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Abstract 

1. The gut microbiota of social bees is relatively simple and dominated by a core set of 

taxa that have been reported consistently in individual workers from around the 

world. Yet, variation remains, and this has been shown to affect host health.  

2. We characterised the individual- and regional-scale variation in the honeybee (Apis 

mellifera) gut microbiota in the North West of England, and asked whether the 

microbiota was influenced by host genotype or landscape composition.  

3. We collected multiple honeybees from 64 colonies, and sequenced the V4 region of 

the 16S rRNA gene to characterise the mid- and hindgut bacterial communities. We 

characterised the genotype of each individual honeybee, and also the land cover 

surrounding each colony.  

4. The literature-defined core taxa consistently dominated across the region, despite 

the varied environments. However, there was variation in the relative abundance of 

core taxa, and colony membership explained a large proportion of this variation. 

Individuals from more genetically diverse colonies had more diverse microbiotas, but 

individual genetic diversity did not influence gut microbial diversity. There was a 

trend for colonies in more similar landscapes to have more similar microbiota, whilst 

bees from more urban landscapes had a slightly less diverse microbiota than those 

from less urban landscapes.  

5. Our study provides, to our knowledge, the first demonstration for any species that the 

gut bacterial communities of individuals can be influenced by the genotypes of other 

conspecifics in the population. This is particularly important for social organisms, 

such as honeybees, as colony rather than individual genetic diversity appears to 

drive gut microbial diversity, a factor related to colony health.  
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Introduction 

Microbial symbionts are ubiquitous in their association with animals, and their 

influence on host species ranges across a spectrum from deleterious to beneficial (Ferrari 

and Vavre, 2011). An important class of symbionts resides in the gut. Gut microbial 

communities can affect host health (Kühn et al., 1993; Round and Mazmanian, 2009; 

Sekirov et al., 2010; Clemente et al., 2012), ecology, and evolution (Dillon and Dillon, 2004; 

Brucker and Bordenstein, 2012; Engel and Moran, 2013; McFall-Ngai et al., 2013; 

Rosenberg and Zilber-Rosenberg, 2016), for example by influencing host behaviour (Cryan 

and Dinan, 2012), protecting against parasites (Koch and Schmid-Hempel, 2011a), or 

providing insecticide resistance (Kikuchi et al., 2012). 

Social bees provide a good model system for studying gut microbiota (Zheng et al., 

2018). The bee gut microbiota is relatively simple, and is dominated by a core of nine 

bacterial phylotypes that are found consistently across continents, genotypes, and 

landscapes (Jeyaprakash et al., 2003; Mohr and Tebbe, 2006; Babendreier et al., 2007; 

Cox-Foster et al., 2007; Ahn et al., 2012; Disayathanoowat et al., 2012; Martinson et al., 

2012; Moran et al., 2012; Sabree and Moran, 2014; Corby-Harris et al., 2014a; Kwong et 

al., 2017). These phylotypes include six Proteobacteria [Giliamella apicola, Snodgrassella 

alvi (Kwong and Moran, 2013), Frischella perrara (Engel et al., 2013a), Bartonella apis 

(Kešnerová et al., 2016), Alpha 2.1 (Commensalibacter), and Alpha 2.2 

(Parasaccharibacter apium) (Martinson et al., 2011; Corby-Harris et al., 2014b; Corby-

Harris and Anderson, 2018)], two Firmicutes [Bombilactobacillus spp. (formerly 
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Lactobacillus Firm-4) and Lactobacillus Firm-5 (Killer et al., 2014; Olofsson et al., 2014; 

Zheng et al., 2020)], and an Actinobacterium [Bifidobacteria asteroides (Scardovi and 

Trovatelli, 1969; Bottacini et al., 2012; Ellegaard et al., 2015)]. 

Despite the consistent presence of these phylotypes in the bee gut bacterial 

community, there is variation in the relative abundance of the core phylotypes and in the 

core strains present (Moran et al, 2012; Engel et al., 2012; Ellegaard and Engel, 2016; 

Kwong and Moran, 2016; Powell et al., 2016). Variation in bacterial composition can lead to 

functional differences (Engel et al., 2012) in traits such as pollen and saccharide breakdown 

(Engel et al., 2012; Lee et al., 2015) and resistance to disease (Koch and Schmid-Hempel, 

2012). Until now studies have focused on the differences among regions and continents, 

but there is little knowledge of how the bee microbiota composition varies within regions 

that comprise multiple apiaries across a landscape. At this scale, the set of apiaries can be 

considered a population or metapopulation, with the potential for genetic material to be 

transferred among them. Understanding variation in the microbiota at the regional level is 

important because this variation can influence how host populations respond to change and 

their resilience to parasites and pesticides. (Zilber-Rosenberg and Rosenberg, 2008; 

Hehemann et al., 2012; Koch and Schmid-Hempel, 2012; Quercia et al., 2014; Suzuki, 

2017). Furthermore, if individual colonies have distinct microbiotas, then this may drive 

differences among colonies in fitness and health, and thus could be important for 

understanding and managing bee declines or optimising honey production (Ribière et al., 

2019). 

Studying multiple colonies across a region can help us to understand the variables 

that influence the honeybee microbiota, for example the effect of different land use types on 

the honeybee gut microbial community (Engel et al., 2016). Land use can be a proxy for 

floral composition (Kleijn et al., 2006), and potentially for other environmental factors such 
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as exposure to pollutants (Botías et al., 2017). Land use change is also thought to be a 

major factor in bee decline (Potts et al., 2010), and land use per se has been shown to 

influence gut microbiota composition in other systems (Teyssier et al., 2018), yet there is 

little knowledge of how it affects bee microbiota composition. Host genotype has also been 

shown to shape host microbiotas in some systems (Zoetendal et al., 2001; Bevins and 

Salzman, 2011; McKnite et al., 2012; Goodrich et al., 2014a; Griffiths et al., 2019). This may 

be particularly important for honeybee colonies because the majority of workers in a colony 

are related to the queen, although as honeybee queens are promiscuous, workers are not 

always full sibs (Estoup et al., 1994). 

In this study, gut bacterial communities of multiple individuals were sampled from 64 

honeybee colonies across the North West of England, UK, providing high landscape 

coverage. There were four main aims of the study: (i) to characterise the gut bacterial 

community composition of honeybees in the North West of England; (ii) to investigate how 

variation in the bacterial community is partitioned among colonies in the region; and (iii) to 

determine whether landscape diversity and composition and/or (iv) the genetic diversity of 

colonies or individuals influence the honeybee gut bacterial community. 

 

Materials and methods 

Sample collection 

We sampled individual honeybees from 64 colonies across North West England (Fig. 

1) in May and June 2016. The colonies were spread across both rural and urban 

environments, including three major urban centres, and were mostly owned by amateur 

beekeepers who volunteered to participate in the study. We sampled one colony per apiary, 

and five randomly selected nurse bees per colony. Nurse bees are adult workers that have 

yet to leave the nest, and that perform roles such as feeding the brood and guarding the 
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nest (Winston, 1987). We sampled the nurse stage because these bees take food from 

multiple foragers and distribute it to the larvae. Hence, they are exposed to a wide variety of 

food sources, and their microbiota may better reflect that of the colony as a whole (Kapheim 

et al., 2015). We identified nurse bees by shaking a brood frame into a bucket and 

collecting only those bees that did not fly away. After collection, bees were euthanised in 

100% ethanol and frozen at -20 oC until further use (Koch and Schmid-Hempel, 2011b; 

Powell et al., 2014). 

 

Dissection and DNA extraction 

Bees were washed in 1% (v/v) sodium hypochlorite solution for five minutes, followed 

by three washes in autoclaved MilliQ water, to remove any external bacteria that could 

contaminate the sample. To further reduce contamination, we carried out dissection, DNA 

extraction, and other molecular procedures in a PCR hood (UVP, CA) in which all 

equipment and surfaces had been UV-sterilised for 30 minutes. Dissecting instruments 

were autoclaved before use, and then cleaned with 1% sodium hypochlorite solution and 

heat treated to 250 oC using a bead steriliser (Steri 250, Inotech, UK) between dissections 

of bees from different colonies. Dissection involved removing the head, legs and wings, 

then using micro-dissecting Vannas spring scissors (FST, Germany) to cut a window into 

the dorsal cuticle. We teased the ventriculus away from the body wall using a needle, and 

used forceps to pull out the gut tract. If the crop did not separate naturally, it was cut away. 

Only the midgut and hindgut were used for this study, with one gut tract used per sample. 

The process was carried out without a microscope to reduce the possibility of 

contamination. We carried out negative extractions each day to monitor any contamination, 

which equated to two or three colonies per negative extraction. All negative extraction 
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samples were processed as normal, but instead of adding honeybee guts, sterilised forceps 

were scraped against the inside of the Eppendorf. 

We placed dissected guts in sterile 2-ml Eppendorfs with 180 μl SDS lysis buffer 

(200 mM NaCl, 200 mM Tris, 20 mM EDTA, 6% SDS; Moran et al., 2012). To homogenise 

the guts, we added a 5-mm stainless steel bead (Qiagen, UK) and 500 μl of 0.1 mm acid-

washed glass beads (Sigma-Aldrich, UK) to the sample, then shook the sample twice for 

2.5 minutes at 30 Hz on a Mixer Mill, inverting samples between shakings (Retsch, 

Germany; Engel et al., 2013b). After bead-beating, we added of 30 μl of 10 mg/ml lysozyme 

(Sigma-Aldrich, UK) and incubated the samples at 37 oC for 1 hour to digest Gram-positive 

cell walls (Teng et al., 2018). We extracted DNA using the Qiagen DNeasy Blood and 

Tissue Kit following the protocol for Gram-positive bacteria from step 4 of the DNeasy 

handbook (Qiagen DNeasy Blood and Tissue Handbook, 2006). The only modification to 

this protocol was to incubate the samples in proteinase K and buffer AL for 1 hour at 56 oC 

after the lysozyme step. The DNA was eluted in 200 μl of Buffer AE and stored at -20 oC 

until further use. 

 

Sequencing the gut bacterial community 

We sequenced the gut bacterial communities using a modification of the dual-index 

sequencing protocol described in Kozich et al. (2013) and Antwis et al. (2018). Briefly, the 

hypervariable V4 region of the 16S rRNA gene was amplified using the universal primers 

515F (TATGGTAATTGTGTGCCAGCMGCCGCGGTAA) and 806R 

(AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT), modified with Illumina adaptors and 

index sequences. The V4 region is commonly used to analyse bacterial communities and 

has previously been used to study the bee microbiota (Powell et al., 2014; Raymann et al., 

2017; Zheng et al., 2017). The V4 region was amplified in triplicate for each sample in a 
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single PCR step using the following conditions: 95 °C for 15 min; 25 cycles of 95 °C for 20 

s, 55 °C for 60 s, 72 °C for 60 s; and then 72 °C for 10 min. The triplicate PCRs were 

pooled, and the amplicons were cleaned using Agencourt Ampure beads (Beckman Coulter 

Genomics, Indianapolis, IN, USA) and quantified and quality checked using a Tapestation 

(Agilent Technologies Inc., CA, USA). DNA concentrations were determined using Qubit 

(Thermo Fisher Scientific, USA). We removed 29 samples because they had insufficient 

concentrations of DNA, leaving two to five samples (i.e., bees) per colony. Equimolar 

amounts of each remaining sample were pooled and sequenced together, along with 10% 

PhiX v3 (Illumina, San Diego, CA, USA) as an in-run control. Sequencing was conducted 

using Illumina v2 chemistry (2x250bp paired-end sequencing) on the MiSeq platform 

(Illumina, San Diego, CA, USA) at the University of Salford. 

 

Bioinformatics 

We processed sequence data using the Dada2 v1.6.0 pipeline (Callahan et al., 

2016) with default parameters in R 3.4.1 (R Core Team, 2017). Dada2 has been shown to 

perform well in relation to other pipelines (Callahan et al., 2016; Nearing et al., 2018). We 

trimmed the raw sequences when the Phred score (Q) was less than 30, which was at 240 

bp for the forward read and 230 bp for the reverse. Using the ‘filterandTrim’ function, we 

truncated reads when the Illumina quality score was less than two (truncQ = 2), and we 

removed sequences when the maximum expected error (maxEE) was greater than two. 

The modal contig length of the merged paired-end reads was 233 bp. Of the 1279 total 

amplicon sequence variants (ASVs) obtained, we removed 36 for having lengths greater 

than 236 bp, and we removed 883 chimeras using the function ‘removeBimeraDenovo’. 

Taxonomic assignment of the remaining sequences was performed using the RDP Naïve 
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Bayesian Classifier method described in Wang et al. (2007), with training sets constructed 

from the Silva v128 database (Quast et al., 2012) using Dada2’s default parameters.  

We removed ASVs that were not taxonomically assigned to the kingdom ‘Bacteria’ or 

that were classified to the class ‘Chloroplast’ or the family ‘Mitochondria’. At this point, all 

remaining ASVs were assigned down to at least the phylum level. We removed ASVs that 

were only present in one sample, as these are more likely to be erroneous (Goodrich et al., 

2014b). The 52 negative controls contained very low levels of contamination, with the total 

reads in each negative control ranging from 7 to 118. Across the negative controls, there 

were 18 ASVs that were also found in the true samples. We removed ASVs if the mean 

number of reads across all true samples was not at least 10x higher than in the negative 

controls. This led to the removal of seven ASVs, all of which were known contaminants from 

previous studies (Salter et al., 2014). The other 11 ASVs in the negative controls were all 

members of the previously-identified core phylotypes, and were the most abundant ASVs 

found in this study. After all filtering, 136 of the original 1279 ASVs remained in our 

analyses. We generated rarefaction curves for each sample using the command ‘rarecurve’ 

in the package vegan (Oksanen et al., 2018; Supplementary Figure S1).  

We applied maximum likelihood analysis to construct a phylogenetic tree of the 

filtered ASVs using the phangorn package v2.3.1 (Schliep, 2011) with a GTR+G+I 

nucleotide substitution model. We chose the GTR+G+I nucleotide substitution model 

because it had the highest log likelihood and lowest Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC) among available model options (Posada & Buckley, 

2004). The tree was midpoint rooted using the phytools package (Revell, 2012).  

 

Measuring biodiversity of the gut bacterial community 
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We calculated beta diversity from the ASV abundance data. Beta diversity captures 

variation among ecological communities (i.e., how gut bacterial communities differ among 

bees or colonies). Due to unequal sequencing depth across samples, we used Cumulative 

Sum Scaling (CSS; Paulson et al., 2013) to produce a normalised matrix of ASV 

abundances. Results obtained using CSS-normalised data were consistent with those 

obtained using data normalised by variance stabilisation transformation in the DESeq2 

package (Love et al., 2014). We generated CSS-normalised ASV abundance matrices for 

both individual bees and colonies. Abundance at the colony level was calculated by 

summing the normalised abundance values for each ASV across all samples from a colony 

and then dividing by the number of samples from that colony. We used weighted UniFrac 

distances to produce pairwise dissimilarity matrices from the CSS-normalised abundance 

data at the individual and colony levels by applying the ‘distance’ function in phyloseq 

1.21.0 (McMurdie and Holmes, 2013). UniFrac distances measure dissimilarity accounting 

for phylogeny (Lozupone et al., 2011). The dissimilarity matrices were visualised with non-

metric multidimensional scaling (nMDS) performed by the ‘ordinate’ function in phyloseq.  

We measured alpha diversity using Hill numbers with q values of 0, 1 and 2, which 

differ in how they weight rare ASVs (Hill, 1973). Alpha diversity captures the diversity of the 

bacterial community within individual bees or colonies. When q = 0 the Hill number reports 

absolute species richness, and when q > 0 the Hill number increases as the combination of 

richness and evenness of the community increases. For individual bees, we calculated Hill 

numbers from the raw read counts using rarefaction/extrapolation curves to account for 

differences in sequencing depth among samples (Chao et al., 2014). For colonies, we 

estimated Hill numbers from the mean proportional abundance of ASVs across all samples 

from the colony. Thus, the Hill numbers for colonies weight each sample from the colony 
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equally regardless of sampling depth, but are sensitive to the number of samples from the 

colony. 

 

Landscape analysis 

We determined the landscape composition surrounding each colony (except one for 

which the GPS location was not recorded) using data from the Land Cover Map 2015 (25m 

raster, GB; Rowland et al., 2017). The Land Cover Map classifies the land cover of each 25 

m2 pixel into one of 21 land cover classes. We used QGIS version 2.18.14 (QGIS 

Development Team, 2017) to overlay the Land Cover Map raster layer onto the locations of 

colonies, and to define buffer zones around each colony at 500 m, 1.5 km, 5 km and 10 km 

radii. Buffer zone sizes were chosen based on the frequency at which honeybees forage at 

different distances from the colony (Visscher and Seeley, 1982; Waddington et al., 1994; 

Steffan-Dewenter and Kuhn, 2003). Honeybees can forage up to 10km from the colony 

(Visscher and Seeley, 1982), whilst the 500m buffer zone was included to investigate local 

colony effects. The 1.5 km buffer zone was chosen to reflect the mean foraging distance 

reported in a previous study (Steffan-Dewenter and Kuhn, 2003), whilst 90% of honeybees 

have been shown to forage within 5 km (Visscher and Seeley, 1982). We used the LecoS 

plugin (Jung, 2016) for QGIS to determine the proportion of each buffer zone that belonged 

to each of the 21 land cover classes, which includes one urban class. The landscape 

diversity of each buffer zone around each colony was determined by estimating the Hill 

number (q = 1) from the raw land-use proportion data using the package hillR (Li, 2018). 

The suitability of Hill numbers to estimate landscape diversity is supported by the fact that 

the related Shannon index is widely used to characterise landscape diversity (Nagendra, 

2002; Ramezani, 2012). 
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Genotyping bees and colonies 

We determined individual bee genotypes at five microsatellite loci according to the 

protocol described in Evans et al. (2013) using the primers detailed in Supplementary Table 

S1. These microsatellite loci have been used in other honeybee population genetic studies 

(Muñoz et al., 2009; Muñoz et al., 2012). We ran the microsatellites as two separate 

multiplexes, with primers A113, AP043, and AP055 in multiplex 1 and primers A007 and 

B124 in multiplex 2, using the Qiagen Type-It master mix kit (Qiagen, Valencia, CA) in a 

final reaction volume of 10 µl. PCR amplification involved denaturation at 94 oC for 5 min, 

followed by 30 cycles of 95 oC for 30 s, 57 oC for 30 s, and 72 oC for 30 s, with a final 

elongation step at 72 oC for 30 min. The size of the microsatellites was determined by 

capillary electrophoresis on an ABI 3730 DNA Analyser (Applied Biosystems, CA, USA) at 

the University of Manchester Sequencing Facility, using the GeneScanTM LIZ500 (Thermo 

Fisher Scientific, USA) size standard. The output peaks were scored using Genemapper 

v5.0 software (Applied Biosystems, Foster City, CA, USA) and sorted into allele bins using 

the MsatAllele package v1.05 (Alberto, 2009) in R (R Core Team, 2017). A subset of 

samples were repeated to ensure consistency of allele calling. 

We analysed host genotype data using the package adegenet (Jombart, 2008). We 

calculated the number of alleles per locus, whether each locus was in Hardy-Weinberg 

equilibrium, and the expected and observed heterozygosities in the population. To measure 

the genetic diversity of individual bees, we calculated the heterozygosity of each individual. 

To measure the genetic diversity of colonies, we calculated i) the mean observed 

heterozygosity of each colony and ii) the mean proportion of alleles shared between pairs of 

bees in the colony. 

 

Statistical analyses 
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We used our weighted UniFrac dissimilarity matrices to investigate the partitioning of 

variability in gut bacterial communities within and among colonies, and to ask whether 

colonies or individuals with more similar landscapes or genotypes also had more similar gut 

bacterial communities. We used regression analysis to investigate how the alpha diversity 

of bacterial communities at the colony and individual levels varied over space and as a 

function of landscape composition and host genetic diversity.  

 

How is variation in the gut bacterial community partitioned within and among colonies? 

We partitioned variation in the gut bacterial community within and among colonies 

using permutational multivariate analysis of variance (PERMANOVA; Anderson, 2001) with 

9999 permutations applied to our weighted UniFrac dissimilarity matrices and implemented 

in the ‘adonis’ function of the package vegan (Oksanen et al., 2018). We used a K-Nearest 

Neighbour (KNN) graph-based analysis of the CSS-normalised individual-level data, 

implemented with the functions ‘phyloseqGraphTest’ and ‘igraph’ (Csárdi and Nepusz, 

2006), to ask whether the individuals with the most similar microbiotas were likely to be 

nestmates or from different colonies. We performed the KNN analysis for K=3, because 

individuals from most colonies had at least three nestmates that were sampled. 

 

Do colonies that are closer in space have more similar bacterial communities? 

We studied the relationship between colony bacterial community composition and 

the geographic distance between colonies using a Mantel test (9999 permutations; Mantel, 

1967). The geographic distance matrix was created by converting the longitude and latitude 

coordinates of each colony into UTM coordinates using the R package rgdal (Bivand et al., 

2020). 
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Does land use affect gut bacterial community composition? 

 We used partial Mantel tests (9999 permutations) to assess whether colonies with 

more similar surrounding landscapes had more similar bacterial communities when 

controlling for distance between colonies. We created the bacterial community composition 

matrix from pooled colony data. Distance matrices for land use composition were generated 

for each of the four buffer zones using Bray-Curtis dissimilarities calculated with the function 

‘vegdist’ in the package vegan (Oksanen et al., 2018). We included the geographic distance 

matrix in the analysis to account for potential spatial autocorrelation in gut bacterial 

community composition. We performed partial Mantel tests for each buffer zone separately. 

  

Urbanisation has been shown to influence gut microbiota in other systems (Teyssier 

et al., 2018). Therefore, we performed a PERMANOVA using the function ‘adonis’ to ask 

whether the pooled colony gut bacterial community composition varied with the proportion 

of urban land surrounding the colony. 

 

Do genetic diversity and host genotype affect gut bacterial community composition? 

We generated genetic dissimilarity matrices (Roger’s genetic distances; Rogers, 

1972) from the individual and colony-level multilocus allele data using the package 

adegenet (Jombart, 2008), and visualised genetic dissimilarity using nMDS. We used a 

Mantel test (9999 permutations) to determine whether individuals with more similar 

genotypes harboured more similar bacterial communities. For the colony-level data, we 

used a partial Mantel test, which also incorporated the geographic distance matrix, to 

account for potential spatial autocorrelation in gut bacterial community composition. 
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What factors predict alpha diversity in the gut bacterial community at the colony and 

individual levels? 

 To understand the factors that predict the diversity of the gut microbiome at the 

colony level, we regressed the colony-level Hill numbers on i) the mean proportion of alleles 

shared between individuals in the colony, ii) the mean heterozygosity of the colony, iii) the 

landscape diversity in the 5 km buffer zone around the colony, iv) the proportion of urban 

land surrounding the colony, and the v) northing and vi) easting of each colony. We 

included the number of bees sampled from the colony as a categorical predictor in the 

model. This controls for the fact that we expect to find more ASVs in colonies from which 

more bees were sampled, but makes no assumptions about the rate at which ASVs 

accumulate as the number of samples increases. We weighted the variance of each colony-

level data point in proportion to the square root of the number of samples (i.e., individual 

bees) from which that data point was calculated. Initially, we fitted linear regressions using 

the package nlme (Pinheiro et al., 2020) which allowed us to include spatially 

autocorrelated error in the model. However, we found no evidence for spatial 

autocorrelation, and therefore we removed spatial autocorrelation from the model and fitted 

linear regressions using the function lm in base R. For each Hill number (i.e., q Î {0, 1, 2}), 

we fitted models that included each possible combination of the predictors in the full model. 

We weighted each model according to its Akaike weight, and calculated the effect size of 

each predictor as the weighted average across all models in which that predictor appeared 

(Burnham & Anderson, 2002). To obtain p-values for each predictor, we computed the 

confidence distribution around the effect size of the predictor in each model in which it 

appeared, weighted these according to the Akaike weights of the models, and summed 

across all models. The p-value associated with the predictor is two times the minimum of 
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the proportion of the confidence distribution that is greater than zero or is less than zero 

(Gilman et al., 2018). 

 To understand the factors that predict the diversity of the gut microbiome of 

individuals within colonies, we regressed the individual-level Hill numbers on the 

heterozygosity of the individual and on all six colony-level predictors. We included a random 

effect of colony in the model, and fitted models by maximum likelihood using the package 

lme4 (Bates et al., 2015). For each Hill number (i.e., q Î {0, 1, 2}), we calculated the effect 

size and p-values associated with each predictor as described for the colony-level analysis. 

 

Results 

A total of 6,900,477 reads passed the quality filter thresholds, from an initial output of 

9,487,873 reads from the MiSeq run. The number of reads per sample ranged from 7,758 

to 44,343 (mean 23,551), with a total of 136 ASVs detected across the study. The 

rarefaction curves for each sample reached a plateau (Supplementary Figure S1). Thus, the 

sequencing depth was sufficient to characterise the microbial community of the samples.  

 

Honeybee gut bacterial community composition in the North West of England 

In line with previous studies, 98.9% of reads were members of the literature-defined 

core taxa, and only six samples had bacterial community compositions that consisted of 

less than 90% core phylotypes. All core phylotypes except Parasaccharibacter apium were 

found in this study. 

Each core taxon present in this study was represented by multiple ASVs, but the 

majority of ASVs were rare (Supplementary Table S2). The 20 most abundant ASVs 

comprised 94.5% of all reads in the study. These included representatives from each of the 
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nine core phylotypes except P. apium, and also included the non-core species Lactobacillus 

kunkeei. Thus, the pattern of dominance by the core phylotypes is driven by just a one or 

two ASVs from each taxon. The most abundant core phylotypes in this region were 

Lactobacillus Firm 5 and Gilliamella apicola, which together constituted 48.6% of the 

regional honeybee gut bacterial community (Supplementary Table S2). Outside of the core, 

the majority of ASVs belong to the family Enterobacteriacae. 

All of the core phylotypes found in this study were present in each of the colonies 

(Supplementary Table S3). In contrast, only 67% of individuals possessed all of the core 

phylotypes, and 7.8% of individuals were missing two or more phylotypes. However, only 

the Commensalibacter phylotype was present in less than 90% of individuals.  

 

How is variation in the gut bacterial community partitioned within and among 

colonies? 

Colony membership had a significant effect on honeybee gut bacterial community 

composition, explaining 41% of the variation among samples (PERMANOVA: R2=0.414, 

df=63, 229, p=0.0001; Fig. 2). There were marginally significant differences in sample 

variance within colonies (betadisper: F=1.38, p=0.051), but PERMANOVA is robust to 

differences in variance when designs are well-balanced (Anderson and Walsh, 2013). Due 

to the differences among colonies in sample size, we randomly selected three individuals 

from each colony to ensure there was an equal number of observations per colony, and 

performed the PERMANOVA on this subset of the data, using 9999 permutations as before. 

We repeated the analysis 50 times, with each analysis producing the same p value. KNN 

analysis showed that the gut bacteria of bees from the same colony were more similar than 

expected by chance (p=0.001). However, only 5.7% of edges were between samples from 

the same colonies. Thus, while there is structure by colony, high variation within colonies 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.04.447042doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.447042


 18 

means that bees from the same colony did not have distinguishable colony-specific 

microbiota. 

 

Do colonies that are closer in space have more similar bacterial communities? 

We found no evidence that colonies that were closer together geographically 

possessed more similar gut microbial communities (Mantel test: r=0.020, p=0.336). 

 

Does land use affect gut bacterial community composition? 

There was a marginally significant effect of landscape composition on the pooled gut 

bacterial community composition of the colonies at the 5km scale (Partial Mantel test: 

r=0.095, p=0.057), and a trend toward an effect of landscape composition at the 10-km 

scale (Partial Mantel test: r=0.073, p=0.087). There was no significant effect of landscape 

composition on pooled colony gut microbial composition at the 500-m (Partial Mantel test: 

r=0.041, p=0.234) or the 1.5-km scales (Partial Mantel test: r=0.072, p=0.109). The 

proportion of urban land surrounding a colony did not predict overall composition of the gut 

microbiota at the colony level (PERMANOVA: R2=0.018; df=1, 62; p=0.325). 

 

Do genetic diversity and host genotype affect gut bacterial community 

composition? 

There were 81 alleles across the five microsatellite loci we studied, with the number 

of alleles per locus ranging from nine to 22 (Supplementary Table S4). Only 0.14% of the 

data were null alleles. Of 293 individual bees, only 14 did not have unique genotypes. Thus, 

the five loci were enough to discriminate among most individuals. None of the loci were in 

Hardy-Weinberg equilibrium (p<0.001), which is not surprising given that honeybees are a 
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managed species, and the samples include a large number of related individuals. The 

genetic distances among individuals are shown in Supplementary Figure S2, and the allele 

richness and heterozygosity data for each colony is reported in Supplementary Table S5. 

Individual genotype did not influence the gut bacterial community composition of individual 

bees (Mantel test: r=-0.042, p=0.928), and colony genotype did not influence colony-level 

gut bacterial community composition (Mantel test: r=-0.128, p=0.967).  

 

What factors predict alpha diversity in the gut microbiota at the colony and 

individual level? 

At the colony level, we found a marginally significant relationship between the 

species richness of the gut bacterial community and the proportion of urban land 

surrounding the colony (p = 0.062; Table 1). The least urban colonies had approximately 

3.7 more species in their pooled gut microbiota than the most urban colonies. We found a 

marginally significant relationship (p = 0.095) between the proportion of alleles shared 

between pairs of colony-mates and the biodiversity of the gut microbiome at the colony level 

for q = 1, and a non-significant trend in the same direction (p = 0.101) for q = 2. In both 

cases, colonies with lower proportions of shared alleles (i.e., higher genetic diversity) had 

more diverse gut bacterial communities. At the individual level, bees from colonies with 

fewer alleles shared between pairs of workers (i.e. higher genetic diversity) had greater gut 

bacterial biodiversity when q = 1 (p = 0.040) and when q = 2 (p = 0.040) (Fig 3, Table 2). 

 

For an overview of all of the tests and results undertaken see Table 3.  

 

Discussion 
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This study reports a detailed investigation of honeybee gut bacterial communities 

across a geographic region. A few core bacterial phylotypes dominated the communities in 

our study, and each phylotype was in turn dominated by just one or two ASVs. There was 

structuring of the microbiota by colony, but an individual’s colony membership could not be 

predicted from its microbiota composition. We found weak evidence that more urban 

colonies had less diverse gut bacterial communities, and that colonies from more similar 

environments had more similar gut bacterial communities. We found stronger evidence that 

individual bees had greater gut bacterial diversity when their colonies had greater genetic 

diversity. This last result is particularly interesting, because it means that, in honeybees, the 

genotypes of individuals predict the bacterial communities of other individuals in the 

population. To our knowledge, this is the first time this has been shown for any species. 

 

Honeybee gut bacterial community composition in the North West of England 

Our study provides further evidence that the honeybee gut bacterial community is 

dominated by a core set of phylotypes that have been found consistently across landscapes 

and continents (Jeyaprakash et al., 2003; Mohr and Tebbe, 2006; Babendreier et al., 2007; 

Cox-Foster et al., 2007; Ahn et al., 2012; Sabree et al., 2012; Disayathanoowat et al., 2012; 

Martinson et al., 2012; Moran et al., 2012; Corby-Harris et al., 2014a; Kwong et al., 2017). 

The only absentee from the literature-defined core in our study was Parasaccharibacter 

apium. The absence of P. apium is not surprising as it is generally not found in worker guts, 

and instead can be found in worker hypopharyngeal glands, the guts of mature queens, 

larvae and the colony environment (Corby-Harris et al., 2016). A lack of P. apium in our 

data suggests our methods successfully limited contamination from bacteria in the colony 

environment and the worker crop. 
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The literature-defined core phylotypes comprised a similar proportion of the 

honeybee gut bacterial community in this study and in previous studies (Moran, 2015). 

Furthermore, Lactobacillus Firm 5 and Gilliamella apicola were the most abundant 

phylotypes in the honeybee gut here, and both have been found to dominate in other 

studies (Cox-Foster et al., 2007; Moran et al., 2012). Therefore, our results suggest that the 

bacterial communities of honeybee guts in North West England are similar to those seen in 

other places. 

Within each core phylotype there were multiple ASVs, but most of the reads within 

each belonged to just one or two ASVs. Previous studies have found multiple strains of a 

phylotype within a single individual, with one strain often dominating (Moran et al., 2012). 

The amplicon length used in this study precludes the discrimination of different strains, but 

the study extends the conclusion of previous studies to show that the same ASVs dominate 

not just within individuals, but across the region, among different host genotypes, and in 

bees exposed to different land use types.  

 

Does land use affect gut bacterial community composition? 

In the 5 km and 10 km buffer zones, there was a trend for landscapes with more 

similar land use composition to harbour colonies with more similar gut bacterial 

communities. These results are consistent with a small body of work that links honeybee 

microbiota to land use. Jones et al. (2018) found small differences in the gut microbiota of 

colonies placed near oil seed rape fields and those placed further away. Donkersley et al. 

(2018) found that land use surrounding colonies predicts the species richness of the bee 

bread microbiota. In contrast, in three bumblebee species, Cariveau et al. (2014) found no 

difference in the microbiota of individuals collected at an active or at an abandoned 

cranberry farm.  
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We found a weak trend linking the diversity of the honeybee gut bacterial community 

to urbanisation. In more urban environments, gut bacterial communities had lower species 

richness. Among synanthropic bird species, similar patterns have been reported in house 

sparrows (Passer domesticus; Teyssier et al., 2018) in Belgium and herring gulls (Larus 

argentatus; Fuirst et al., 2018) in New York, but the opposite pattern was reported in white-

crowned sparrows (Zonotrichia leucophrys; Phillips et al., 2018) in California. Bosmans et 

al. (2018) reported higher gut bacterial diversity in bumblebee (Bombus terrestris) queens 

from two forested sites than from three urban sites in Belgium, but with only five sites 

sampled it was impossible to attribute differences with confidence to urbanisation. 

 

Do genetic diversity and host genotype affect gut bacterial community 

composition? 

 We found that individual bees from more genetically diverse colonies had more 

diverse gut bacterial communities. In a study in which colony genetic diversity was 

experimentally manipulated, Mattila et al. (2012) found that colonies with more genetic 

diversity had more diverse bacterial communities. Our results advance those of Mattila and 

colleagues in two important ways. First, the genetic diversity in our study was not 

manipulated, so our results show that naturally occurring differences in genetic diversity are 

sufficient to predict the diversity of gut bacterial communities. Second, the differences in 

bacterial diversity uncovered by Matilla and colleagues appeared at the level of the colony. 

Such differences could occur in two non-exclusive ways. One possibility is that bees with 

different genotypes could host different bacterial communities. Individual bees in genetically 

diverse colonies might not host more diverse communities themselves, but if each host a 

different set of bacteria, then the pooled community at the colony level would be more 

diverse. The other possibility is that, in more genetically diverse colonies, individual bees 
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host more diverse bacterial communities. In our study, the latter explanation was true. This 

shows that the genotype of each individual in the colony predicts the microbiome of other 

individuals.  

 Our results do not show that the genetic diversity at the colony level causes diversity 

in the gut bacterial community. For example, it might be true that colonies in areas with a 

higher density of colonies have more potential for outbreeding, and also have more 

potential to exchange microbiota. If this is true, then the relationship between genetic 

diversity and gut bacterial community diversity might be driven entirely by the environment. 

We believe the results of Matilla et al. (2018) make this explanation unlikely, but additional 

work will be needed to demonstrate this conclusively.  

 

Conclusion 

This study provides a comprehensive analysis of spatial variation in honeybee gut 

bacterial community at the regional scale, and provides new evidence for effects of land 

use and host genetic diversity on the gut microbiota. Given the large number of hypotheses 

we studied (Supplementary Tables S6-S8), we should expect at least some false positive 

results, and future work should seek to replicate the patterns we report. Our results provide 

the foundation for this and other work, and advance our general understanding of the 

honeybee microbiota. 
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Figure 1. Map of the study area in North West England with location shown as a grey box 

on the inset map of the UK. Colonies are shown as black dots and urban areas as hatched 

grey. The UK layer was downloaded from map.igismap.com and the urban layer (showing 

built areas in December 2011) from geoportal1-ons.opendata.arcgis.com. 
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Figure 2. Non-metric multidimensional scaling (nMDS) ordination plot showing the variation 

among individual honeybee gut bacterial communities, and among the mean colony 

bacterial communities, across the North West of England. The large circles are the centroid 

bacterial community for each colony. Each centroid is connected by lines to each of the 

individuals from that colony, represented by the smaller circles.  
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Figure 3.  Relationship between the proportion of alleles shared among individuals in a 

colony and the Shannon diversity (Hill number q=1) of those individuals' gut bacterial 

communities. Lower shared alleles indicates higher genetic diversity at the colony level. 

Therefore, in colonies that are more genetically diverse, individuals had more diverse 

gut bacteria. The regression line (slope = -0.47, p =. 0.040) is the line of best fit to the data, 

weighted across all fitted models. 
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Table 1. Factors predicting alpha diversity at the colony level. For each Hill number (q), the 

first number is the effect size scaled to the standard deviation of the predictor in the 

population, and the second number is the p-value associated with the predicter. • indicates 

a marginally significant effect. The effect size is the change in Hill number that we would 

expect for a change of one standard deviation in the predictor. Positive (negative) effects 

indicate that alpha diversity increases (decreases) as the predictor increases.  

 q = 0 q = 1 q = 2 

 
effect 

p-

value 
effect 

p-

value 
effect 

p-

value 

proportion of alleles shared 

between pairs of individuals 
-0.33 0.486 -0.51 0.095• -0.436 0.102 

mean heterozygosity  0.53 0.266 -0.06 0.852 -0.10 0.686 

landscape diversity -0.13 0.792  0.09 0.867  0.12 0.741 

proportion of urban land -0.92 0.062• -0.37 0.274 -0.20 0.477 

northing -0.22 0.667 -0.23 0.496 -0.13  0.642 

easting  0.49 0.364  0.47 0.170  0.30 0.322 
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Table 2. Factors predicting alpha diversity at the individual level. For each Hill number (q), 

the first number is the effect size scaled to the standard deviation of the predictor in the 

population, and the second number is the p-value associated with the predictor. * indicates 

a significant effect. The effect size is the change in the Hill number that we would expect for 

a change of one standard deviation in the predictor. Positive (negative) effects indicate that 

alpha diversity increases (decreases) as the predictor increases. 

 

  

 q = 0 q = 1 q = 2 

 
effect 

p-

value 
effect 

p-

value 
effect 

p-

value 

proportion of alleles shared 

between pairs of individuals 
-0.33 0.251 -0.47 0.040* -0.38 0.040* 

heterozygosity (individual)  0.04 0.855 -0.12 0.454 -0.11 0.395 

mean heterozygosity (colony) -0.04 0.902 -0.14 0.554 -0.09 0.650 

landscape diversity -0.20 0.556  0.13 0.661  0.16 0.483 

proportion of urban land -0.32 0.300 -0.24 0.312 -0.19 0.311 

northing  0.39 0.204  0.15 0.532  0.05  0.797 

easting  0.25 0.446  0.19 0.473  0.17 0.451 
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Table 3. The question addressed, the statistical test used and resulting p-value for the 

statistical tests performed in this study.  

Question addressed Statistical test p-value 

Do colonies that are 

closer together in space 

have more similar 

microbiota? 

Mantel test 0.336 

Are microbiota more 

similar among bees from 

the same colony than 

among bees from 

different colonies?  

PERMANOVA 0.0001* 

Network Analysis 0.001* 

Does host genotype 

influence microbiota 

composition 

Mantel; individual bees 0.928 

Mantel; colony level 0.967 

Does landscape 

composition influence 

colony microbiota 

composition? 

Mantel; 500m 0.234 

Mantel; 1.5km 0.109 

Mantel; 5km 0.057• 

Mantel; 10km 0.087• 

Is there a relationship 

between colony 

microbiota composition 

and the proportion of 

urban land surrounding 

the colony? 

PERMANOVA 0.325 
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