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Shu✏ing one’s genetic material with another individual seems a risky endeavor more likely to
decrease than to increase o↵spring fitness. This intuitive argument is commonly employed to explain
why the ubiquity of sex and recombination in nature is enigmatic. It is predicated on the notion
that natural selection assembles selectively well-matched combinations of genes that recombination
would break up resulting in low-fitness o↵spring – a notion so intuitive that it is often stated in the
literature as a self-evident premise. We show, however, that this common premise is only self evident
on the surface and that, upon closer examination, it is fundamentally flawed: we find that natural
selection in fact has an encompassing tendency to assemble selectively mismatched combinations of
alleles; recombination breaks up these selectively mismatched combinations (on average), assembles
selectively matched combinations, and should thus be favored. The new perspective our findings o↵er
suggests that sex and recombination are not so enigmatic but are instead natural and unavoidable
byproducts of natural selection.

INTRODUCTION

The first measurable indicator that recombination and
sex could confer a fitness advantage came from agricul-
ture: when one parent comes from one inbred lineage and
the other parent from a di↵erent inbred lineage, o↵spring
tend to have increased fitness – a phenomenon known as
hybrid vigor or heterosis. Documentation of this phe-
nomenon dates back at least as far as Darwin [3, 4]. It
was later conjectured that recombination could be advan-
tageous even within a single evolving population because
it increases trait “resolution” (reduces trait granularity),
making fitness peaks more accessible than they otherwise
might be [5]. The two parts of the present study follow
these two historical threads, addressing the e↵ect of natu-
ral selection on across-population and within-population
recombination, respectively. The details of these two
parts are developed in this paper (across-population) and
companion paper (within-population) [6] and an accessi-
ble presentation of a synthesis of these two parts is found
in companion paper [1].
After the rediscovery of Mendel’s work, two competing

mechanistic explanations for heterosis emerged:
The first explanation – the dominance hypothesis – re-

lied on two observations: 1) inbreeding tends to produce
homozygotes, and 2) deleterious alleles tend to be reces-
sive. If a locus is homozygous dominant (wildtype) in
one population and homozygous recessive (deleterious)
in the other, an across-population recombination event
has probability 1/4 of producing a deleterious o↵spring,

⇤ This article is published in concert with [1] and [2]
† pgerrish@unm.edu

whereas it would have probability 3/4 in the absence of
dominance.

The second explanation – the overdominance hypothe-
sis relied on empirical observations of a seemingly magi-
cal phenomenon (overdominance) [7–11], where heterozy-
gotes are fitter than either homozygote. While over-
dominance has been observed, and there are several fa-
mous examples, the genetic/mechanistic basis of over-
dominance is varied and nebulous. Perhaps the most
plausible mechanism conjectured to explain overdomi-
nance generally is that the locus under consideration
is really two or more loci in linkage; “allelic repulsion”
[7], i.e., selectively mismatched homozygotes across pop-
ulations, would then give the appearance of overdomi-
nance as fitter dominants mask less-fit recessives; this is
called pseudo-overdominance. Allelic repulsion, however,
requires an assumption of negative fitness associations
across linked loci. The work we present here gives a gen-
eral theoretical basis for such negative associations across
linked loci and may thus provide a general explanation
for pseudo-overdominance.

If across-population recombination confers a fitness ad-
vantage, it seems reasonable that across-subpopulation
recombination should also confer a fitness advantage.
And the same goes for across-niche or across-clone re-
combination. Indeed, more recent studies have shown
that recombination across any sort of population struc-
ture can confer a fitness advantage. Here, we refer to
all of the above as recombination across “selected geno-
types”. Selected genotypes can refer to any genotypes
that have fixed locally within populations, subpopula-
tions, demes, niches, or competing clones. Put di↵er-
ently, selected genotypes are the products of selection
acting locally. Studying the evolution of recombination
across selected genotypes constitutes part one of our two-
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part study.

Recombinants whose parents are two distinct selected
genotypes will carry an immediate selective advantage,
on average, when the ensemble of selected genotypes har-
bors an excess of selectively antagonistic (mismatched)
gene combinations and a deficit of synergistic (well-
matched) combinations: by randomly shu✏ing alleles
across loci among selected genotypes, recombination will
on average increase o↵spring fitness. The challenge in ex-
plaining the ubiquity of sex and recombination in nature
is to identify a source of this selective imbalance that
is comparably ubiquitous. One feature of living things
whose prevalence approximates that of sex and recombi-
nation is evolution by natural selection. In the present
study, we assess the e↵ects of natural selection by itself on
selective imbalance among selected genotypes and hence
on the evolution of recombination across selected geno-
types. In essence, the present study assesses the selec-
tive value of recombination in structured (e.g., spatially
structured) populations.

Many previous studies of the evolution of sex and re-
combination have, wittingly or not, adopted a causal per-
spective in which the emergence of recombination consti-
tutes the proverbial “horse” (the cause) and expedited,
e�cient adaptation constitutes the “cart” (the e↵ect).
Here, we explore an inversion of this perspective, asking
whether adaptation might instead be the “horse” and the
emergence of recombination the “cart”. Put di↵erently,
where many previous studies view recombination as fa-
cilitating adaptation, the present study together with its
companion studies [1, 2] asks whether adaptation facil-
itates the evolution of recombination. This reversal in
conjectured causality leads to new and surprising results
that reveal the ubiquity of sex and recombination to be
perhaps not so enigmatic.

MEASURING SELECTIVE IMBALANCE

In much of the relevant literature, the measure of se-
lective mismatch across loci a↵ecting the evolution of re-
combination is linkage disequilibrium (LD) [12–18], which
measures the covariance in allelic states across two loci
[19] (i.e., it measure the bias in allelic frequencies across
loci) but does not retain information about the selective
value of those alleles.

Here, our measure of selective mismatch will be co-
variance between genic fitnesses. This departure from
tradition is advantageous because covariance retains in-
formation about both the frequencies and selective value
of alleles, and it is convenient because the mean selective
advantage accrued by recombinants over the course of a
single generation is equal to minus the covariance (be-
low and SM). Our results will thus be given in terms of
covariance.

Discrete time

For the purpose of presentation, it is enough to con-
sider an organism whose genome consists of just two
genes, or loci. We let random variable X denote the
fitness contribution, or genic fitness, of the first locus,
and we let Y denote the genic fitness of the second locus.
Classical population genetics was formulated in discrete
time and asserted that fitness was multiplicative. The fit-
ness of an individual organism in this case is the product
XY , and the average selective advantage of recombinants
is s̄r = E[X]E[Y ]/E[XY ] � 1 = ��XY /w̄, where �XY is
covariance, and w̄ = E[XY ] is mean fitness (SM).

Continuous time

In the present study, everything is in continuous time.
Redefining random variables X and Y to be continuous-
time genic fitnesses at two loci, we define their cumulant-
generating function (cgf ), C0(', ✓) = lnE[e'X+✓Y ] at
time 0. In later developments and in the SM, we show
that, in continuous time, the mean selective advantage of
recombinants over the course of their first generation of
growth is:

s̄r = C0(1, 0) + C0(0, 1)� C0(1, 1)

= ln
E[eX ]E[eY ]
E[eX+Y ]

⇡ ��XY

This approximation is extremely accurate because, as we
show in the SM, the two-dimensional Jensen gaps for
numerator and denominator essentially cancel each other
out.

NATURAL SELECTION: SIMULATIONS

As an introduction to how we are modeling the selec-
tive value of recombination across selected genotypes, we
begin by describing simple simulations. We encourage in-
terested readers to perform these very simple simulations
to see for themselves the counter-intuitive outcome and
its remarkable robustness to the choice of distribution.
In order to isolate the e↵ects of natural selection, we

must assume the population size to be infinite so that dy-
namics are deterministic (as stated in companion studies
[1, 2]). We will assume the organism in question has
two loci. The simulations begin by generating a set of
n distinct genotypes; this is achieved simply by drawing
n genic fitness pairs (xi, yi), i = 1, 2, ..., n from some bi-
variate distribution. The bivariate distribution can be
any distribution with any covariance.
Next, the simulation simply records the (xi, yi) pair

whose sum xi + yi is the largest and puts this pair into
a new array that we will denote by (x̂j , ŷj). This mimics
natural selection acting in an infinite population; in an
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infinite population there is no role for chance and natural
selection thus deterministically fixes the fittest genotype.
The procedure is then repeated a few thousand times,

so that there are a few thousand entries in the (x̂j , ŷj)
array of “winners”, or “selected genotypes”. The covari-
ance of the (x̂j , ŷj) array is then computed. This covari-
ance will always be less than the covariance of the ini-
tial bivariate distribution used to generate the (xi, yi).
In particular, if the covariance of the initial bivariate
distribution is zero (i.e., if X and Y are independent),
the covariance of the “selected genotypes” will always be
negative (i.e., the mean value of recombinants across se-
lected genotypes will always be positive). The interested
reader may want to explore this case first, because: 1)
you will see that any bivariate distribution from uniform
to Cauchy gives this result, and 2) this is the case that
is the primary focus of the following mathematical devel-
opments. An example set of such simulations where X

and Y are skew-normal is plotted in Fig 1.
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Figure 1. Correlation between genic fitness x̂i and ŷi among
selected genotypes in simple simulations. A set of 20 x-values
was drawn from a skew-normal distribution with mean �0.1,
standard deviation 0.1 and skewness indicated by the x-axis.
A set of 20 y-values was drawn from a skew-normal distri-
bution with mean �0.1, standard deviation 0.1 and skewness
indicated by the y-axis. These x and y values were paired
up to form an array of 20 (x, y) pairs. The pair whose sum
x+ y was the largest was selected and its values appended to
a new array (x̂, ŷ) of selected genotypes. This was repeated
5000 times. The correlation between x̂ and ŷ was computed
and plotted for each pair of skewness values.

NATURAL SELECTION: ANALYSIS

General setting: m loci, n alleles

Let n and m be two positive integers. Let
(Xi,j)16i6n;16j6m be a rectangular array of independent
random variables. For our purposes, each X quantifies
a fitness-related phenotype encoded at one locus. Each
row represents an individual’s haploid genome and each
column represents a locus on that genome. See Fig. 2.
We shall denote by X(1) = (Xi,j)16j6m the i-th row of
the array (the i-th individual in a population). Let � be
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Figure 2. General setting. The population here consists
of n = 9 individuals (9 genomes) represented by the 9 rows,
each of which carries a genome with m = 10 loci represented
by the 10 columns. Each dot represents a locus on an individ-
ual genome and its color indicates its genic fitness. The total
fitness of the ith individual is Zi = �(Xi,1, Xi,2, ..., Xi,m),
where Xi,j is the genic fitness of jth locus in the ith indi-
vidual. Strictly speaking, � can be any function, but our
developments eventually require that it be some increasing
function of the genic fitnesses, Xi,j . To give a simple and
useful example, � may be defined simply as the sum of its
arguments. We employ this definition of � extensively in the
main text and in our analyses, both because of its simplicity
and because of its connection to classical population genetics
and notions of additive fitness. On the left-hand side, the
genomes are not sorted in any order; on the right-hand side,
the same genomes are sorted (ranked) by their total fitness,
Z, such that Z [1] is the genome of lowest fitness and Z [n] is
the genome of highest fitness. If selection were deterministic,
the fittest genome (Z [n], highlighted by a frame) would even-
tually displace all other genomes. The statistical properties
of the genic fitnesses of this fittest genome are thus of special
interest from an evolutionary perspective. In particular, we
are here interested in any statistical associations among these
genic fitnesses: if that association tends to be negative, then
recombination will be favored.

a measurable function from Rm into R. For i = 1, . . . , n,
denote by Z

[1] the image by � of the i-th row of the array.

Z
[1] = �(X(1)) .

Z
[1] represents the total fitness of individual i. Denote

by � 2 Sn the random permutation such that

n
min
i=1

Z
[1] = S�(1) 6 · · · 6 S�(n) =

n
max
i=1

Z
[1]

.

The permutation � is uniquely defined up to the usual
convention of increasing order for indices corresponding
to ties. Deterministically, natural selection will cause
the genome of highest fitness (S�(n) = maxni=1 Z

[1]) to
fix. We are interested in the statistical properties of the
X�(n),j ; in particular, we are interested in any associa-
tions that might arise across loci (across di↵erent values
of j) in this winning genotype. If these associations are
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negative, recombination – which alleviates negative asso-
ciations across loci – should be favored.

For 1 6 i 6 n and 1 6 j 6 m, define:

Ai,j = X�(i),j .

For 1 6 i 6 n, Ai = (Ai,j)16j6m is that row in the array

(Xi,j) which ranks i-th in the order of images by �.

Density

Proposition 0. Assume that for j = 1, . . . ,m, Xi,j has
pdf fj, for all i = 1, . . . , n. Denote by H the common
cdf of Z

[1]’s and assume that H is continuous over its
support. The joint pdf of Ai is:

n f1(x1) · · · fm(xm)

✓
n� 1

i� 1

◆
H

i�1(�(x1, . . . , xm))(1�H(�(x1, . . . , xm)))n�i
.

Proof: For any continous bounded function  of m vari-
ables:

E( (Ai)) =
nX

`=1

1

n
E( (X`) |�(i) = `)

= E( (X1) |�(i) = 1) .

Thus the distribution of Ai and the conditional dis-
tribution of X1 given that �(X1) ranks i-th, are the
same. The pdf of X1 is f1(x1) · · · fm(xm). The prob-
ability of the event �(i) = 1 is 1/n. Conditioning on
X1 = (x1, . . . , xm), the probability that X1 ranks i-th is
the probability that among S2, . . . , Sn, i � 1 are below
�(x1, . . . , xm) and n � i are above. The probability for
S` to be below �(x1, . . . , xm) is H(�(x1, . . . , xm)). Hence
the result. ⇤
Observe that the average of the densities of Ai’s is the
common density of all X(1)’s, i.e. f1(x1), . . . , fm(xm).
This was to be expected, since choosing at random one
of the Ai’s is equivalent to choosing at random one of the
X(1)’s. The question is whether the Ai’s are negatively
associated in the sense of Joag-Dev and Proschan [20];
this seems a reasonable conjecture in light of Theorems
2.8 and also examples (b) and (c) of section 3.2 in that
reference. However we have not been able to prove it.
We now focus on the simplest possible scenario:

Two loci, two alleles

No hypothesis on the ranking function � is made at
this point, apart from being measurable. Notations
will be simplified as follows: (X1, Y1, X2, Y2) are i.i.d.;
(X(1), Y(1)) (the infimum) denotes that couple (X1, Y1)
or (X2, Y2) whose value by � is minimal; (X(2), Y(2))
(the supremum) denotes that couple (X1, Y1) or (X2, Y2)
whose value by � is maximal.

Proposition 1. Let  be any measurable function from
R2 into R. Then: 1

2E( (X(1), Y(1)))+
1
2E( (X(2), Y(2))) =

SELECTION

X Y X Y

A B

+ +>

<
>

X:

Y:

Z:

High fitness

Low fitness

Figure 3. Two loci, two alleles. Here, a large (infinite)
population consists of individuals whose genome has only two
loci x and y, each of which carries one of two alleles: genotype
1 carries allele X1 at the x locus and Y1 at the y locus, and
genotype 2 carries allele X2 at the x locus and Y2 at the y
locus. An individual’s fitness is simply the sum of its genic
fitnesses, Z = X+Y , so that the fitnesses of genotypes 1 and
2 are Z1 = X1 + Y1 and Z2 = X2 + Y2, respectively. The fit-
ter of these two genotypes has total fitness denoted Z [2] (i.e.,
Z [2] = Max{Z1, Z2}) and genic fitnesses X(2) and Y(2) (i.e.,

Z [2] = X(2) + Y(2)). Similarly, the less-fit of these two geno-

types has total fitness Z [1] = X(1)+Y(1). We note: Z [2] > Z [1]

by definition, but this does not guarantee that X(2) > X(1) or
that Y(2) > Y(1), as illustrated in the lower box. The popula-
tion labeled A consists of two distinct genotypes but selection
acts to remove the inferior genotype leaving a homogeneous
population in which individuals are all genetically identical
(with fitness Z [2]) as illustrated in the population labeled B.

E( (X1, Y1)) . In particular, the arithmetic mean of
E(X(1)) and E(X(2)) is E(X1).

Proof: Consider a random index I, equal to “(1)”
or “(2)” each with probability 1/2, independent from
(X1, Y1, X2, Y2). By an argument used in the previous
section, the couple (XI , YI) is distributed as (X1, Y1).
Hence, E( (XI , YI)) = E( (X1, Y1)) , however,
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E( (XI , YI)) = E(E( (XI , YI) | I))

=
1

2
E( (X(1), Y(1))) +

1

2
E( (X(2), Y(2))) .

⇤

Proposition 2. We have: Cov(X(1), Y(1)) +
Cov(X(2), Y(2)) = �(Cov(X(1), Y(2))+Cov(X(2), Y(1))) =
�

1
2E(X(2) �X(1))E(Y(2) � Y(1)) .

Proof: Consider again the same random index I, equal
to “(1)” or “(2)” each with probability 1/2, indepen-
dent from (X1, Y1, X2, Y2). The couples (XI , YI) and
(XI , Y3�I) are both distributed as (X1, Y1). There-
fore their covariances are null. These covariances can
also be computed by conditioning on I (see e.g. for-
mula (1.1) in [20]). For (XI , YI): Cov(XI , YI) =
E(Cov(XI , YI |I))+Cov(E(XI |I),E(YI |I)) . On the right-
hand side, the first term is: E(Cov(XI , YI |I)) =
1
2Cov(X(1), Y(1)) +

1
2Cov(X(2), Y(2)) . The second term

is: Cov(E(XI |I),E(YI |I)) = 1
4E(X(2) � X(1))E(Y(2) �

Y(1)) . Similarly, we have: Cov(XI , Y3�I) =
E(Cov(XI , Y3�I |I))+Cov(E(XI |I),E(Y3�I |I)) . The first
term in the right-hand side is: E(Cov(XI , Y3�I |I)) =
1
2Cov(X(1), Y(2)) +

1
2Cov(X(2), Y(1)) . The second term

in the right-hand side is: Cov(E(XI |I),E(Y3�I |I)) =
�

1
4E(X(2) �X(1))E(Y(2) � Y(1)) . Hence the result. ⇤

Proposition 3. Assume that the ranking function �

is symmetric: �(x, y) = �(y, x). Then the cou-
ple (X(1), Y(2)) has the same distribution as the couple
(Y(1), X(2)).

As a consequence, X(1) and Y(1) have the same distribu-
tion, so doX(2) and Y(2). Thus: E(X(2)�X(1)) = E(Y(2)�

Y(1)) = 1
2E(Z [2]

� Z
[1]) . Another consequence is that:

Cov(X(1), Y(2)) = Cov(X(2), Y(1)) . Thus by Proposition

2: Cov(X(1), Y(2)) = Cov(X(2), Y(1)) =
1
16E2(Z [2]

�Z
[1]) .

Proof: Since � is symmetric, the change of variable
(X1, Y1, X2, Y2) 7! (Y1, X1, Y2, X2) leaves unchanged the
couple (S1, S2). ⇤

Proposition 4. Assume that the ranking function �

is the sum: �(x, y) = x + y. Then: E(X(1)) =
E(Y(1)) , E(X(2)) = E(Y(2)) , and E(X(1)) < E(X(2)) .

Proof: The first two equalities come from Proposition 3.
By definition, E(X(1)+Y(1)) < E(X(2)+Y(2)). Hence the
inequality. ⇤

Proposition 5. Assume that the ranking function
� is the sum, and that the common distribution of
X1, Y1, X2, Y2 is symmetric: there exists a such that
f(x � a) = f(a � x). Then (a � X(1), a � Y(1)) has the
same distribution as (X(2) � a, Y(2) � a).

As a consequence, Cov(X(1), Y(1)) = Cov(X(2),Y(2)).

Proof: The change of variable (X1, Y1, X2, Y2) 7! (2a �

X1, 2a� Y1, 2a�X2, 2a� Y2) leaves the distribution un-
changed. It only swaps the indices i and s of minimal
and maximal sum. ⇤

If we summarize Propositions 1, 2, 3, 4, 5 for the case
where the ranking function is the sum, and the distribu-
tion is symmetric, one gets:

Cov(X(1), Y(1)) = Cov(X(2), Y(2)) < 0

Cov(X(1), Y(2)) = Cov(X(2), Y(1)) > 0

|Cov(X(1), Y(1))| = Cov(X(1), Y(2)) =
1

16
E2(Z [2]

� Z
[1]) .

Two loci, n alleles

Let n be an integer larger than 1. For i = 1, . . . , n,
let (Xi, Yi) be i.i.d. couples of random variables. For
i = 1, . . . , n, let Zi = Xi + Yi, and:

Pi =
e�Zi

nX

j=1

e�Zj

.

Let U be a random variable, independent from
(Xi, Yi), i = 1, . . . , n, uniformly distributed over (0, 1).
Define the random index I in {1, . . . , n} as:

I =

8
>>>>>><

>>>>>>:

1 if U 6 P1 ,

...
i if P1 + · · ·+ Pi�1 < U 6 P1 + · · ·+ Pi ,

...
n if P1 + · · ·+ Pn�1 < U .

Finally, let (X,Y ) = (XI , YI). The goal is to say some-
thing about the first and second order moments of X and
Y .

For this, conditioning over two embedded �-algebras, de-
noted by F2n and Fn, will be used.

F2nis generated by(Xi, Yi) , i = 1, . . . , n ,

Fnis generated byZi , i = 1, . . . , n .

If A is any random variable:

E (A) = E (E (A | Fn)) = E (E (E (A | F2n) | Fn)) . (1)

Conditioning functions of (X,Y ) over F2n and Fn works
as follows.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.07.447320doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.07.447320
http://creativecommons.org/licenses/by-nc-nd/4.0/


6

Lemma 1. Let � be any real valued function of two vari-
ables. Provided the following expectations exist, one has:

E(�(X,Y ) | F2n) =
nX

i=1

Pi�(Xi, Yi) ,

E(�(X,Y ) | Fn) =
nX

i=1

PiE(�(Xi, Yi) |Zi) .

For second order moments, the following well known
lemma on conditional covariances will be used.

Lemma 2. Let (A,B) be a pair of real-valued random
variables on (⌦,F ,P), and let F1 ✓ F2 be two �-fields
on ⌦. Then:

cov (A,B | F1) =

E (cov (A,B | F2) | F1) + cov (E(A | F2) , E(B | F2) | F1) .

In particular, when F1 = {;,⌦}:

cov (A,B) = E (cov (A,B | F2))+cov (E(A | F2) , E(B | F2)) .

Lemma 3 relates the moments of X + Y to the Zi’s
and Pi’s.

Lemma 3. Denote by Z and V the mean and variance of
Z with respect to P :

Z =
nX

i=1

PiZi and V =

 
nX

i=1

PiZ
2
i

!
� Z

2
.

Then:

E(X + Y ) = E
�
Z
�
, (2)

var(X + Y ) = var
�
Z
�
+ E(V ) . (3)

Proof: It turns out that Z is the conditional expectation
of X + Y with respect to Fn, because:

E(X + Y | Fn) = E(E(X + Y | F2n) |Fn)

= E

 
nX

i=1

PiZi | Fn

!

=
nX

i=1

PiZi = Z

Hence: E(X+Y ) = E
�
Z
�
. Similarly, V is the conditional

variance of X + Y , given Fn. By Lemma 2:

var(X + Y ) = var
�
Z
�
+ E(V ) .

⇤
From now on, it will be assumed that the common dis-
tribution of (Xi, Yi), for i = 1, . . . , n, is bivariate normal.

Lemma 4. Let (X1, Y1) be a couple of random variables,
having bivariate normal distribution N2(µ,K), with ex-
pectation µ = (µx, µy), covariance matrix:

K =

✓
�
2
x ⇢�x�y

⇢�x�y �
2
y

◆
,

where �x > 0, �y > 0, |⇢| < 1.
Denote:

⌘x =
�
2
x + ⇢�x�y

�2
x + �2

y + 2⇢�x�y
; ⌘y =

�
2
y + ⇢�x�y

�2
x + �2

y + 2⇢�x�y
,

and also:

� = µx⌘y � µy⌘x , � =
�
2
x�

2
y(1� ⇢

2)

�2
x + �2

y + 2⇢�x�y
.

Let Z1 = X1 + Y1. The conditional distribution of
(X1, Y1) given Z1 = z is bivariate normal, with expec-
tation:

(� + ⌘xz , �� + ⌘yz) ,

covariance matrix:

�

✓
1 �1

�1 1

◆
.

Proof: The vector (X1, Y1, Z1) has normal distribution
with expectation (µx, µy, µx+µy), and covariance matrix:

0

@
�
2
x ⇢�x�y �

2
x + ⇢�x�y

⇢�x�y �
2
y �

2
y + ⇢�x�y

�
2
x + ⇢�x�y �

2
y + ⇢�x�y �

2
x + �

2
y + 2⇢�x�y

1

A .

The conditional distribution of (X1, Y1) given Z1 = z is
again normal. The conditional expectation of X1 is:

E(X1 |Z1 = z) = µx +
z � (µx + µy)

�2
x + �2

y + 2⇢�x�y

�
�
2
x + ⇢�x�y

�

= � + ⌘xz .

The conditional expectation of Y1 is symmetric:

E(Y1 |Z1 = z) = �� + ⌘yz .

The covariance matrix does not depend on z:
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✓
�
2
x ⇢�x�y

⇢�x�y �
2
y

◆
�

1

�2
x + �2

y + 2⇢�x�y

✓
(�2

x + ⇢�x�y)2 (�2
x + ⇢�x�y)(�2

y + ⇢�x�y)
(�2

x + ⇢�x�y)(�2
y + ⇢�x�y) (�2

y + ⇢�x�y)2

◆
.

After simplification one gets:

�
2
x�

2
y(1� ⇢

2)

�2
x + �2

y + 2⇢�x�y

✓
1 �1

�1 1

◆
.

⇤
Theorem 1 below gives the first and second order mo-
ments of the random couple (X,Y ), when the common
distribution of the (Xi, Yi) is that of Lemma 4.

Theorem 1. Assume that for i = 1, . . . , n, the distribu-
tion of (Xi, Yi) is bivariate normal N2(µ,K). With the
notations of Lemma 4:

E (X) = � + ⌘xE (X + Y ) , (4)

E (Y ) = �� + ⌘yE (X + Y ) , (5)

var (X) = � + ⌘
2
xvar (X + Y ) , (6)

var (Y ) = � + ⌘
2
yvar (X + Y ) , (7)

cov (X,Y ) = �� + ⌘x⌘yvar (X + Y ) . (8)

Observe that, since ⌘x+⌘y = 1, the first two equations
add to identity, and so do the last three, the last one being
doubled.

Proof: By Lemma 1,

E(X | Fn) =
nX

i=1

PiE(Xi |Zi) .

By Lemma 4,

E(Xi |Zi) = � + ⌘xZi .

Hence:

E(X | Fn) = � + ⌘xZ .

Similarly:

E(Y | Fn) = �� + ⌘yZ .

Let us now compute var(X). By Lemma 2:

var(X) = E(var(X | Fn)) + var(E(X | Fn)) .

By Lemma 1,

var(X | Fn) =
nX

i=1

Pivar(Xi |Zi) .

But by Lemma 4, var(Xi |Zi) is the constant �, indepen-
dently on Zi. Thus:

var(X | Fn) =
nX

i=1

Pi� = � .

Now by Lemma 1:

var(E(X | Fn)) =
nX

i=1

Pivar(E(Xi |Zi)) .

By Lemma 4, E(Xi |Zi) = � + ⌘xZi, hence:

var(E(X | Fn)) =
nX

i=1

Pi⌘
2
xvar(Zi) = ⌘

2
xvar(X + Y | Fn) .

Joining both results through Lemma 2:

var (X) = � + ⌘
2
xvar (X + Y ) .

Similarly:

var (Y ) = � + ⌘
2
yvar (X + Y ) .

Let us now turn to cov(X,Y ): By Lemma 2:

cov(X,Y ) = E(cov(X,Y | Fn)+cov(E(X | Fn),E(X | Fn)) .

By Lemma 1,

cov(X,Y | Fn) =
nX

i=1

Picov(Xi, Yi |Zi) .

But by Lemma 4, cov(Xi, Yi |Zi) is the constant ��, in-
dependently on Zi. Thus:

cov(X,Y | Fn) =
nX

i=1

Pi(��) = �� .

Now by Lemma 1:

cov(E(X | Fn),E(Y | Fn)) =
nX

i=1

Picov(E(Xi |Zi),E(Yi |Zi)) .

By Lemma 4, E(Xi |Zi) = � + ⌘xZi, and E(Yi |Zi) =
�� + ⌘yZi. Hence:

cov(E(X | Fn),E(Y | Fn)) = ⌘x⌘yvar(X + Y | Fn) .

Joining both results through Lemma 2:

cov (X,Y ) = �� + ⌘x⌘yvar (X + Y ) .

⇤
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DISCUSSION

What if one bout of selection is not enough?

If the initial correlation between X and Y is strongly
positive, it may be the case that covariance is not sup-
pressed to negative values (recombinant fitness is not el-
evated to positive values) in the first bout of selection.
To explore the e↵ects of multiple bouts of selection, we
performed simulations in which the set of selected geno-
types is used to seed a new bout of selection. To this end,
n genotypes were chosen at random from the large num-
ber of selected genotypes generated from the first bout
of selection.
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Figure 4. Covariance and correlation as functions of the num-
ber of bouts of selection. Employing the notation of the Simu-
lations section above, genic fitness pairs (xi, yi), i = 1, 2, ..., n
are chosen by drawing at random from the (x̂j , ŷj) array, and
a new selection process produces a new array of “winners” or
“selected genotypes”, denoted (x̂0

j , ŷ
0
j), the covariance of this

new array will be lower than the covariance of the previous
(x̂j , ŷj) array. This models a second bout of natural selection.
The process is repeated to model more bouts of selection.

Specifically, employing the notation of the Simulations
section above, genic fitness pairs (xi, yi), i = 1, 2, ..., n
are chosen by drawing at random from the (x̂j , ŷj) ar-
ray, and a new selection process produces a new array of
“winners” or “selected genotypes”, denoted (x̂0

j , ŷ
0
j), the

covariance of this new array will be lower than the covari-
ance of the previous (x̂j , ŷj) array. This models a second
bout of natural selection. If the number of initial repli-
cate simulations is not very large, it may be necessary
to add noise (mutation) to the (x̂0

j , ŷ
0
j) array to avoid co-

variance quickly becoming zero. If the covariance of the
initial bivariate distribution is strongly positive, it may
take two or three bouts of selection, but the covariance

always becomes negative eventually.

Concluding remarks

To summarize what exactly has been modeled in this
paper, we revisit our definition of “selected genotypes”.
These are genotypes that are locally prevalent, due
to natural selection. Selected genotypes can include
locally-prevalent genotypes in populations, subpopula-
tions, demes, niches, or competing clones. A spatially-
structured population, for example, can have many spa-
tially separated subpopulations. After selection has been
operating in these subpopulations for some time, if an
individual from one subpopulation recombines with an
individal from another subpopulation, our findings show
that the o↵spring will be fitter, on average, than both
parents.
Technically speaking, our findings can be seen as a kind

of heterosis, because the term heterosis was originally
coined to refer to the simple observation that out-crossed
hybrids tend to be superior to their parents. Our find-
ings are not generally consistent, however, with modern
notions or explanations of heterosis which are intimately
related to, and rely on, theories of dominance and/or
overdominance. Where our findings can o↵er new in-
sights is in the theory of pseudo-overdominance underly-
ing heterosis, which relies on negative fitness associations
in linked regions of the genome. The existence of such
associations has been seen as somewhat mysterious. Our
findings provide a theoretical basis for the kinds of neg-
ative associations required by the pseudo-overdominance
theory and just might, therefore, provide a novel theo-
retical basis heterosis generally.
Finally, our findings correct a straw-man argument

commonly used to demonstrate why sex and recombi-
nation are enigmatic. The premise of this argument is
that natural selection will tend to amplify genotypes that
carry “good” (selectively well-matched) combinations of
genes; this premise seems so intuitive that it should re-
quire no proof. Recombination, in this case, would break
up the good gene combinations amplified by selection and
should thus be selectively suppressed. Independently of
biological specifics, our findings show that in fact the
opposite is true quite generally. We show that natural
selection has an encompassing tendency to amplify geno-
types carrying “bad” (selectively mis-matched) combina-
tions of genes. Recombination on average breaks up bad
combinations and assembles good combinations, and is
thus selectively favored.
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