normal COMMIT as well as
Baseline and robust COMMIT_r are shown in Fig. 8. The
color map indicates the effect size measured with Cohen’s
D. Only elements that were deemed significantly different
(p-value less than 0.05) based on ANOVA and Tukey’s HSD
were drawn. The comparison between Baseline and normal

Figure 7: Illustration of a likely true structural connection be-
tween medulla and right precentral gyrus. Shape of the trac-
togram is nearly vertical therefore perpendicular to the intro-
duced slice-wise outliers in the axial plane.

Figure 8: Differences due to outliers measured using paramet-
ric statistics. The comparison of the group averages of normal
COMMIT and Baseline on the left and robust COMMIT_r
and Baseline on the right. The color scale indicates the ef-
fect size calculated with Cohen’s D. Results illustrate that the
normal COMMIT is severely affected by outliers as differences
to Baseline are large with effect sizes up to 5. On the con-
trary, the robust COMMIT_r can ameliorate the outlier effects
producing similar results with the Baseline with overall smaller
effect sizes.

COMMIT resulted in more elements with significant dif-
ferences than the comparison between Baseline and COM-
MIT_r. The effect sizes between Baseline and normal COM-
MIT ranged from 0 up to 5 indicate that outliers can have
strong adverse effects on specific connectivity matrix ele-
ments. The overall smaller effect sizes between Baseline and
robust COMMIT_r highlight that our augmentation is well
capable tomitigate the outlier effects even on individual con-
nectivity level.
Non-parametric statistical analysis. The connectivity-
wise distributional differences between Baseline and normal
COMMIT as well as Baseline and robust COMMIT_r are
shown in Fig. 9. The color map indicates the effect size mea-
sured with Kolmogorov-Smirnov statistic. Only elements
that were deemed statistically significantly different (p-value
less than 0.05) based on Kolmogorov-Smirnov tests were
drawn. Similar to the parametric counterpart, the differences
between Baseline and normal COMMIT were again more
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Figure 9: Differences due to outliers measured using non-
parametric statistics. The comparison of the two-sample
Kolmogorov-Smirnov test of normal COMMIT and Baseline
on the left and robust COMMIT_r and Baseline on the
right. The color scale indicates the effect size calculated
with Kolmogorov-Smirnov statistic. Results illustrate that the
connectivity specific distributions of normal COMMIT differ
greatly from Baseline distributions due to outliers skewing
them and leading to large effect sizes. The robust COM-
MIT_r produces similar distributions with Baseline with far
less affected with effect sizes.

frequent than differences betweenBaseline and robust COM-
MIT_r. Also the effect sizes between Baseline and normal
COMMIT ranged from 0 to nearly 1 which is the maximum
of the used statistic. This indicates that outliers can lead
to very large distributional differences. The differences be-
tween Baseline and robust COMMIT_r remained relatively
small with effect sizes ranging from 0 to 0.2.
3.2. in vivo measurements

Besides tractogram filering, we calculated the intracellu-
lar and isotropic signal fractions calculated using the COM-
MIT framework (Daducci et al., 2015) and the proposed ro-
bust COMMIT_r. Fig. 10 shows the results for outlier detec-
tion, RMSE, and signal fraction maps obtain from the infant
data. On average, the amount if missing data i.e. how much
confidence in fitting was decreased per slice position ranged
from 5% to 19%.

The RMSE map of normal COMMIT was clearly af-
fected by the outliers resulting in visible stripes in the im-
age. On the contrary, the COMMIT_r RMSE map that de-
scribes the robust cost function does not have such stripes
therefore the fitting is not affected by outliers. The differ-
ence RMSE map visualises the stripy pattern more promi-
nently and ranges from 0 to 30%. The outlier effect on in-
tracellular and isotropic signal fractions was less prominent
in visual analysis i.e. less or no stripes. However, the dif-
ference between normal COMMIT and robust COMMIT_r
depicts that the differences ranged from -10% to +10% even
in regions that were less affected by outliers for intracellular
signal fraction. For isotropic signal fraction the differences
ranged from -7% to +7%.

4. Discussion
We demonstrated that tractogram filtering is severely af-

fected by subject motion artefacts and that with our proposed
robust augmentation these effects can be mitigated. In clin-
ical research with uncooperative patients such as infants, it
is highly likely that motion to some degree occurs during
scan. This leads to corrupted measurements which should
not affect any modeling methods applied to the data. To best
of our knowledge, this is the first time that motion related
outliers are considered in the context of tractogram filtering
therefore this update is crucial to enable tractogram filtering
in clinical research.

The reason why we evaluated the proposed augmented
cost function with simulated brains instead of real brain data
was simply to ensure that nothing else in the relatively long
dMRI processing pipeline might affect the results. For ex-
ample, it is currently unknown issue, how outliers affect con-
strained spherical deconvolution based probabilistic tractogra-
phies. While there have been proposals for robust higher
order model estimators (Pannek et al., 2012), such are not
widely available. Furthermore, developing and evaluation
of robustness of currently available constrained spherical de-
convolution tractography algorithms are beyond the main
scope of this study.
Comparison to other filtering methods

While similar weighted cost function as in eq. 1 has been
proposed before in SIFT filtering algorithm (Smith et al.,
2013), those have been designed and tested to account for
partial voluming related artefacts - not subject motion. The
main difference in these artefact types is that partial volum-
ing affects all dMRI data whereas subject motion affects only
part of the dMRI data randomly. Therefore, adjusting for
partial voluming requires one three-dimensional reliability
image whereas adjusting for subject motion requires four-
dimensional reliability image as the measurement reliability
must be accounted for each dMRI data separately. This dif-
ference in the implementations of the algorithms also makes
the accurate comparison of them fall outside the scope of
this study. While outlier replacement (Lauzon et al., 2013;
Andersson et al., 2016) could seem beneficial to correct for
subject motion, they actually cannot increase the available
information but they could lead to difficulties in the inter-
pretation and comparison of the obtained results (Sairanen
et al., 2018).
Correcting for artefacts

Our proposed algorithm (Fig. 1 can also be used to ad-
just for partial voluming but the necessity of that depends
on the forward model used in COMMIT. For example, with
ball and sticks model, voxels containing cerebrospinal fluid
or gray matter can be described with an increased contribu-
tion from a ball compartment therefore the contribution of a
stick compartment could be correct even without additional
reliability weighting. If reliability weights are used, then the
estimate for ball compartment would likely be improved but
that should not still affect the filtered tractogram.

V Sairanen et al.: Preprint submitted to Elsevier Page 8 of 12

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447697doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447697
http://creativecommons.org/licenses/by-nc-nd/4.0/


Robust Tractogram Filtering

Figure 10: Summary of the in vivo tests. Coronal images are used to visualize the slicewise
artefacts that typically occur in axial plane. Due to subject motion correction, the original
axial plane can be rotated therefore the final outlier slices can also be oblique. An average
confidence map and T1-image are shown on the left to visualize the artefactual regions in
the measurements. The three columns on the right show results from normal COMMIT,
robust COMMIT_r and their difference. The first row details the results for root mean
squared error, the second row for intracellular signal fractions, and the third row for isotropic
signal fractions.

Withmotion induced artefacts, the outliers cause anisotropic
signal deviations (Sairanen et al., 2017) affecting only part
of the dMRI datas. Therefore, COMMIT cannot adjust for
those deviations simply by increasing the contribution of the
ball compartment as the the deviations are not isotropic over
dMRI measurements. This is demonstrated in Fig. 10 where
normal COMMIT obtains incorrect estimates for isotropic
signal fraction maps i.e. ball compartments. Issue propa-
gates causing also incorrect estimates for intracellular signal
fraction maps i.e. stick contributions. Therefore, a local mo-
tion artefact can have a global adverse effect in tractography
filtering if not accounted for.
Computational speed

We evaluated our algorithm with the CPU version of
COMMIT using a PC with ten 3.6 GHz cores. The 300
whole brain tractogram filterings with HCP like data in our
Monte-Carlo simulations required approximately a week to
run. Thus, one whole brain tractogram filtering took approx-
imately 30 minutes.
Statistical analysis

The global connectivity difference (Fig. 5) betweenBase-
line and robust COMMIT_r assessedwith two-sampleKolmogorov-

Smirnovwas nearly statistically significant with p-value slightly
above 0.05. It is possible that the amount of simulated out-
liers (%10) was already reaching the limit after which the
missing data problem becomes too severe even for robust
modeling methods. This could also be related to sample
size being so large that Kolmogorov-Smirnov test finds any
differences statistically significant despite having relatively
small effect sizes.

Amore in-depth analysis of the connection frommedulla
to the right precentral gyrus (Figs. 6 and 7) revealed that
ANOVA failed to find statistically significant differences be-
tween the groups with a p-value of 0.4. On the contrary, the
non-parametric Friedman’s tests indicated that differences
existed between the groups with a p-value less than 0.01.
The effect sizesmeasured usingKolmogorov-Smirnov statis-
tic between Baseline and normal COMMITwas 0.54 and be-
tween Baseline and robust COMMIT_r was 0.33. Both dif-
ferenceswere found statistically significant by theKolmogorov-
Smirnov test with p-values less than 0.01.

In summary, it remains unsolvedwhat test statistic would
be the most suitable to analyse such data that is affected by
outliers in anisotropic manner. We used two alternative ap-
proaches to evaluate the differences in group averages (ANOVA)
and group distributions (Kolmogorov-Smirnov). Average
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based analyses are likely inefficient to locate all differences
arising from outliers in the data whereas non-parameteric
test can be even too sensitive to label finding significant.
Therefore, instead of statistical significance, the obtained ef-
fect sizes are likely more meaningful results.
Where to go from here?

We considered only post-scan motion corrections in this
study because during-scan corrections should be able to pro-
duce data that does not need these correction algorithms.
The problem with during-scan corrections is their limited
availability due to external hardware requirements or still ex-
perimental software. Due to the long time span of tens of
years required to advance MRI technology in clinical use, it
is unlikely that these during-scan correction methods would
be so widely available in clinical research centers that post-
scan corrections such as our proposal are rendered obsolete
any time soon. While the post-scan corrections are more like
a remedy to the symptom instead of cure to the cause, novel
studies on clinical patients and even infants are increasingly
proposed and carried out therefore the need for robust tools
is current and cannot wait decades for hardware based solu-
tions.

5. Conclusion
We proposed a augmentation to a tractogram filtering

algorithm COMMIT that renders it robust towards subject
motion caused outliers in the measurements. This addition
is necessary for conducting tractogram filtering in clinical
research where subject motion is often unavoidable. While
robust data processing has been implemented before in the
context of diffusion tensor and higher order model estima-
tions, it has not been previously implemented for tractogram
filtering. We used highly realistic whole brain Monte-Carlo
simulations and successfully demonstrated that our augmen-
tation is capable to accurately map the structural brain con-
nectivity in the presence of such outliers in the data. We also
demonstrated that if this correction is not done, the structural
connectivity estimates can become extremely biased. With
this update any clinical study investigating structural con-
nectomics of children or uncooperative patient populations
can robustly perform their analyses without the need to ex-
clude subjects with outliers from them.
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