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The ubiquity of genetic mixing in nature has eluded unified explanation since the time of Darwin.
Conditions that promote the evolution of genetic mixing (recombination) are fairly well understood:
it is favored when genomes tend to contain more selectively mismatched combinations of alleles than
can be explained by chance alone. Yet, while a variety of theoretical approaches have been put forth
to explain why such conditions would have an overarching tendency to prevail in natural populations,
each has turned out to be of limited scope and applicability. In our two-part study, we show that,
simply and surprisingly, the action of natural selection acting on standing heritable variation creates
conditions favoring the evolution of recombination. In this paper, we focus on the mean selective
advantage created by recombination between individuals from the same population. We find that
the mean selective advantages of recombinants and recombination are non-negative, in expectation,
independently of how genic fitnesses in the standing variation are distributed. We further find that
the expected asymptotic frequency of a recombination-competent modifier is e↵ectively equal to
the probability that the fittest possible genotype is a virtual recombinant; remarkably, expected
asymptotic modifier frequency is independent of the strength of selection. Taken together, our
findings indicate that the evolution of recombination should be promoted in expectation wherever
natural selection is operating.

INTRODUCTION

The oldest ideas about the evolutionary role of recom-
bination are from Weismann (1889), who argued that
sex provides increased variation for natural selection to
act upon. Since then, the amount of work that has ad-
dressed the evolution of sex and recombination is spec-
tacular. To preface our developments therefore, we will
cover some essential background and will make reference
to some wonderful reviews [3–9] that give a much more
complete overview of the remarkable wealth of previous
and current work in this area. Also, we refer the reader
to our companion publications [1, 2] for additional intro-
ductory material.
Fisher [10] and Muller [11] first provided concrete

mechanisms for an advantage to recombination. Muller
surmised that in order for separately arising beneficial
mutations to fix in the same genotype, in an asexual pop-
ulation they must arise in the same lineage sequentially,
while in a recombining population, they may arise con-
temporaneously and be subsequently reshu✏ed into the
same background. Fisher argued that a single beneficial
mutation, because it arises in a single individual, has a

⇤ This article is published in concert with [1] and [2]
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significant probability of arising on a non-optimal genetic
background. In an asexual population, the beneficial mu-
tation is stuck with this non-optimal background, while
in a recombining population, the background can be
swapped out for a fitter one. If the beneficial mutation is
successful, despite arising on a non-optimal background,
a second beneficial mutation may eventually arise on the
background of the first as it progresses toward fixation. If
this happens in an asexual population, Hill and Robert-
son [12, 13] found that the probability of success of the
second beneficial mutation will be depressed as a con-
sequence of arising in the growing lineage founded by
the first beneficial mutation. Generally speaking, genetic
linkage (the absence of recombination) introduces selec-
tive interference [5] that decreases the e�ciency of natu-
ral selection.

Recombination can ameliorate all of these linkage-
induced hindrances to natural selection [14–17], and re-
combining populations should therefore adapt faster [18].
However, the magnitude of this benefit depends very
much upon parameter choices [19]. More fundamentally,
this process provides only a group-level benefit for sex,
and group-level explanations, besides being character-
istically viewed with suspicion in evolutionary biology,
are unsatisfactory in that they cannot explain the origin
and fixation of sexual reproduction within a single pop-
ulation, nor explain its maintenance by evolution [20].
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Therefore it is necessary to study the evolution of recom-
bination within a single population.
To do so requires consideration of an additional “modi-

fier” locus that determines recombination rate. An allele
at this locus conferring increased recombination rate is
introduced into a population at low frequency. The ques-
tions of interest are: 1) what is the selective value of this
allele? and 2) what is the fate of this allele? A variety of
theoretical studies have studied the evolution of such re-
combination modifiers. These studies have investigated
mechanisms including fluctuating selection [14, 15, 21];
negative epistasis [14, 15, 22, 23]; assortative mating [24];
and finite population e↵ects, i.e. drift [12, 17, 25–27]. Of
these, the drift-based explanations have come into favor
in recent years as the more promising in explaining the
ubiquity of recombination [28], but the general consen-
sus is that some fundamental piece of the puzzle is still
missing [5].
To address the evolution of sex and recombination, we

have taken a reductionist approach. Our aim is restricted
to studying the e↵ects of one very key process, namely
natural selection, in isolation (no mutation, no drift, etc),
and we distill this problem to what we believe is its most
essential form: we ask, how does the action of natural
selection, by itself, a↵ect the selective value and fate of
recombinants and recombination? In choosing this ap-
proach, we seek analytic tractability enabling robust new
insights into the evolution of sex and recombination.
Our focus on recombinants tells us what will happen

to a recombination-competent modifier (or rec
+ modi-

fier) in an otherwise non-recombining population, when
linkage between the modifier and fitness loci is weak, i.e.,
when there is a high rate of recombination between fit-
ness loci and the modifier locus itself. A modifier will
be bumped up in frequency a notch with each advanta-
geous recombinant it produces, before becoming dissoci-
ated from the recombinant through recombination. If re-
combinants are more likely to be advantageous than dis-
advantageous then the modifier will on average increase
in frequency over time. Our later focus on recombination

tells us what will happen to a rec
+ modifier in an other-

wise non-recombining population, when linkage between
the modifier and fitness loci is strong, i.e., when there is
a low rate of recombination between fitness loci and the
modifier locus itself.
In companion papers [1] and [2], we show that natural

selection acting on standing variation has an encompass-
ing tendency to fix selectively mismatched combinations
of alleles, thereby promoting the evolution of recombi-
nation across selected genotypes. In the present study,
we assess how the selective value of recombinants and
recombination are a↵ected during the process of natural
selection within a population. In these combined studies,
we find that recombinants are favored and recombination
promoted, in expectation, as an inherent consequence of
the dynamics and statistical properties of selective sort-
ing. Our findings elucidate and unify several classical
models.

MEASURING SELECTIVE IMBALANCE

In much of the relevant literature, the measure of selec-
tive mismatch across loci a↵ecting the evolution of recom-
bination is linkage disequilibrium (LD) [14–17, 23, 29, 30],
which measures the covariance in allelic states across two
loci [5] (i.e., it measure the bias in allelic frequencies
across loci) but does not retain information about the
selective value of those alleles.

Here, our measure of selective mismatch will be co-

variance between genic fitnesses. This departure from
tradition is advantageous because covariance retains in-
formation about both the frequencies and selective value
of alleles, and it is convenient because the mean selective
advantage accrued by recombinants over the course of a
single generation is equal to minus the covariance (be-
low). Many of our results will thus be given in terms of
covariance.

Discrete time

For the purpose of presentation, it is enough to con-
sider an organism whose genome consists of just two
genes, or loci. We let random variable X denote the
fitness contribution, or genic fitness, of the first locus,
and we let Y denote the genic fitness of the second locus.
Classical population genetics was formulated in discrete
time and asserted that fitness was multiplicative. The fit-
ness of an individual organism in this case is the product
XY , and the average selective advantage of recombinants
is s̄r = E[X]E[Y ]/E[XY ] � 1 = ��XY /w̄, where �XY is
covariance, and w̄ = E[XY ] is mean fitness.

Continuous time

In the present study, everything is in continuous time.
Redefining random variables X and Y to be continuous-
time genic fitnesses at two loci, we define their cumulant-
generating function (cgf ), C0(', ✓) = lnE[e'X+✓Y ] at
time 0. In later developments and in the Supplemen-
tal Materials (SM), we show that, in continuous time,
the mean selective advantage of recombinants over the
course of their first generation of growth is:

s̄r = C0(1, 0) + C0(0, 1)� C0(1, 1)

= ln
E[eX ]E[eY ]
E[eX+Y ]

⇡ � �XY

This approximation is extremely accurate because, as we
show in the SM, the two-dimensional Jensen gaps for
numerator and denominator essentially cancel each other
out.
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FITNESS EVOLUTION

As stated above, the goal of the present study is to fo-
cus exclusively on natural selection and ask how natural
selection, by itself, a↵ects the selective value of recom-
binants and recombination. This goal requires a reduc-
tionist approach in which natural selection is studied in
isolation. Consequently, our evolutionary models here
retain only the natural selection terms; other, more com-
plete models that incorporate selection, mutation, drift,
and recombination, may be found in the SM.

One locus

This model is simply a continuous-time formulation of
evolution by natural selection; the model and its analyses
are not new and have close parallels in [31–36]. We let
ut(x) denote probability density in fitness x at time t
(i.e.,

R
x ut(x) = 1 for all t) for an evolving population.

Dropping the subscript t, we have that, under selection
and mutation, u evolves as:

@tu(x) = (x� x̄)u(x)

where x̄ is mean fitness (x̄ =
R
x xut(x)). Let M(') de-

note the moment-generating function (mgf ) for u(x), i.e.,
M(') = Eu[e'X ]. The transformed equation is:

@tM(') = @'M(')� @'M(0)M(').

We define cumulant-generating function (cgf ) C(') =
lnM('); noting that @'C(') = (@'M('))/M('), and
@tC(') = (@tM('))/M(') we find that the cgf evolves
as:

@tC(') = @'C(').

This equation is a variant of the transport equation; it
is immediately apparent that the solution will be of the
form Ct(') = F ('+ t), where F is an arbitrary function.
When boundary condition Ct(0) = 0 8 t is applied, it has
solution:

Ct(') = C0('+ t)� C0(t) (1)

where the subscripts are now necessary again: Ct(') is
the cgf of the fitness distribution ut(x) at time t. We
note that the fitness evolution of a population can thus
be projected into the future based only on the present
fitness distribution (i.e., at t = 0).

Two loci

While many parts of our analyses are true for general
fitness functions, where total fitness is some arbitrary
function z = �(x, y), we here and in other parts of our
analyses restrict ourselves to additive fitness z = x + y.

Generalizations to non-additive functions are found in
the SM.
We now suppose that there are two “genes” that de-

termine fitness, such that total fitness is determined by
their sum. Letting fitness contributions of the two genes
be denoted by x and y, respectively, the total fitness is
then simply x + y. The extension of the previous one-
dimensional pde is therefore immediate.
Let ut(x, y) denote probability density in fitness con-

tributions x and y at time t for an evolving population.
Dropping the subscripts again, under selection and mu-
tation, u evolves as:

@tu(x, y) = (x+ y � x̄� ȳ)u(x, y)

The cgf is now two-dimensional: C(', ✓) = lnE[e'X+✓Y ],
and evolves as:

@tC(', ✓) = @'C(', ✓) + @✓C(', ✓)� @'C(0, 0)� @✓C(0, 0).
(2)

This equation is a two-dimensional variant of the trans-
port equation and has more possible solution forms than
the one-dimensional case, namely, solutions can be of the
form: F (t+ ', ✓� '), F (t+ ✓,'� ✓), or F (t+ ', t+ ✓).
The consistent solution form is the last of these. When
boundary condition Ct(0, 0) = 0 8 t is applied, it has
solution:

Ct(', ✓) = C0('+ t, ✓ + t)� C0(t, t) (3)

where the subscripts have again become necessary. We
again note that the evolution of a population can thus
be projected into the future based only on the present
fitness distribution (i.e., at t = 0).

Covariance dynamics

Covariance dynamics are immediate from Eq (3):

�XY (t) = C
(1,1)
0 (t, t) (4)

Now we define the empirical mgf :

M̃(', ✓) =
1

N

NX

j=1

e'Xj+✓Yj (5)

where Xj and Yj are measures of genic fitness contribu-
tion. From here, the empirical cgf is:

C̃(', ✓) = LogM̃(', ✓) (6)

so that future covariance dynamics are predicted explic-
itly from empirical data by:

�̃XY (t) = C̃
(1,1)
0 (t, t) . (7)

This covariance-forecasting equation is shown to be very
accurate in Fig 1. From this, we directly have the dy-
namics of recombinant advantage: s̄r(t) = ��XY (t).
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FIG. 1. Covariance forecast. Blue curve is the average of
1000 stochastic, individual-based simulations. Red curve is
the theoretical prediction given by E[C̃(1,1)

0 (t, t)] (Eq (7)). We
call it a forecast because it is based solely on the distribu-
tion of fitnesses at t = 0. Fitnesses were drawn from a bi-
variate normal distribuiton with means (0, 0) and standard
deviations (0.2, 0.2) and zero correlation. The initial popula-
tion consisted of ten distinct genotypes in a population of size
N = 2000.

NATURAL SELECTION MAKES
RECOMBINANTS ADVANTAGEOUS

Without epistasis

We recall that recombinant advantage is ��XY . Here,
we examine the simplest scenario of two loci and two
genotypes. We study how the selection-driven changes
in types (X1, Y1) and (X2, Y2) within a single unstruc-

tured population change covariance �XY = �XY (t) over
time. We are interested in the net e↵ect of these changes,
given by

R1
0 �XY (t)dt; in particular, we are interested in

knowing whether this quantity is positive (net recombi-
nant disadvantage) or negative (net recombinant advan-
tage) in expectation.

Proposition 1. Within-population covariance inte-

grated over time is:

Z 1

0
�XY (t)dt = q

(X2 �X1)(Y2 � Y1)

|Z2 � Z1|
(8)

where q is the initial frequency of the inferior genotype.

No assumption about the distribution of (X,Y ) is re-

quired. And Zi = Xi + Yi.

Proof: We employ Eq (7) to give us covariance dynam-
ics as a function of the initial two genotypes. We let p
denote initial frequency of the superior of the two geno-
types, and we let q = 1 � p denote initial frequency of
the inferior genotype. Time-integrated covariance is:
Z 1

0
�X,Y (t)dt = (9)

(X(2) �X(1))(Y(2) � Y(1))

Z 1

0

pqe(Z
[1]+Z[2])t

�
peZ[2]t + qeZ[1]t

�2 dt

Integration by parts yields:
Z 1

0
�XY (t)dt = q

(X(2) �X(1))(Y(2) � Y(1))

Z [2] � Z [1]

where q in Prop 1 is written as 1� p0. We observe that:

(X(2) �X(1))(Y(2) � Y(1)) = (X2 �X1)(Y2 � Y1)

and that

Z [2]
� Z [1] = |Z2 � Z1|

from which we have:

(X(2) �X(1))(Y(2) � Y(1))

Z [2] � Z [1]
=

(X2 �X1)(Y2 � Y1)

|Z2 � Z1|

⇤
Proposition 2. We define spacings �X = X2 � X1,

�Y = Y2 � Y1, and �Z = Z2 � Z1 = �X + �Y . If

the pairs (Xi, Yi) are independently drawn from any dis-

tribution, then �X and �Y are symmetric about zero,

and time-integrated covariance is unconditionally non-

positive in expectation:

E[
Z 1

0
�X,Y (t)dt] = E[

�X�Y

|�Z|
]  0

Proof: There is no need to assume that (�X,�Y ) has
a density. This proof also reveals that the result also
holds for discrete random variables. Let �X, �Y be two
real-valued random variables such that: (��X,�Y ) has
the same distribution as (�X,�Y ). We have:

E[�X�Y/|�X +�Y |] =

E[1�X�Y >0�X�Y/|�X +�Y |]

+ E[1�X�Y <0�X�Y/|�X +�Y |]

= E[1�X�Y >0�X�Y/|�X +�Y |]

+ E[1��X�Y <0(��X)�Y/|�Y ��X|]

= E[1�X�Y >0�X�Y/|�X +�Y |]

� E[1�X�Y >0�X�Y/|�Y ��X|]

= E[1�X�Y >0�X�Y (1/|�X +�Y |� 1/|�Y ��X|)]

 0

When �X and �Y have the same sign as imposed by
the indicator function in the last expectation, we have
|�X + �Y | > |�Y � �X|, from which the inequality
derives. ⇤
Corollary 1. Proposition 2 holds for divergent expec-

tations.

Proof: Set U = |�X| and V = |�Y |; ⇤ = Max(U, V ),
� = Min(U, V ). Then you can rewrite the expectation
as:

E[UV {1/(U + V )�1/(|U � V |)}]

= E[�⇤{�2�/(⇤2
� �2)}]

= �2E[⇤�2/(⇤2
� �2)]  0
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Indeed, if the expectation is divergent, then it is always
�1. This approach removes the need to make the argu-
ment that U + V > |U � V | and avoids the need to take
a di↵erence of expectations. An alternative approach is
given in an expanded statement and proof of Proposition
2 in the SM. ⇤

With epistasis

We make the conjecture, without proof, that time-
integrated covariance with epistasis is equal to Eq (9),
where we generalize: Z = �(X,Y ) and � is any fit-
ness function. In this context, (X(i), Y(i)) are generalized

concommitants of order statistics Z [i]. This conjecture
is intuitive and is supported by the agreement between
theoretical predictions deriving from the conjecture and
fully-stochastic simulations.

Corollary 2. For any real number ⇠, let us consider

a fitness function of the form �⇠(x, y) = aX + bY +
⇠g(X,Y ), where a, b > 0 and g is a function indepen-

dent of ⇠. Let �Z(⇠) = �⇠(X2, Y2)��⇠(X1, Y1). Assume

that for some " > 0,

E

"
sup
|⇠|<"

|�X�Y |

|�Z(⇠)|

#
< 1, (10)

and that P(�X�Y = 0) < 1. Then, there is "0 2 (0, "),
such that for all ⇠ 2 (�"0, "0), we have

E

�X�Y

|�Z(⇠)|

�
< 0. (11)

Proof. Condition (10) implies that the function h :
(�", ") ! R defined via

h(⇠) = E

�X�Y

|�Z(⇠)|

�

is continuous. Moreover, since P(�X�Y = 0) < 1, pro-
ceeding as in the proof of Proposition 2, we obtain that
h(0) < 0. Hence, by continuity of h, we infer that there
is "0 2 (0, ") such that h is negative in (�"0, "0), which
concludes the proof.

Figure 2 plots the left-hand side of the inequality in
Eq (11) with generalized fitness function:

Z(⇠) = �⇠(X,Y ) = aX + bY + ⇠XY (12)

with a, b > 0 and ⇠ 2 R is an epistasis parameter. This
figure reveals where the interval (�"0, "0) lies for di↵erent
correlation coe�cients. The predicted symmetry of this
interval about zero is corroborated with both Montecarlo
expectations of the left-hand side of Eq (11) as well as
fully-stochastic evolutionary simulations.
We now turn our attention to the analysis of time-

integrated covariance with epistasis for the special case

where total fitness Z is given by Eq (12). As before, we
let �Z(⇠) = �⇠(X2, Y2) � �⇠(X1, Y1) = (a + ⇠Y1)�X +
(b + ⇠X2)�Y . The case where the random variables
(|�X�Y |/|�Z(⇠)|)⇠2(�",") are uniformly integrable (i.e.
condition (10) is satisfied) is covered already by Corollary
2.

Corollary 3. Assume that the distribution of (Xi, Yi)
has finite support, i.e. there is K > 0 such that P(Xi 2

[�K,K], Yi 2 [�K,K]) = 1 and that |⇠| < (a ^ b)/K,

where a ^ b denotes the minimum between a and b. The

we have:

E

|�X�Y |

|�Z(⇠)|

�
= 1 ) E


�X�Y

|�Z(⇠)|

�
= �1. (13)

The proof for this corollary is in the SM.

NATURAL SELECTION MAKES
RECOMBINATION ADVANTAGEOUS

Evolution with recombination

Our analyses will henceforth ignore mutation. This is
consistent with our aim of studying natural selection in
isolation.
To avoid having to switch between one and two di-

mensions, we can write everything in terms of two di-
mensions as follows. Let u(x, ·) denote the marginal
density of individuals carrying genic fitness x at the
first locus, and let u(·, y) denote the marginal density
of individuals carrying genic fitness y and the second lo-
cus. Independent evolution at the two loci means that
u(x, y) = u(x, ·)u(·, y). Let x̄ denote the mean of x

(x̄ =
R +1
�1

R +1
�1 xu(x, y)dxdy). Under recombination, we

have the two loci evolving independently as follows:

@tu(x, ·) = (x� x̄)u(x, ·) (14)

@tu(·, y) = (y � ȳ)u(·, y) (15)

In the foregoing sections, we have shown that a
Laplace-transformed version of the above evolution
equations has a closed-form analytical solution. Let
Ct(', ✓) = logEt[e'X+✓Y ], the cumulant-generating
functions (cgf ) for density u(x, y) at time t. The solu-
tion to the Laplace transform of equations (14) and (15)
gives:

Ct(', 0) = C0('+ t, 0)� C0(t, 0)

Ct(0, ✓) = C0(0, ✓ + t)� C0(0, t)

under free recombination. We have not included the mu-
tation terms in these expressions because we are not con-
sidering mutation in our analysis. Mean fitness of the
rec

+ subpopulation at time t is therefore:

z̄r(t) = C
(1,0)
t (0, 0)+C

(0,1)
t (0, 0) = C

(1,0)
0 (t, 0)+C

(0,1)
0 (0, t) .

where C
(i,j)
t (', ✓) is the ith partial derivative of Ct(', ✓)

with respect to ' and the jth partial derivative with re-
spect to ✓.
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a cb

FIG. 2. E↵ect of epistasis ⇠ (horizontal axes) on time-integrated covariance (vertical axes) when correlation between genic
fitnesses in the initial population is: a) �0.5, b) 0, and c) +0.5. Theoretical predictions (solid curves) plot Montecarlo
expectations E [�X�Y/|�Z(⇠)|], the left-hand side of Eq (11), where N = 2000 (red) and N = 105 (blue). Red points plot
the means of 500 stochastic simulations with N = 2000. For these plots, we employ the general fitness function given by Eq
(12). These plots support the validity of our conjecture that Z in Eq (9) can be generalized by allowing Z = �(X,Y ). They
also corroborate our analyses showing that time-integrated covariance is unconditionally negative in the absence of epistasis.
They further corroborate our finding that time-integrated covariance is negative in an epistasis interval that is symmetric about
zero. Finally, they indicate that epistasis must be fairly strong (either positive or negative) to make time-integrated covariance
non-negative.

Evolution without recombination

In the non-recombining wildtype subpopulation, the
evolution equation is:

@tu(x, y) = (x+ y � x̄� ȳ)u(x, y)

where u(x, y) is the joint density of individuals with fit-
ness x and y (individuals are “stuck” with these fitnesses
at the two loci, i.e. they are linked because there is no
recombination).
The transformed equation has solution:

Ct(', ✓) = C0('+ t, ✓ + t)� C0(t, t) .

Mean fitness at time t is now:

z̄(t) = C
(1,0)
t (0, 0)+C

(0,1)
t (0, 0) = C

(1,0)
0 (t, t)+C

(0,1)
0 (t, t)

Evolution of fitness di↵erential between rec+

modifier and wildtype

The fitness di↵erential between the rec
+ modifier and

wildtype evolves as:

sr(t) = C
(1,0)
0 (t, 0)+ C

(0,1)
0 (0, t)� C

(1,0)
0 (t, t)� C

(0,1)
0 (t, t)

(16)
where sr(t) = z̄r(t) � z̄(t) is the fitness di↵erential at
time t. This may be equivalently written as:

sr(t) =
d

dt
(C0(t, 0) + C0(0, t)� C0(t, t)) (17)

or as

sr(t) =
d

dt
(C0(t, 0, ..., 0) + C0(0, t, ..., 0) + C0(0, 0, ..., t)

� C0(t, t, ..., t))

for more than two loci.
We note that the fitness di↵erential is projected into

the future based simply on the distribution of fitnesses
in the initial variation upon which natural selection acts,
i.e., sr(t) depends only on C0(', ✓), the cgf of the initial
fitness distribution.

Asymptotic fitness di↵erential between rec+

modifier and wildtype

Proposition 3. A population initially consists of n dis-

tinct genotypes at equal frequency (this assumption is re-

laxed in the Appendices) characterized by their genic fit-

ness vector (xi1, xi2, ..., xim), i = 1, 2, ..., n. These values

may be drawn from any multivariate distribution, contin-

uous or not. The action of natural selection by itself (no

drift or mutation) will cause the fitness of a rec+ modifier

to increase relative to its non-recombining counterpart by

an amount given by:

sr(t)
t!1
���!

mX

j=1

max
i

(xij)�max
i

(
mX

j=1

xij) � 0

Proof:
We employ the fitness di↵erential as defined by Eq (16)

and insert empirical cgf ’s as defined by Eq (6), giving:

sr(t) =
mX

j=1

Pn
i=1 xijexijt

Pn
i=1 e

xijt
�

Pn
i=1(

Pm
j=1 xij)e

Pm
j=1 xijt

Pn
i=1 e

Pm
j=1 xijt

which gives the result by inspection. Inspection is fa-
cilitated by examining the case of two loci whose genic
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fitnesses we deonte xi and yi:

sr(t) =
Pn

i=1 xiexit

Pn
i=1 e

xit
+

Pn
i=1 yie

yit

Pn
i=1 e

yit
�

Pn
i=1(xi + yi)e(xi+yi)t

Pn
i=1 e

(xi+yi)t

t!1
���! max

i
(xi) + max

i
(yi)�max

i
(xi + yi) � 0

⇤

Corollary 4. For the case of two genotypes and two

loci (n = 2 and m = 2) the asymptotic fitness di↵erential

given by Proposition 3 can be rewritten as:

2sr(t)
t!1
���! |�X|+ |�Y |� |�X +�Y | � 0

where �X = X2 �X1 and �Y = Y2 � Y1.

Corollary 5. We now define random variable Sr to de-

note the asymptotic fitness di↵erential as defined above.

Here we generalize Proposition 3 to m loci. Here, fit-

ness at each of the m loci is given by random variable

Xj j = 1, 2, ...,m. Expected asymptotic fitness di↵eren-

tial is:

E[Sr] =
mX

j=1

E[X [n]
j ]� E[Z [n]] � 0

where X [n]
j denotes the nth

order statistic of Xj, j de-

notes the jth locus, and Z [n]
denotes the nth

order statis-

tic of Z =
Pm

j=1 Xj .

The foregoing expressions very accurately predict the
fitness di↵erential after one bout of selection in simula-
tions (Fig 3), and is robust to recombination rate and
initial rec+ frequency.

Remark 1: The couples (X1, Y1) and (X2, Y2) are two
independent draws from some unspecified bivariate dis-
tribution. This fact guarantees that �X and �Y are
symmetric, from which it is apparent that the asymp-
totic fitness di↵erential will be zero half of the time.

Remark 2: We have shown that, after one “bout” of
selection has completed, the rec+ modifier fitness advan-
tage is non-negative. This is indeed suggestive of natural
selection’s favorable e↵ect on recombination, but it only
gives information about the modifier’s fitness advantage
at the end of the bout of selection. It does not guarantee,
for example, that the modifier’s fitness advantage did not
become negative over the course of the bout of selection
and consequently suppress the modifier’s frequency in the
process. This concern is especially relevant in light of our
observation in Remark 1 that the modifier’s fitness ad-
vantage after the bout of selection has completed is zero
half of the time.

NATURAL SELECTION PROMOTES THE
EVOLUTION OF RECOMBINATION

To understand how natural selection a↵ects the evolu-

tion of recombination, the more directly relevant ques-

FIG. 3. Fitness di↵erential between rec
+ modifier and wild-

type after one bout of selection: observed (horizontal axis)
and predicted (vertical axis). Initial modifier frequency was
0.1, and plotted are values for recombination rates of r = 0.1
(blue) and r = 0.5 (red).

tion to ask is how natural selection a↵ects the frequency

of a rec
+ modifier.

Dynamics of a rec+ modifier

If a lineage starts at frequency 1/N and has time-
dependent selective advantage s(t), its frequency f(t)
evolves as the solution to the logistic equation:

f 0(t) = s(t)f(t)(1� f(t))

which, with initial condition f(0) = 1/N has solution:

f(t) =
⇣
1 + (N � 1)e�

R t
0 s(u)du

⌘�1
(18)

Our time-dependent selection coe�cient is of course
s(t) = sr(t) which is worked out above. It remains to
find:

Z t

0
sr(u)du

Conveniently, we immediately have the anti-derivative
of sr(t) from Eq (17) from which we have the definite
integral:

Z t

0
sr(u)du = C0(t, 0) + C0(0, t)� C0(t, t) (19)

Recalling that Ct(✓,�) = lnMt(✓,�), and substitut-
ing Eq (19) into Eq (18), the expression for modifier dy-
namics becomes:

f(t) =

✓
1 + (N � 1)

M0(t, t)

M0(0, t)M0(t, 0)

◆�1

This expression gives the generalized case for two loci
and holds for any number n of alleles per locus.
The further generalization to m loci and n alleles per

locus is immediate:
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f(t) =

✓
1 + (N � 1)

M0(t, t, ..., t)

M0(t, 0, ..., 0)M0(0, t, ..., 0)...M0(0, 0, ..., t)

◆�1

(20)

Infinitely-many alleles

The purpose of this subsection is primarily to reveal
what appears to be a fundamental qualitative di↵erence
between the case of finitely-many vs infinitely-many alle-
les. Assuming there are infinitely-many alleles, and sup-
posing that the distribution of X and Y is bivariate nor-
mal, we have:

f(t) =
⇣
1 + (N � 1)e�XY t2

⌘�1
(21)

so modifier dynamics depend critically on the sign of the
covariance of the initial fitnesses: when �XY < 0, then

f(t)
t!1
���! 1; when �XY > 0, then f(t)

t!1
���! 0; and

when �XY = 0, then f(t) = f(0) = 1/N 8 t. This find-
ing stands in stark contrast to the case of finitely-many
alleles in which, as we shall see, modifier frequency for
all practical purposes always ends up at higher frequency
than where it started, quite independently of the bivari-
ate distribution governingX and Y (even when the initial
population has strongly positive correlation between X
and Y ).

Remark: In general, Eq (21) may be written for any
distribution:

f(t) =
⇣
1 + (N � 1)eh(t)

⌘�1
(22)

where:

h(t) =
1X

i=2

ti

i!

i�1X

j=1

✓
i

j

◆
j,i�j

and i,j is the (i, j)th cumulant of the initial bivariate
distribution of genic fitnesses X and Y . This expression
is obtained by Taylor expansion of Eq (19). The normal
case can be gleaned from this general expression by re-
calling that for the normal distribution, i,j = 0 when
i+ j > 2, so that h(t) = 1,1t2 = �XY t2.

Finitely-many alleles

If the number of alleles is finite, we employ the empir-
ical cgf, C̃t(✓,�), as defined by Eq (6), and the empiri-

cal mgf, M̃t(✓,�) = eC̃t(✓,�). Assuming n genotypes are
present in the population in question, and replacing C

with C̃ in Eq (19), we have:

Z t

0
sr(u)du =

mX

j=1

log

"
1

n

nX

i=1

exijt

#
� log

"
1

n

nX

i=1

e
Pm

j=1 xijt

#
, (23)

from which the expected frequency of the modifier is im-
mediate:

E[f(t)] =

E [

 
1 + nm�1(N � 1)

Pn
i=1 e

Pm
j=1 Xijt

Qm
j=1(

Pn
i=1 e

Xijt)

!�1

] (24)

The notation in this expression is already messy and
would only get messier were we to proceed with the gen-
eral m-locus case. We therefore restrict ourselves to the
case of m = 2 loci for the sake of presentation. The
general m-locus case is a rather trivial (albeit messy) ex-
tension of these developments. For the two-locus case,

Eq (24) becomes:

E[f(t)] =

E [

✓
1 + n(N � 1)

Pn
i=1 e

(Xi+Yi)t

(
Pn

i=1 e
Xit)(

Pn
i=1 e

Yit)

◆�1

] (25)

which can be rewritten as:

E[f(t)] =

E [

P
i,j e

(Xi+Yj)t

P
i 6=j e

(Xi+Yj)t + (n(N � 1) + 1)
P

i e
(Xi+Yi)t

]

(26)

Equation (25) accurately predicts rec
+ modifier dy-

namics as show in Fig 4.
We note that, for the case n = 2, Eq (24) has the

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447324doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447324
http://creativecommons.org/licenses/by-nc-nd/4.0/


9

Simulations

Theoretical prediction
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FIG. 4. Recombination modifier dynamics over the course of
one bout of selection. Red curves plot theoretical predictions
given by Eq (25). Blue curves plot mean trajectory observed
in 500 replicate simulations. Simulations were fully stochastic,
individual-based, with a population size of N = 20, 000. The
recombination-competent modifier conferred a recombination
rate of r = 0.2. The distribution of genic fitnesses X and Y in
the initial population had a bivariate normal distribution with
zero means, standard deviations �X = �Y = � = 0.2 for the
upper curves and �X = �Y = � = 0.05 for the lower curves,
and zero correlation. The initial population consisted of n =
10 distinct genotypes. We note that upper and lower curves
eventually converge to the same asymptotic frequency, as our
theory predicts, despite very di↵erent strengths of selection
(very di↵erent �’s).

curious alternative form:

E[f(t)] =

E [ (N + (N � 1) tanh(�Xt/2) tanh(�Y t/2))�1 ]

where �X = X2 �X1 and �Y = Y2 � Y1.

Asymptotic modifier frequency

Proposition 4. A non-recombining population initially

consists of n distinct genotypes, each characterized by

the vector of genic fitness (xi1, xi2, ..., xim), where i =
1, 2, ..., n, and m is the number of loci under selection.

These values may be drawn from any multivariate dis-

tribution, continuous or not. A rec+ modifier is intro-

duced into the population at frequency 1/N . The action

of natural selection by itself will cause the frequency of

the modifier to converge in expectation to:

E[f(t)] t!1
���! E[1NR/(n

(m�1)(N � 1) + 1) + 1R] (27)

where conditions NR and R are met when the maximum-

fitness genotype is a non-recombinant and recombinant,

respectively. Specifically, NR is met when the maximum-

fitness genotype has the following property: subscripts

ij = ik 8 j, k 2 [1,m], and R is met when NR is not

true.

Proof:

The proof is by inspection of Eq (26) and its full m-
locus extrapolation.

⇤
From here, it’s easy to see that in theory the modifier

can decrease in frequency to below its initial frequency.
This happens under the worst-case scenario for the mod-
ifier, which is when the correlation coe�cient becomes
extremely close to +1. When the correlation is exactly
equal to +1, we have:

E[f(t)] t!1
���! 1/(n(m�1)(N � 1) + 1) < 1/N (28)

where n � 2 is the number of genotypes in the initial pop-
ulation andm the number of loci constituting a genotype.
Numerical solution of Eq (27), however, reveals that the
correlation coe�cient has to be unrealistically close to
one for the modifier to decrease in frequency (Fig 5).

Corollary 6. We generalize Proposition 4 by allowing

each genotype i to have its own starting frequency fi.
Until now, we have assumed that fi = 1/n. Expected

asymptotic modifier frequency in this generalized case is:

E[f(t)] t!1
���! E[1NR

✓
F

m�1

N � 1 + Fm�1

◆
+ 1R] (29)

where conditions NR and R are as defined above, and

random variable F is starting frequency (the fi are in-

stances of F).

If F is exponential with mean 1/n and m = 2, Eqs
(27) and (29) are, for all practical purposes, equivalent.
For m > 2, we have found numerically that:

E[
F

m�1

N � 1 + Fm�1
] > 1/(n(m�1)(N � 1) + 1)

but the left-hand side is still very small, validating the
following Corollary for equal or random starting frequen-
cies.

Corollary 7. If a rec+ modifier is initially at low fre-

quency in a population, it’s final (asymptotic) frequency

is well approximated by the probability that, given a set

of genic fitnesses present in a population, the maximum-

fitness genotype is a virtual recombinant.

More specifically, given that a population initially con-

sists of n genotypes carrying vectors of genic fitnesses

(Xi1, Xi2, ..., Xim), i = 1, 2, ..., n, the final expected mod-

ifier frequency is e↵ectively equal to the probability of con-

dition R defined in Proposition 4 above.

Proof:
This corollary comes about by noting that the first

term on the right-hand side of Eq (27) is typically much
smaller than the second term:

E[1NR/(n
(m�1)(N � 1) + 1)] ⌧ E[1R]
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for the case of equal starting frequencies, or:

E[1NR

✓
F

m�1

N � 1 + Fm�1

◆
] ⌧ E[1R]

for the case of random starting frequencies. This fact is
corroborated by Montecarlo expectations plotted in Fig 5
where this approximation appears indistinguishable from
the exact solution.

⇤
Corollary 7 allows us to say some things about less ex-

treme cases than the case of correlation of +1. When the
correlation coe�cient is zero, Corollary 7 together with
simple combinatorics tell us the asymptotic frequency is:

�XY = 0 ) E[f(1)] = 1� n�(m�1) (30)

If the heritable variation upon which natural selection
acts is itself a product of selection, our companion pa-
pers [1, 2] show that the genic fitness correlation between
loci will be negative. For this case, asymptotic modifier
frequency is even higher:

�XY < 0 ) E[f(1)] > 1� n�(m�1) (31)

from which it is apparent that asymptotic modifier fre-
quency quickly gets very close to one as number of geno-
types and number of loci increase. For example, two
genotypes and ten loci will have an asymptotic modifier
frequency greater than 0.998 when the correlation is neg-
ative. Significantly, Eqs (30) and (31) appear to be fairly
robust to epistasis (SM).
A surprising feature of the asymptotic modifier fre-

quency is the absence of any requirement for information
about the magnitude of selective di↵erences among alle-
les at the di↵erent loci. This independence of strength
of selection is illustrated in Fig. 4, where it is corrobo-
rated with simulations. An implication of this finding is
that modifier frequency will converge to the same value
even under very weak selection. This fact may speak to
concerns, expressed in much previous work [7, 37], about
the strength of selection required for recombination (and
sex) to evolve.
And perhaps even more surprising is the fact, shown in

Fig 5, that increase in modifier frequency is substantial
even when the correlation between X and Y is strongly
positive in the initial population. It is only when this cor-
relation gets unrealistically close to +1 that increase in
modifier frequency is substantially reduced. This is very
surprising because a strongly positive correlation between
genic fitness is precisely the condition that one would
expect to suppress, not favor, recombination (discussed
in [1, 2]). The reason that modifier frequency increases
despite positive correlation has to do with the dynam-
ics of selective sorting, and the fact that these dynamics
cause recombinants to be favored, on average (covariance
is negative on average), despite strongly positive fitness
correlation between genic fitnesses X and Y in the initial
population, as proved in Proposition 2 above.

0.0 0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.050

0.100

0.500

1

Correlation coefficient

M
od
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ue
nc

y

2-genotype exact
2-genotype approx
10-genotype exact
10-genotype approx
initial frequency

10-genotype sims

2-genotype sims

FIG. 5. Asymptotic modifier frequency as a function of pos-
itive correlation between genic fitnesses X and Y among the
genotypes initially present in the population, as computed
by Eq (27). Only when the correlation gets unrealistically
close to one does the asymptotic modifier frequency dive to
values that can, in theory, dip below the initial frequency.
Asymptotic modifier frequency for negative correlations is not
plotted; it becomes increasingly close to one as correlation be-
comes increasingly negative. Open circles plot final modifier
frequency in simulated populations of size 2000 with recom-
bination rate of the modifier of r = 0.1.

Recombination and evolutionary dynamics

Let ut(x, y) denote probability density in fitness con-
tributions x and y at time t for an evolving population.
Dropping the subscripts, under selection and, u evolves
as:

@tu(x, y) = (x+ y � x̄� ȳ)u(x, y)

+R(u(x, ·)u(·, y)� u(x, y))

where R is recombination rate. The transformed equa-
tion is:

@tC(', ✓) = @'C(', ✓) + @✓C(', ✓)� @'C(0, 0)� @✓C(0, 0)

+R(eC(',0)+C(0,✓)�C(',✓)
� 1). (32)

whose solution is given by the Ct(', ✓) which satisfies:

Ct(', ✓) = C0('+ t, ✓ + t)� C0(t, t)

+R

Z t

0
(eCs(',0)+Cs(0,✓)�Cs(',✓)

� 1)ds, (33)

and boundary condition, Ct(0, 0) = 0 8 t. This equation
can be solved iteratively for Ct(', ✓).
These developments lead to a variant of Proposition 1:

Proposition 5. A first iteration of Eq (33) yields a

modification of the time-integrated within-population co-

variance given in Proposition 1:

Z 1

0
�XY (t)dt ⇡ q(1�R)

(X2 �X1)(Y2 � Y1)

|Z2 � Z1|
(34)

where q is the initial frequency of the inferior genotype.

No assumption about the distribution of (X,Y ) is re-

quired. And Zi = �(Xi, Yi) where fitness function � can

be any function, and continuous parameter R 2 [0, 1] is
recombination rate.
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Proof: For the first iteration, we simply replace the
Cs(', ✓) in the exponent by C0(' + s, ✓ + s) � C0(s, s),
giving:

Ct(', ✓) = C0('+ t, ✓ + t)� C0(t, t)

+R

Z t

0
(eC0('+s,s)+C0(s,✓+s)�C0('+s,✓+s)�C0(s,s) � 1)ds.

(35)

which satisfies the boundary condition, Ct(0, 0) = 0 8 t.
Then,

Z 1

0
�XY (t)dt =

Z 1

0
C̃
(1,1)
0 (t, t)dt

= q(1�R)
(X2 �X1)(Y2 � Y1)

|Z2 � Z1|

⇤
If this approximation is accurate, it follows that Propo-

sition 2 also holds for already-recombining populations,
but the magnitude of the negative time-integrated covari-
ance (i.e., the magnitude of the average recombinant ad-
vantage) decreases as recombination rate increases. This
is evidenced by the new factor (1 � R) introduced here.
However, we do not state this formally, as we have not
conducted a thorough analysis and/or exploration of pa-
rameter space to determine the accuracy of the approxi-
mation.
From Eq (32), the role of recombination in the evolu-

tion of total mean fitness, z̄ = x̄+ ȳ, is elucidated by the
derivative expressions:

@tx̄ = �2
X + �XY

@tȳ = �2
Y + �XY

@t�XY = 12 + 21 �R�XY

In the absence of selection, the ’s will be zero, giving
the prediction that �XY (t) = �XY (0)e�Rt under neu-
tral evolution. This equation accurately predicts covari-
ance dynamics in simulations of neutral evolution (Fig 6).
With selection, the ’s will be non-zero and covariance
dynamics are given by:

�XY (t) = �XY (0)e
�Rt +

Z t

0
eR(��t)(12(�)+21(�))d�

(36)
which also shows good agreement with simulations (Fig
7).

E↵ect of increasing recombination rate

in an already recombining population

Until now, our focus has been on rec
+ modifiers in an

otherwise rec
� population. We now examine the case in

which the resident population is rec
+ and the modifier

Simulations

Theoretical prediction
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FIG. 6. Covariance dynamics under neutral evolution with re-
combination. Blue dots plot the average of 200 fully stochastic
simulations. The red curve plots our theoretical prediction,
�XY (t) = �XY (0)e�Rt, which derives from Eq (32). Parame-
ters are: N = 10, 000, R = 0.01.
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FIG. 7. Covariance dynamics under adaptive evolution with
recombination. Blue dots plot the average of 200 fully
stochastic simulations. The red curve plots the theoretical
prediction given by Eq (36). Parameters are: N = 10, 000,
R = 0.01.

introduced has a higher recombination rate than the res-
ident population. The evolutionary dynamics model de-
veloped above allows us to address this question. Specif-
ically, we ask how a further increase in recombination
rate increases the rate of increase in mean fitness. Mean
fitness increases as @tE[Z] = �2

X + �2
Y + 2�XY , which in-

creases in recombination rate as @R@tE[Z] = 2@R@t�XY ,
where �XY is given by Eq (36). This quantity is positive,
as seen in Fig 8.

STATISTICAL MECHANICS OF SEX

We now note a curious connection between the devel-
opments presented here and statistical mechanics. This
section may serve as a springboard for further work that
has the potential to advance understanding of both the
evolution of sex as well as statistical mechanics. We be-
lieve there is no existing analogue to multilocus evolution
in statistical mechanics, in which case these directions
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FIG. 8. Advantage of further increase in recombination rate
in an already-recombining population. This is not selective
advantage as it is commonly defined. Instead, it is how fast
the rate of fitness increase grows with increase in recombi-
nation rate, calculated at the resident recombination rate.
Specifically, it is the quantity @R@tE[Z]|R=R0 , where R0 is the
resident recombination rate. Parameters are: N = 10, 000,
R0 = 0.01.

may bring something new to both fields.
Based on our developments and our use of the em-

pirical cgf (Eqs (5) and (6)), the expected number of
individuals with genotype i at time t may be written as:

hNii =
N

Z
fie

txi

where N = total population size, fi is the initial fre-
quency of genotype i, and:

Z =
nX

i=1

fie
txi .

This expression, derived directly from our initial evolu-
tion equation, makes the connection between Darwinian
evolution and statistical mechanics explicit. We compare
these expressions with the Maxwell-Boltzmann equation
for number of particles in energy state "i:

hNii =
N

Z
gie

�"i/kT

where

Z =
nX

i=1

gie
�"i/kT ,

the partition function.
The analogous quantities are shown in Table I. Fit-

ness is analogous to minus the energy. This makes sense,
because fitness will tend to increase while energy will
tend to decrease. Time is analogous to the inverse tem-
perature. So the evolutionary asymptote as time goes
to infinity is analogous to decreasing the temperature to
absolute zero.

TABLE I. A side-by-side comparison of analogous quantities
in evolutionary dynamics and statistical mechanics.

Evolutionary Dynamics Statistical Mechanics

fitness, xi energy, �"i
time, t inverse temperature, 1/kT

t ! 1 T ! 0

Statistical mechanics of multilocus evolution

Now we extrapolate to multilocus evolution, that is,
evolution in which each individual has several genes
that contribute to fitness. Here, each genome has m
loci, each of which contributes to overall fitness �.
Specifically, genotype i has fitness �(xi), where vector
xi = (xi1, xi2, ..., xim) quantifies fitness contributions
from each of the m loci. The expected number of indi-
viduals with fitness �(xi) at time t is now:

hNii =
N

Z
fie

t�(xi)

where the partition function is now:

Z =
nX

i=1

fie
t�(xi)

We have found that, as time increases, a population will
tend to evolve negative associations among the fitness
contributions at the di↵erent loci. These negative asso-
ciations build up across populations [2] and are gener-
ated within a single population, in expectation, as time
passes. The analogy to statistical mechanics would be
that each energy level has some number m of contribut-
ing factors that determine the energy of that level. As
temperature is reduced, negative associations among the
contributing factors will be generated. For the system to
achieve the lowest possible total energy, the contributing
factors would somehow need to be shu✏ed (analogous to
recombination).

DISCUSSION

A note about epistasis

Epistasis is non-additivity in genic contributions to
fitness, and negative epistasis is concave non-additivity,
such that total fitness is always less than the sum of genic
fitnesses. A population at equilibrium will harbor nega-
tive LD if its constituents exibit negative epistasis across
loci. It was once though that the source of selective im-
balance with the strongest causal link to the evolution of
sex and recombination was negative, or synergistic, epis-
tasis. However, under negative epistasis, recombinants
are initially selectively suppressed on average, because
recombination breaks up well-matched alleles across loci
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(it increases di↵usion on a concave surface). This initial
suppression of recombinants is eventually reversed, and
recombinants eventually amplified by selection, on aver-
age, owing to the fact that their fitnesses come from a
distribution with larger variance [38]. Whether or not
recombinants are ultimately successful therefore depends
on the dynamics of recombinant fitness and whether or
not the selective reversal is quick enough to rescue and
amplify recombinants. Barton [15] identified a small in-
terval of weakly negative epistasis, below zero and not
containing it, for which the initial suppression of recom-
binants was small enough and the selective reversal quick
enough to make the recombinants successful on average
[3]. As there is no compelling evidence to suspect that
epistasis in nature tends to fall within this “goldilocks
zone” (or tends to show any general bias away from from
zero) [3, 39, 40], epistasis-based explanations for the evo-
lution of sex fell out of favor.

We examine epistasis in the context of our work. We
find that, under natural selection, there is an interval
for epistasis outside of which the evolution of recombina-
tion would not be favored, but: 1) this interval can be
much bigger than that identified under the equilibrium /
negative epistasis explanatory framework and, more im-
portantly, 2) it always contains zero (Fig 2). Point 2
is especially relevant because it means that epistasis is
not necessary for the evolution of recombination where
natural selection is acting. Point 1 suggests that even if
a persistent bias in epistasis is demonstrated across the
tree of life, it would not invalidate our theory, as long as

the bias is not too large.

Future directions

The previous two sections making a connection to sta-
tistical physics are starting points for two areas we feel
merit fuller treatment. Additionally we would like to
explore the use of approximations a↵orded by Haldane

linearization [41, 42] as well as exact probabilistic treat-
ments of recombination in multilocus systems, primarily
derived by Baake & Baake [43–46], to address di↵erent
variants of the questions posed here.
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