
Computational modeling of cell signaling and mutations in 
pancreatic cancer 

 
Cheryl A. Telmer1, Khaled Sayed2, Adam A. Butchy2, Kara Bocan2, Christof Kaltenmeier3, Michael Lotze3, 

Natasa Miskov-Zivanov2. 
1Carnegie Mellon University, Pittsburgh PA  

2University of Pittsburgh, Pittsburgh PA 
3University of Pittsburgh School of Medicine, Pittsburgh PA

Abstract  
Published research articles are rich sources of data 
when the knowledge is incorporated into models. 
Complex biological systems benefit from computational 
modeling’s ability to elucidate dynamics, explain data 
and address hypotheses. Modeling of pancreatic cancer 
could guide treatment of this devastating disease that 
has a known mutational profile disrupting signaling 
pathways but no reliable therapies. The approach 
described here is to utilize discrete modeling of the 
major signaling pathways, metabolism and the tumor 
microenvironment including macrophages. This 
modeling approach allows for abstraction in order to 
assemble large networks to capture numerous facets 
of the biological system under investigation. The 
Hallmarks of Cancer are represented as the processes 
of apoptosis, autophagy, cell cycle progression, 
inflammation, immune response, oxidative 
phosphorylation and proliferation. The model is 
initialized with pancreatic cancer receptors and 
mutations and simulated in time. The model portrays 
the hallmarks of cancer and suggests combinations of 
inhibitors as therapies. 
 

Introduction 
 

Cancer as a genetic disease was suggested in 1902 by 
Theodor Boveri (Boveri 2008). Since that time there 
have been many therapies, many deaths and also 
many survivors. Although some cancers such as breast 
and colon can be managed, others such as glioma and 
pancreatic cancer have very poor survival rates. It is 
estimated that 44,330 people will die of pancreatic 
cancer in 2018 (Society 2019). Pancreatic cancer has 
early KRas activating mutations followed by TP53 and 
CDN2A inactivating mutations in the majority of 
tumors (Zeitouni, Pylayeva-Gupta et al. 2016, 
Raphael, Hruban et al. 2017). There are no available 
drugs to target KRas activation or restore tumor  
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suppressor function and therefore survival of patients 
has not improved. Modeling is an approach that can 
improve understanding of a complex system, test 
numerous combinations of drugs and offer novel 
therapeutic options. 
There are different types of models that can be utilized 
including statistical models that indicate correlations 
between tumor features and treatments (reviewed by 
(Altrock, Liu et al. 2015, Azuaje 2016), agent-based 
models (Norton, Wallace et al. 2017) and more 
detailed PDE (Simbawa 2017) and ODE models 
(Murphy, Jaafari et al. 2016). Each of these 
approaches has strengths and weaknesses related to 
available knowledge, size of the model, computational 
time and methods for analysis (Bartocci and Lió 2016).  
Cell signaling pathways are used by cells to transduce 
extracellular signals for sensing and adapting and are 
altered in disease states. Signaling can influence 
metabolism, cell survival, or cell death through 
complex combinations of protein degradation, post-
translational modifications, protein translocations and 
gene expression. In cancer, the aberrant behavior of 
signaling pathways is observed however actual causes 
are difficult to determine due to the complexity of the 
networks of regulation that results from crosstalk, 
feedforward and feedback loops. Timing of these 
events and the outcomes of treatments vary so much 
that drug development trials often fail due to 
inaccurate predictions of the effects of inhibitor drugs. 
The approach described here is able to capture 
features and timing of communication of the tumor and 
microenvironment that are involved in tumor 
progression, including macrophages and pancreatic 
cells, extracellular matrix, and organelles within cells 
involved in signaling, gene regulation and metabolism. 
This representation of signaling pathways is then 
parameterized and simulated stochastically (Sayed, 
Kuo et al. 2017). Spatial and temporal components are 
included as subcellular organelles and translocations 
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between organelles and cells (Sayed, Telmer et al. 
2017). The influence of regulators is described as 
positive or negative depending on their effect on 
activity or amount of an element and elements are 
updated to new states using functions determined 
from the relationships of the regulators (Miskov-
Zivanov, Turner et al. 2013). This approach uses 
discrete variables to describe the state of the element 
as low, medium or high. Discrete modeling methods 
include Boolean frameworks, logical models and Petri 
nets and have been applied to cancer signaling 
pathways (Chowdhury, Pradhan et al. 2013, Fumia 
and Martins 2013, Hu, Gu et al. 2015, Lu, Zeng et al. 
2015, Cho, Park et al. 2016). The abstraction allows 
for more comprehensive collections of elements and 
inclusion of cellular processes, and this model is an 
extension of previous models of pancreatic cancer cells 
(Gong 2013, Wang, Miskov-Zivanov et al. 2016). The 
macrophage elements can be removed to create a 
pancreatic cell line model and a melanoma cell line 
would incorporate different mutations.  
The cancer model demonstrates the development in 
time of the ground truth properties of cancer described 
in “The Hallmarks of Cancer” 2000 and 2011 (Hanahan 
and Weinberg 2000, Hanahan and Weinberg 2011). 
These are represented in the model as the cellular 
processes of apoptosis, autophagy, cell cycle 
progression, immune response, inflammation, 
oxidative phosphorylation and proliferation. 
Components of pancreatic cancer cell (PCC) pathways 
were obtained from papers cited in the Hallmarks 
papers (see Table 1). Tumor associated macrophages 
have been shown to be involved in the progression 
from pancreatitis to pancreatic cancer (reviewed by 
(Valilou, Keshavarz-Fathi et al. 2018)) and therefore 
were incorporated for simplified immune feedback in 
the tumor microenvironment. 
This paper describes a computational model of cancer; 
a discrete model of signaling, metabolism and the 
pancreatic tumor microenvironment including 
macrophage cells. The model was assembled manually 
so that methods could be developed for computers to 
automatically assemble models from machine reading 
of scientific literature. The model organization and 
contents, modules within the model, and simulation 
results are followed by a discussion of the process, 
model applications and limitations. This directed, 
causative modeling framework incorporates 
knowledge and can perform reasoning which are both 
elements of artificial intelligence that are different 
from machine learning. The automation of the model 
creation and analysis will allow for a greater 
understanding of large complex systems. 

The Model 
 

Model elements. Major signaling molecules and 
pathways and their mechanistic, causal interactions 
were extracted from the Hallmarks of Cancer and 
citations within (see Table 1). At the plasma membrane 
are proteins that transduce extracellular signals to 
intracellular signals and transport molecules across the 
membrane. Extracellular ligands bind to and activate 
receptors and nutrients enter via transporters. The 
mitochondrial contribution to energy metabolism and 
reactive oxygen species generation are included. 
Proteins translocate between the cytoplasm and 
nucleus and RNA is generated prior to the presence of 
the proteins where the genes are the targets of 
transcription factors. A summary of the elements is 
shown in Table 2. The model spreadsheet is available 
here. 
 
Table 1. This table shows the numbers of references 
used to build the DySE model of pancreatic cancer 
from the Hallmarks of Cancer (excluding cancer stem 
cells, endothelial cells, pericytes, fibroblasts, stromal 
cells) and then the number of papers that were cited 
in those articles. 
 

Process Paper ID No. 
Hallmarks of Cancer 
2000 

PMID10647931 103 

Hallmarks of Cancer 
2011 

PMID21376230 237 

Autophagy PMC2696814 101 
Bcl-2 and apoptosis PMC2930981 144 
DNA damage response PMC2988877 232 
Glycolysis PMC2476215 61 
HMGB1 signaling PMID20969478 272 
Immune evasion PMC2891151 86 
Immune inflammation PMC2865635 96 
Inflammation PMC2866629 158 
mTOR PMC3193604 27 
Necroptosis PMID19109884 10 
Oxidative stress PMC4204162 50 
Ras family and exocyst PMID 12074877 24 
Receptor Tyrosine 
Kinases 

PMC2914105 142 

ROS signaling PMC3454471 149 
Senescence PMC3672965 58 
Telomerases PMC3003493 161 
Warburg effect PMC2849637 47 

 
Standardized notation for variable names in a 
tabular format. A tabular format is used for the entry 
of information about the elements (Sayed, Telmer et 
al. 2017). Proteins and compounds to be included in 
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the model were assigned variable names and unique 
IDs, UniProt for proteins, HMDB for chemicals and GO 
for cellular locations and processes. As part of the 
abstraction the IDs are listed. Currently, only protein 
families and complexed are listed however future 
versions include all known interacting proteins that are 
included for a specific node. The variable names of  
 
Table 2. Summary of the elements in the model. 
 

 
elements are of the standard form 
ELEMENTtype_locCELLTYPE and begin with a trivial  
ELEMENT name that is followed by a designation of 
the type of biomolecule, chemical (che) or protein, and 
proteins are assigned (pn) when the active unit is a 
monomer or homodimer, protein family (pf) when 
there are multiple homologous gene products or 
protein complex (pc) when multiple different subunits 
form a complex. The category is then followed by an 
underscore (_) and the cellular location (loc) is entered 
as cyto (cytoplasm/cytosol), nuc (nucleus), PM 
(plasma membrane), mito (mitochondria), ER 
(endoplasmic reticulum) and ex (extracellular space). 
And finally cell type pancreatic cancer cell (PCC) or 
macrophage (MAC). 
Mutations. Mutations are added as element variables 
(MUTPROTEIN) and added as positive or negative 
regulators of the gene, RNA and protein matching their 
mutant activity. 
Positive and negative regulators. Signaling 
networks relay information using protein-protein 

interactions (PPIs) including binding events, 
translocations from one cellular compartment to 
another, protein synthesis, degradation and post-
translational modifications (PTMs).  PTMs include 
phosphorylation/dephosphorylation,acetylation/deacet
ylation,methylation/demethylation, 
ribosylation/deribosylation, hydroxylation, 
glycosylation, sumoylation/desumoylation, 
farnesylation, and ubiquitination/deubiquitination. 
These PPIs can activate or increase the activity or 
amount of target proteins or they can inhibit or 
decrease the activity or amount of target proteins. The 
sign of the interaction represents how the regulator 
influences the regulated element eg. if the 
phosphorylation of Protein B by Protein A inhibits the 
activity then Protein A is a negative regulator of Protein 
B.  
Regulator notation. In the tabular format are 
columns for positive and negative regulators of the 
variables/elements so that if Protein A phosphorylates 
and activates Protein B then Protein A is a positive 
regulator of Protein B. Additionally, if there are multiple 
regulators they are entered in a notation to represent 
OR, AND, and enhancing pair (Sayed, Telmer et al. 
2017). If there are multiple regulators such that 
Protein A or Protein B will positively regulate, then they 
are comma separated, A,B, where an AND relationship 
has the regulators in parentheses (A,B). The enhancing 
pair notation is used where a second element 
enhances the activation of an activator. This notation 
is often used to have the RNA of protein B increasing 
the activation of A on B and is written {A}[Brna] as 
positive regulators of protein B and shows that by 
increasing the amount of B we expect the activation to 
increase but only if A is present ie. A is necessary. 
Regulator motifs. This notation is used to describe 
the relationships between the regulators and their 
targets and many show up in motifs as for receptor 
activation when ligand AND receptor are necessary for 
the active form of the receptor ((ligand,receptor) are 
positive regulators of receptor_ACT). A translocation 
motif has the cytoplasmic version of the protein being 
activated and entering the nucleus to serve as a 
transcription factor that then activates a gene 
regulatory motif (Sayed, Telmer et al. 2016). This motif 
has the gene activated and then forming an RNA and 
then the protein. These standardized motifs guide the 
user and serve to approximate the timing of signaling 
events. In the model, signals are transduced through 
20 receptor motifs, 10 translocation motifs (ERK, 
HMGB1, MDM2, NFkB, NRF2, p38MAPK, ROS, SMAD3, 
STAT1, STAT3) and gene expression motifs include 33 
RNA species, 23 in the PCC and 10 in the MAC. 

Process Cellular feature No. 
Cell type Pancreas 181 
 Macrophage 55 
Location in the cell Nucleus 105 
 Cytoplasm 60 
 Plasma Membrane 46 
 Mitochondria 4 
 Endoplasmic reticulum 1   
Extracellular 
signaling 

Extracellular 15 

Other extracellular Extracellular 5 
Element type Protein 49 
 Protein family 87 
 Protein complex 9 
 mRNA 33 
 Gene 34 
 Chemical 5 
 Chemical family 3 
 Biological process 15 
Protein functions Receptors 20 
 Transcription factors 16 
Total elements  236 
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Intracellular compartments and organelles. 
Cellular compartments allow for the specialization and 
regulation of cellular processes and transfer between 
compartments will influence the timing of signal 
transmission. Translocation motifs are implemented 
for proteins moving between compartments. These 
unique protein forms are used for instances where 
signal transduction affects only proteins at a specific 
location such as p53 in the cytoplasm is activated by 
NFkB in the cytoplasm and then goes on to inhibit 
AMPK (Tasdemir, Maiuri et al. 2008).   
Cellular processes. Cancer is characterized by 
alterations in cellular processes resulting from changes 
in signaling and gene expression. These processes 
reflect the ground truths as described by Hanahan and 
Weinberg 2000, 2011 (Hanahan and Weinberg 2000, 
Hanahan and Weinberg 2011). In the model the 
processes are influenced by inputs from signaling 
pathways and show the influences of these multiple 
pathways over time. The processes used as “ground 
truths” or “properties” that the model was constructed 
to analyze are apoptosis, autophagy, cell cycle 
progression, immune response, inflammation, 
oxidative phosphorylation (OXPHOS) and proliferation. 
Normally, cells have high CCA and OXPHOS and the 
other processes are low, however, cancer is 
characterized by low apoptosis, immune response and 
OXPHOS while other processes such as autophagy, cell 
cycle progression and inflammation are increased as 
well as proliferation which is the strongest indicator of 
cancer. 
Translation to logic rules. The table is then used to 
write logic rules (Sayed, Kuo et al. 2017). 
Initialization. The initial values of 
variables/elements are set to 0, 1 or 2 to represent 
Low, Medium or High level of activity/amount and are 
summarized in the spreadsheet of the model 
elements. All receptors are initialized at 1. 
In order to model the development of cancer, 
mutations are required, an activating RAS mutation at 
step 1000 and later at step 3000, inactivating 
mutations of p53 and CDN2A. 
For cell line models the macrophage elements and 
regulators are omitted. Different tumors and cell lines 
harbor different mutations and therefore are changed 
to reflect the tumor origin when the information is 
available. 
Simulations. Logic rules are then used for multiple 
runs of a designated number of steps for the 
simulations and plots are created. Regulators are 
subject to logic rules for updating variables (Sayed, 
Kuo et al. 2017).  

Traces were generated from 500 runs for 10,000 time 
steps. 

Modules 
 

Cancer is a genetic disease and this is accounted for in 
the model by incorporating mutations and their effect 
on the protein either as activating or inhibiting. 
Represented in the model are several modules involved 
in cancer, including the major intracellular signaling 
pathways, metabolism, and the extracellular 
microenvironment with macrophages.  
Genotype. Pancreatic cancer genetics are not as 
diverse as many other forms of cancer. During cancer 
development there is an early activating KRas mutation 
followed by high rates of inactivating TP53 and CDN2A 
mutations these are incorporated into the model 
structure. 
Major signaling pathways in cancer. In order to 
gain understanding of cancer, the major signaling 
pathways and crosstalk are represented. Within cells 
there are often opposing or redundant effects so that 
a stimulus or ligand will activate one pathway to cause 
an effect, and another pathway to limit the activation. 
There has been an attempt to select and balance the 
effects included in the model. The interactions over 
time are often difficult to predict manually due to the 
complexity of the network however, machines can 
compute the outcomes in minutes. Each of the major 
signaling pathways is described below. 
RAS/ERK. Alterations in the Ras pathway are involved 
in numerous cancers including pancreatic cancer. The 
canonical activation is EGF binds to EGFR to activate it, 
then the receptor activates RAS which activates RAF 
which activates MEK which activates ERK and ERK 
translocates to the nucleus where it stimulates gene 
expression that leads to proliferation. In the model, the 
epithelial cell RAS is activated by EGFR, VEGFR, RAGE, 
TGFbR, SRC and IRS.  
TNFa/NFkB. NFkB in the cytoplasm is activated by 
the TNFa receptor, TNFAR, and also IL1R, PKCA and 
AKT. The NFkB then translocates to the nucleus to 
influence gene expression. In the model we abstract 
the NFkB pathway, such that the TNFa receptor 
activates TRAF2 which activates NFkB which is 
translocated. This representation simplifies TRAF2 
phosphorylation and activations of IKK which then 
phosphorylates IkB (complex of IKKa,b,g that is 
complexed with NFkB complex (dimers of RelA/p65, 
RelB, c-Rel, p50 or p52)to keep it inactive), the 
phosphorylation of IkB promotes ubiquitination and 
targeting to the proteasome for degradation resulting 
in liberation of NFkB and allowing for translocation to 
the nucleus where it assembles with coactivators and 
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RNA polymerase to induce gene expression. This 
pathway is also represented in the macrophage. There 
are many variations in the activators, the dimers in the 
NFkB complex and the coactivators that can be 
specified if one is interested in capturing more detailed 
knowledge of this pathway or comparing canonical 
and noncanonical signaling pathways. 
JAK/STAT. When interferons and interleukins bind 
their receptors they recruit a Janus kinase (JAK1, 
JAK2, JAK3 or TYK2) that then recruits and 
phosphorylates a STAT protein (STAT1, 2, 3, 4, 5A, 5B 
or 6). STATs then homo or heterodimerize, migrate to 
the nuclear pore and bind importins and are 
translocated into the nucleus where they act as 
transcription factors. STATs also recruit coactivators 
and undergo other PTMs that affect activity. The 
model has IL1, IL6, and interferon gamma that 
activate JAK/STAT signaling in the pancreatic cell and 
macrophage.  
TGFb/SMAD.  When the TGFb receptor binds TGFb 
it recruits additional receptors to the complex and then 
phosphorylates SMAD2 and SMAD3, if the receptors 
bind bone morphogenic protein, BMP, the receptors 
phosphorylate SMAD1, SMAD5 and SMAD8. These 
phosphorylated SMADs then recruit SMAD4 to form a 
complex that is translocated to the nucleus to function 
as a transcription factor, expressing genes to decrease 
proliferation. The model currently has only the TGFb 
pathway. 
AMPK/mTORC1. The mTORC1 protein complex is 
involved in controlling protein synthesis in response to 
nutrient and redox conditions. The AMP activated 
protein kinase, AMPK, responds to energy status 
within cells. Low energy supply activates AMPK to 
phosphorylate TSC2, an inhibitor of mTORC1. The 
mTORC1 is also influenced by other signaling 
pathways including AKT. The mTORC1 inhibits 
autophagy and is mediated by several other protein 
complexes that are not included in the model. 
PI3K/AKT.  The PI3K is also activated by receptor 
tyrosine kinases and initiates the conversion of PIP2 to 
PIP3 (dephosphorylated by PTEN) that then activates 
PDPK1 to phosphorylate AKT. The effects of AKT are 
numerous and in the model are activation of MDM2, 
mTORC1 and NFkB and inhibition of TSC2. 
ASK/JNK. It is important for the cell to control the 
redox state of the cytoplasm and ASK (apoptosis 
signaling kinase) is one of the kinases that responds 
to oxidative stress and TRAFs to then phosphorylate 
MEK 4/7 which phosphorylates JNK or MEK 3/6 and 
then p38MAPK (but not ERK) (The roles of ASK family 
proteins in stress responses and diseases (Hattori K 
2009)). 

Metabolism. Integrally involved in cell function is the 
regulation of cell metabolism and while many 
metabolic processes utilize rapid allosteric controls we 
can incorporate components and reflect general 
processes. In the model, glucose and the glucose 
transporter are included, mitochondrial energy 
generating processes and lactate production are 
represented. Reactive oxygen species are important 
signaling molecules that result from inefficient electron 
transport that is observed in cancer. 
Glucose metabolism and lactate production. 
Modeling metabolism is different than modeling 
signaling cascades, the knowledge is more about 
amounts, and compounds are consumed and sent in 
one direction or the other. In this model lactate 
dehydrogenase is regulated by mitochondrial damage.  
ROS signaling and DNA damage response. The 
relationship between ROS and oxidative 
phosphorylation is complex, on the one hand ROS is 
produced when electron transport through the chain is 
compromised, and on the other hand ROS signals to 
decrease oxidative phosphorylation. In this model, 
ROS are generated from macrophages, and NADPH 
oxidase in pancreatic cells. If there is ROS in the 
cytoplasm it will cause mitochondrial damage. 
Extracellular environment and macrophages. 
Outside of the pancreatic cell, the extracellular 
environment, includes the extracellular matrix of 
protein and carbohydrate, lipid enclosed exosomes, 
growth factor and cytokine proteins, hormones, small 
molecules and ions, nutrients and metabolic 
byproducts which also influence physical features such 
as pH. The extracellular environment has components 
of blood, secretions from the pancreatic and immune 
cells such as macrophages and is the medium through 
which the cells communicate with each other. In the 
model is a simplified version of a macrophage including 
signaling pathways within the cell. An additional 
module within the model is the activation of exosome 
transfer to macrophages by RAS and the transfer of 
RAS protein to the macrophages. 
Macrophage. These immune cells are resident in 
tissues and are involved in inflammation and tissue 
repair. The macrophage in the model is quite simple 
with only 55 elements including 11 receptors  for CCL2, 
CSF1, interferon gamma, IL1, IL6, IL10, PL1L1, RAGE, 
TGFb, TLR4, and TNFa, and 11 genes for CCL2, 
interferon gamma and interferon gamma receptor, 
IL1B, IL1 receptor, IL6, IL6 receptor, IL10, STAT1, 
TGFb, and TNFa. Signaling utilizes JAK/STAT, SMAD, 
NFkB and ERK pathways. Proinflammatory and anti-
inflammatory cytokines are released and compose the 
communications between cells. 
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Ground truths. Analysis of the simulations was 
assessed by considering the trajectories of the 
biological processes extracted from the Hallmarks of 
Cancer, apoptosis, autophagy, cell cycle progression, 
immune response, inflammation, oxidative 
phosphorylation and proliferation.  
 
Simulation Results 
This model of the development of cancer includes 
representations of activation of signaling pathways, 
interactions with the tumor microenvironment, the 
effect of mutations and inhibitors. The model has 
cancer is dependent upon mutation, injury shows 
moderate increases in proliferation but not high 
proliferation. When the simulation begins there are no 
mutations and the initial values of the signaling 
pathways are as described above. Each of the 
processes behaves differently with injury showing 
intermediate effects. There is a small initial apoptosis, 
autophagy and immune response, cell cycle 
progression and inflammation increase slightly and 
OXPHOX decreases with proliferation increasing 
slightly. If however there is a mutation where an 
activating Ras mutation at 1000 steps, is followed by 
inactivating p53 and CDN2A mutations at 3000 steps, 
the ground truth properties of cancer are observed 
such that apoptosis and immune response remain low, 
autophagy, OXPHOS decrease and  cell cycle 
progression, inflammation and proliferation increase 
(Figure 1). 
Intervention scenarios, MEK and PI3K 
inhibitors. The traces in Figure 1h show the results 
for proliferation with inhibitors added. MEK inhibitor 
alone only decreases proliferation slightly. PI3K 
inhibitor results in a larger decrease and the addition 
of both decreases proliferation completely.  
Cancer Cell Lines. Many research studies employ cell 
lines to screen compound libraries or investigate the 
effects of small molecule treatments. In order to have 
a model for simulating cell lines we remove the 
macrophage elements and regulators. For related cell 
lines the mutations corresponding to the cancer cell 
lines are modified. Models of pancreatic cancer and 
melanoma cell lines have been developed. 
 

Discussion 
 

Manual assembly of a complex model. A model is 
a standardized representation of knowledge about a 
subject and can be at many different levels of 
abstraction and detail. Here the system is cancer, the 
type is pancreatic cancer, the level is cellular signaling 
and the approach is based on circuit design and logic 

and utilizes rules for updating node states that are a 
function of the regulators. The signaling pathways are 
represented by key molecules at nodes that then 
function to regulate other nodes positively or 
negatively. The system is simulated repeatedly for a 
number of time steps and average dynamic behavior 
of the elements is produced. For many of the 

interactions there are decisions about the level of 
abstraction. 
Abstraction. The tumor microenvironment is also an 
extremely large complex network that includes 
different cell types, cell signaling pathways, cell 
metabolism and involves multiple cell compartments. 
In order to account for interactions between these 
numerous features where there is often incomplete 
information about rates, this modeling framework 
utilizes abstract representations at the nodes and 
discrete levels of low, medium and high. With this 
scaffold, modules of elements and paths can be 
incorporated to expand the model for answering 
specific detailed questions.   
Dimerization (Amoutzias, Robertson et al. 2008), homo 
and hetero, accessory proteins, chaperones, and other 
protein-protein interactions and modifications are all 

Figure 1. Plots of the activity level of processes a. 
apoptosis b. autophagy c. cell cycle progression d. 
immune response e. inflammation f. oxidative 
phosphorylation g. proliferation h. proliferation with 
inhibitors. The scenarios are shown as blue, Initial 0 is 
normal, green, Initial 1 is with injury and red, Initial 2 
is with KRas, TP53 and CDN2A mutation, Initial 3 is 
with MEK inhibitor, Initial 4 is with PI3K inhibitor and 
Initial 5 is with MEK and PI3K inhibitors. 
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strategies used by cells to regulate signaling networks. 
In this model these mechanisms are abstracted at the 
nodes such that the influence of one element on 
another is represented in the update rule for the 
downstream regulated element. This model was built 
manually and therefore human judgement was used 
to decide how much detail to incorporate. In order to 
automate this procedure it is necessary to have 
automatic methods for adding and evaluating the 
addition of new information. 
Current research is producing more and more detailed 
experimental results. For example, many years and 
numerous studies have shown that EGF binds to EGFR, 
the receptor dimerizes, autophosphorylates and 
recruits Shc and Grb2 which then recruit SOS from the 
cytosol and the complex activates Ras which in turn 
activates Raf. Raf then phosphorylates MEK and MEK 
phosphorylates ERK (Lake, Corrêa et al. 2016). There 
are then two major feedback loops, one post-
translational and one transcriptional. The model 
described here does not include adapter proteins of 
signaling cascades, instead highlights major 
components, understanding that this is not a complete 
representation but a simplified version, an abstraction 
of the cascades. For detailed investigations of specific 
signaling pathways more components can be added to 
represent deeper mechanistic feedbacks and 
understanding while maintaining the ground truths of 
cancer. As models get larger the computational time 
required for the simulations also increases. 
The cancer model represents the development of 
cancer over years and the cell lines show experimental 
simulations representing days. As methods improve 
these features will become more defined and 
standardized. Combined with the vast amounts of 
biological data that are being generated, the 
biomedical field can benefit from modeling to provide 
a scaffold for this knowledge and simulation of the 
dynamics is important for generating and testing 
hypotheses and making predictions and improving our 
understanding of these complex systems. 
Baseline model. Proteins and their regulatory 
relationships were interpreted from “The Hallmarks of 
Cancer” (Hanahan and Weinberg 2000, Hanahan and 
Weinberg 2011) and adapted to pancreatic cancer. 
The pancreatic cancer cell network was then extended 
with elements of ROS signaling pathways, exosomes, 
HMGB1, and a minimal abstract representation of 
macrophages. Extensions to the model were 
incorporated as paths so that additions were regulated 
by an element in the model at the start of a path and 
the element at the end of the path was a regulator of 
an element in the model. If genes were involved then 

RNA and protein forms were also included. To create 
these paths, iterative searches of the literature using 
different adjectives or processes were used to find 
information about how a protein was connected to the 
model. Computers can read much larger volumes of 
literature and therefore this can be automated by 
searching the elements of interest, collecting the 
papers mentioning the elements, adding in extracted 
relationships and measuring the effect on the model 
outcomes. 
This model represents genotype, multiple signaling 
pathways, receptors, organelles, translocations and 
biological processes. It can serve as a baseline to 
consider specific pathways in detail while still 
accounting for interactions with other cell signaling 
pathways. While not comprehensive, we have 
attempted to capture the influential molecules of the 
major signaling pathways and some of the crosstalk 
and feedback and feedforward loops. There are 
instances where the data is currently conflicted such 
as SMAD4 mutation in pancreatic cancer (Di Marco, 
Astolfi et al. 2015) and therefore was not included here 
and will be the subject of future studies. As knowledge 
increases it can be added to this model in order to 
represent cancer more accurately and can be 
expanded upon for answering specific questions.  
This baseline is easily modified to represent cell lines, 
a common experimental model for testing of 
therapeutic compounds. 
Simulations of tumors and the microenvironment 
coupled with data from the tumors will enable precise 
and personalized tumor treatment in order to improve 
quality of life and survival for years beyond a cancer 
diagnosis. Artificial Intelligence is not really artificial, it 
is the automation of learning and reasoning. Synthetic 
Biology is synthetic in the “synthesis” use of the word 
and using intelligent computational modeling to aid in 
the understanding of large complex systems will result 
in advances in not only in biology and medicine, but 
also in environmental sciences, agriculture and 
economics. 
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