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Abstract 36 

The mitotic count (MC) is an important histological parameter for prognostication of 37 

malignant neoplasms. However, it has inter- and intra-observer discrepancies due to 38 

difficulties in selecting the region of interest (MC-ROI) and in identifying/classifying 39 

mitotic figures (MFs). Recent progress in the field of artificial intelligence has allowed 40 

the development of high-performance algorithms that may improve standardization of 41 

the MC. As algorithmic predictions are not flawless, the computer-assisted review by 42 

pathologists may ensure reliability. In the present study we have compared partial (MC-43 

ROI preselection) and full (additional visualization of MF candidate proposal and 44 

display of algorithmic confidence values) computer-assisted MC analysis to the routine 45 

(unaided) MC analysis by 23 pathologists for whole slide images of 50 canine 46 

cutaneous mast cell tumors (ccMCTs). Algorithmic predictions aimed to assist 47 

pathologists in detecting mitotic hotspot locations, reducing omission of MF and 48 

improving classification against imposters. The inter-observer consistency for the MC 49 

significantly increased with computer assistance (interobserver correlation coefficient, 50 

ICC = 0.92) compared to the unaided approach (ICC = 0.70). Classification into 51 

prognostic stratifications had a higher accuracy with computer assistance. The 52 

algorithmically preselected MC-ROIs had a consistently higher MCs than the manually 53 

selected MC-ROIs. Compared to a ground truth (developed with 54 

immunohistochemistry for phosphohistone H3), pathologist performance in detecting 55 

individual MF was augmented when using computer assistance (F1-score of 0.68 56 

increased to 0.79) with a reduction in false negatives by 38%. The results of this study 57 

prove that computer assistance may lead to a more reproducible and accurate MCs in 58 

ccMCTs. 59 

 60 
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Proliferation parameters of neoplastic cells correlate with patient prognosis for many 65 

tumor types including canine cutaneous mast cell tumors (ccMCTs).6,9,22,34,38 The 66 

mitotic count (MC) is the only proliferation marker that can be determined quickly and 67 

efficiently in standard histological sections stained with hematoxylin and eosin stain 68 

(HE).34 For ccMCT the MC has been used either as a solitary parameter 9,32,37 or as 69 

part of tumor grading systems.25 If used as a solitary prognostic parameter, a two-70 

tiered system with a MC of 0-5 and a MC > 5 has been evaluated to yield a sensitivity 71 

of 32%, 39%, 50% and 55% (high percentage of false negatives) and specificity of 72 

91%, 96%, 98% and 99% (low percentage of false positives) regarding ccMCT-related 73 

deaths.8,9,37,38 In order to increase sensitivity, other research groups have proposed to 74 

use a cut-off value of MC ≥ 2 (sensitivity: 76 and 84%; specificity: 56 and 80% for 75 

ccMCT-related death) 22,37 or to use a stratification of the MC into three groups (0, 1-7, 76 

>7 and 0-1, 2-7, >7, respectively; sensitivity and specificity not available).18,37 This data 77 

proves that the MC is relevant for prognostication of ccMCT, however, also reveals 78 

some variability in the derived results. The question arises whether this variability could 79 

be reduced with standardization of the MC methods between different studies.  80 

The MC is mostly defined as the number of mitotic figures (MFs, cells undergoing 81 

mitosis visible with microscopy 17) within “10 high power field” (equivalent to an area of 82 

2.37 mm²) with the highest mitotic density.28,29 Looking at this definition, two potential 83 

source of variability for performing the MC become apparent: 1) variable selection of 84 

the tumor area and 2) variable detection of MFs. Some studies have proven that it is 85 

feasible to perform the MC using digital microscopy and whole slide images 86 

(WSIs).1,7,13,35,42 As opposed to light microscopy, the concept of enumerating “10 high 87 

power fields” (round fields using a microscope at 400x magnification) is extraneous as 88 

the area can be accurately measured and labeled in the WSI (with a rectangular field 89 

of view). For this study we use the term “mitotic count region of interest” (MC-ROI) for 90 

a single, rectangular area with the size of 2.37 mm² in the tumor location.5,11,28  91 

Regarding the selection of the MC-ROI, it is common practice to attempt to find a single 92 

tumor area with the highest mitotic activity, i.e. a ‘hotspot’.8,25,28,29,32 It has often been 93 

assumed (but rarely proven, e.g. in human breast cancer 23) that the most mitotically 94 

active tumor area correlates best with biological behavior of the neoplasm. Of note, it 95 

has been shown that the mitotic density varies significantly between different tumor 96 
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locations in histological sections of ccMCTs and canine mammary carcinomas 3,5,11 97 

and that pathologists have some difficulties finding hotspots.3,11,42  98 

The pathologist’s capability to identify/classify MFs has been evaluated 99 

recently.15,40,41,43 Those studies compared the digital MCs of different pathologists in 100 

the same MC-ROIs and revealed an overall difference in number of annotated MFs by 101 

a factor of 1.5x to 3.3x.41,43 This can be attributed to erroneous MF detections related 102 

to failure in identification of MF candidates as well as to inaccurate/inconsistent 103 

classification of MFs against look-alikes (such as apoptotic bodies, hyperchromatic or 104 

deformed nuclei, and inflammatory cells).17 Tabata et al. 35 have shown that 105 

pathologists have a lower accuracy of MF detection when using WSIs (69-74%) as 106 

compared to traditional light microscopy (0.8%).  107 

Despite the potential limitations of digital microscopy in detecting MFs, WSIs enable 108 

innovative computerized image analysis approaches that have the potential to improve 109 

MC reproducibility and accuracy and thereby may improve standardization of the MC 110 

methods.10,14 Development of high performance image analysis algorithms for MFs has 111 

only been possible in the last decade due to the availability of ground-breaking 112 

machine learning solutions (especially supervised deep learning) and availability of 113 

large-scale datasets.3,12,39,41 Regardless of these promising advancements, one of the 114 

main points of criticism of deep learning is its ‘black box’ character (i.e. the 115 

unavailability of decision criteria) that may lead to failure of identifying algorithmic 116 

errors.10,27 In order to ensure high reliability, approaches that allow review of the 117 

algorithmic predictions by trained pathologists (computer-assisted 118 

diagnosis/prognosis) through visualization of algorithmic results as an overlay on the 119 

WSI have been recommended for future application.10 First computer-assisted MC 120 

tools have been recently validated for human pathologists.7,30 However, studies that 121 

validate the utility of computer assistance for each critical step of performing the MC 122 

(see above) and for veterinary tumor histopathology have not been published to date.  123 

The aim of the present study was to compare partially (MC-ROI preselection) and fully 124 

(additional MF candidate proposal) computer-assisted MC analysis with routine 125 

(unaided) MC analysis in WSIs of ccMCT. We evaluated the assistive value and 126 

limitations of computer assistance on the ability of 23 pathologists to perform the 127 

overall MC, to determine a count below or above a prognostic cutoff, to select a hotspot 128 

MC-ROI, and to identify/classify individual MFs.  129 
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Material and Methods 130 

Course of studies  131 

For this study, anatomic pathologists (study participants) performed MCs in WSIs of 132 

50 ccMCTs at three stages with different degrees of computer assistance (none, partial 133 

and full) (Fig. 1). In stage 1, there was no computer assistance and participants were 134 

tasked with screening the WSI manually for MC-ROIs (mitotic hotspots) and annotating 135 

all MFs (including atypical MFs) within this area using their “routine” approaches. For 136 

stage 2 (partial computer assistance) and stage 3 (strong computer assistance), WSIs 137 

were analyzed with a deep learning-based algorithm that detected MFs in the entire 138 

tissue section. Based on the algorithmic MF detections, the MC was calculated for 139 

each possible tumor location resulting in the MC distribution. The ROI with the highest 140 

MC was preselected automatically and presented to the participants in stage 2. For 141 

stage 3 (full computer assistance), in addition to the same algorithmic MC-ROI 142 

preselection, visualization of the individual MFs and MF look-alike detections (to assist 143 

MF identification) were provided as an overlay on the WSI along with their 144 

corresponding algorithmic confidence values (to assist MF classification). Additionally, 145 

algorithmic predictions (without review by pathologists) were used for evaluation.  146 

Participants were instructed to follow the course of the three stages strictly and to wait 147 

at least three days until the next stage. A recall bias was considered negligible due to 148 

the increasing amount of computerized information and the very high number of 149 

individual MFs. While performing the MCs, participants labeled the enumerated MFs 150 

(including atypical MFs) in the exact location of the digital image with a specialized 151 

annotation software. This method allows determination of the ability of participants and 152 

the ability of the deep learning-based model to identify individual MFs (on the object-153 

level) compared to a gold standard-derived (pHH3 IHC-assisted) ground truth dataset. 154 

After the study, participants were asked to fill out an opinion survey.  155 

 156 
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 157 

Figure 1. Overview of the course of the study (stage 1-3) with different degrees of 158 
computer assistance (red arrows) of the study participants in three examination time 159 
points (stages).  160 

 161 

Study cases 162 

Random ccMCT cases with an equal distribution of low and high histologic grade 25 163 

(based on the original pathology reports) were selected from the archive of the Institute 164 

of Veterinary Pathology, Freie Universität Berlin. One tissue block from each of these 165 

cases with the largest tumor area was selected. Histological sections were produced 166 

from each of the blocks and stained with HE. Glass slides were digitized with a linear 167 

scanner (ScanScope CS2; Leica) using default settings. WSIs with one focal scan 168 

plane were produced at a magnification of 400x (image resolution: 0.25 µm per pixel). 169 

Specimens with an overall very poor tissue preservation (i.e. significant loss of nuclear 170 

details in most tumor areas) and cases with a tumor section area of <12 mm² 171 

(measured by polygon annotation) were excluded. This procedure was followed until 172 

35 low and 35 high mitotic density were selected. Clinical follow-up (patient outcome) 173 

was not considered for this study as the main goal was validation of different MC 174 

methods and not to determine prognosis. Local authorities (State Office of Health and 175 
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Social Affairs of Berlin) approved the use of the samples (approval ID: StN 011/20) for 176 

research. 177 

The 70 cases were analyzed with a deep learning-based MF algorithm (see below). Of 178 

these, 7 cases (all low grade according to the original reports) had a computerized MC-179 

ROI preselection outside of the tumor area (due to MF predictions mainly in the 180 

epidermis, hair follicles, reserve cells of the sebaceous glands or areas of crush 181 

artefacts) and were excluded from the study. The remaining 63 cases contained 182 

algorithmic MC-ROI preselection within the tumor area  and were not further evaluated 183 

for exclusion purposes. We randomly excluded 3 additional low grade and 10 high 184 

grade cases (according to the original reports) in order to reduce the study set to 25 185 

low grade and 25 high grade ccMCTs. Cases of the study set were randomized in order 186 

and labeled with consecutive numbers from 1 to 50. Additionally, a test slide (high 187 

grade ccMCT) was provided to allow familiarization of study participants with the 188 

annotation software, the study tasks, and the properties of the digital images.  189 

 190 

Study instructions to participants 191 

Twenty-six pathologists from 13 different laboratories volunteered to participate in this 192 

study. The study material (WSIs, annotation software, files with algorithmic predictions) 193 

was provided, the goal and course of the study was explained and the annotation 194 

software was demonstrated (using the test slide) to each participant. For stage 1 195 

participants were instructed to reach for mitotic hotspot MC-ROIs. However, no specific 196 

recommendations were given on how to find the “correct” MC-ROI. For all three stages 197 

participants were instructed to annotate all MFs in the MC-ROIs with high diligence 198 

using their “routine” decision criteria. No specific diagnostic criteria for “correct” 199 

identification/classification of MFs (including atypical MFs) were provided in order to 200 

validate a realistic diagnostic setting.  201 

 202 

Annotation software and database creation 203 

The open source software SlideRunner 2 was used in this study for annotating each 204 

enumerated MFs in the precise pixel position in the digital image (object-level). Beyond 205 

the ability to view and navigate WSI, this software includes tools for fast image 206 

annotations, which are automatically stored in a database. For this study, each 207 
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participant created their own databases (one for each stage) and annotated each MFs 208 

present in the MC-ROIs using a single click tool (saving the x and y coordinate in the 209 

WSI). Participants were instructed to pay close attention in placing the annotation in 210 

the center of the MFs.  211 

SlideRunner allows integration of software plugins for computerized image analysis 212 

and visualization of algorithmic predictions. During specimen selection, all WSIs were 213 

analyzed by an MF algorithm (see below) plugin, and predictions of the study cases 214 

were saved as separate files that were provided to the participants for visualization in 215 

stages 2 and 3.  216 

For each study stage a different SlideRunner package was created, each including a 217 

different plugin that enabled visualization of the information relevant for the respective 218 

stage as an overlay on the WSI. As intended by the study design, the stage 1 package 219 

of the software did not allow visualization of any algorithmic detections. However, this 220 

package included a plugin for a rectangular box with the size of exactly 2.37 mm² 221 

(aspect ratio of 4:3; width of 1777.6 µm and height of 1333.2 µm). The box was divided 222 

into a grid with 9 vertical lines (distance between lines was less than the width of the 223 

field of view at 400x magnification), which intended to improve navigation in a 224 

meandering pattern. Participants were able to move the box to the desired MC-ROI 225 

location by re-centering the box coordinates to the present field of view at any viewing 226 

magnification. Due to a software failure, the exact image location of the selected MC-227 

ROIs was not saved in the database. Therefore, we retrospectively determined the 228 

approximate MC-ROIs in which the highest number of annotations in the image could 229 

be placed. This ensured that the shift between the approximate and the actual selected 230 

MC-ROIs were minimal and negligible for our analysis (see below). For 63 cases that 231 

did not have an MF annotation (MC = 0), an MC-ROI was not calculated for the 232 

respective participant. 233 

The plug-ins of the SlideRunner packages of the two subsequent stages visualized the 234 

predictions of the deep learning-based algorithm (Fig. 1). Stage 2 included a plugin 235 

with a 2.37 mm²-sized rectangular box (as described above) placed in the region that 236 

had the highest density of algorithmic MF detections (partial computer assistance). 237 

Unlike stage 1, participants were unable to move the box to another tumor location. 238 

The software package for stage 3 displayed the fixed 2.37 mm² box in the same tumor 239 

area and additionally visualized all predicted MFs (as dark green boxes) and predicted 240 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2021. ; https://doi.org/10.1101/2021.06.04.446287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446287
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

MF look-alikes (as light green boxes) along with their algorithmic classification scores 241 

(“confidence value”). We decided to visualize the MF look-alikes in order to account for 242 

potential false negative algorithmic predictions.  243 

After participants finished stage 3, they submitted the three databases to the principal 244 

investigators, who verified that all cases had been examined. All annotations that had 245 

a center coordinate outside of the 2.37 mm² boxes were deleted as those represented 246 

erroneous or unintentional annotations. The participants were anonymized by 247 

assigning a random identification number to each participant.  248 

 249 

Image analysis algorithm 250 

Detection results of computerized image analysis were used for stages 2 and 3. Image 251 

analysis comprised of two analysis tasks as previously described by Aubreville et al:5 252 

1) a deep learning-based algorithm that detects MFs and 2) the computerized MC 253 

density (heat map).  254 

Briefly, the detection of MFs consists of a concatenation of two convolutional neural 255 

networks (RetinaNet and ResNet18 architecture).5 The first convolutional neural 256 

network (object detector) was used to screen the entire WSI for potential MF 257 

candidates with high sensitivity and a high processing speed. The second 258 

convolutional neural network (patch classifier) was developed to classify small image 259 

patches of the detected candidates (by the first neuronal network) into MFs 260 

(classification threshold ≥0.5) and MF look-alikes (classification threshold <0.5) with 261 

high specificity. The model classification scores (“confidence value”) were extracted 262 

from the patch classifier (in order to display along with the algorithmic predictions) and 263 

ranged between 0.01 (very unlikely to be a MF) and 1.0 (very likely to be a MF). The 264 

models were trained and technically evaluated with an open access dataset with 265 

44,880 MF annotations in 32 ccMCT WSIs that were produced by the same institute 266 

that provided the cases for the present study.12  267 

The MC density map was derived from calculating the MC, i.e. the number of 268 

algorithmic MF detections within a 2.37 mm² box (see above), for every possible center 269 

coordinate of a 2.37 mm² box that contains more than 95% tissue.5,11 The MC-ROIs 270 

for stages 2 and 3 were selected as the image location with the highest density in the 271 

MC map. 272 
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 273 

pHH3-assisted ground truth 274 

In order to evaluate the pathologists and algorithmic performance on the object level, 275 

a ground truth dataset was developed with the assistance of immunohistochemical 276 

labeling for phosphohistone H3 (pHH3). pHH3 is a DNA-binding protein that is mostly 277 

specific for the mitotic phase of the cell cycle. Histone H3 is phosphorylated in early 278 

prophase (still indistinct in HE sections) but already dephosphorylated in telophase.21 279 

Based on Tellez et al. 36 we established a protocol to de-stain the initial HE-stained 280 

sections and immunohistochemically label the same tissue section in order to ensure 281 

that the exact same cellular objects were represented in both WSIs. The coverslips of 282 

HE-stained sections were removed by incubation in xylene. Subsequent to incubation 283 

in a descending alcohol series (99%, 80%) slides were destained under visual control 284 

in a 70% alcoholic solution with 0.37% hydrogen chloride. After destaining 285 

immunohistochemistry was performed including blockage of endogenous peroxidase 286 

(with 10% H2O2), antigen retrieval by microwave heating (with citrate buffer) and 287 

antigens blocked (with goat serum). For the primary antibody we used pHH3 clone 288 

E173 (rabbit monoclonal) from Abcam (ab32107, Cambridge, MA, USA) as this 289 

product was already used for dogs in a previous study.31 Because the HE-stained 290 

sections of the study cases were produced at least one year earlier, a somewhat higher 291 

antibody concentration of 1:650 (as opposed to new tissue sections with 1:1500) was 292 

necessary (established on the excluded cases from this study; see above). The 293 

secondary antibody was a goat anti-mouse IgG (H+L) conjugated with alkaline 294 

phosphatase and incubated at a dilution of 1:200. 3,3′-Diaminobenzidin (DAB) was 295 

used as a chromogen and hematoxylin as counterstain. ccMCTs were used as positive 296 

and negative controls. Immunolabeled glass slides were digitized as described above. 297 

In 10 of the 50 tissue sections included in the study relevant tissue parts were lost 298 

during immunohistochemical processing (if not mounted on adhesive glass slides) or 299 

immunohistochemical labeling was nonspecific (internal control compared to the HE 300 

staining). Therefore, those cases were excluded from the pHH3-assisted labeling 301 

portion of this study.  302 

Following this procedure, we produced two WSIs (one stained with HE and the other 303 

labeled with pHH3) from the same tissue section for 40 of the 50 cases. In contrast to 304 

using recut tissue sections, this process ensured visualization of the same cellular 305 
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objects in both WSIs. Automated image registration (according to Jiang et al. 24) was 306 

performed in order to align the two images so that the tissues matched almost perfectly 307 

on a cellular level. Using a newly developed SlideRunner plug-in, it was possible to 308 

instantly switch between images with the two staining/labeling methods and therefore 309 

easily compare the information for each cell (Fig. 2). The principle investigator 310 

(pathologist not involved as a study participant) developed a ground truth dataset for 311 

the algorithmically selected MC-ROIs (stage 2 and 3) in the HE-images by annotating 312 

all the cells that were positive for pHH3 and additionally annotated the unambiguous 313 

late phase MFs that failed to label for pHH3 (pHH3-assisted ground truth). In addition, 314 

a pHH3-assisted count was performed in the manually selected MC-ROIs (stage 1) if 315 

the MC of the respective participant was higher than in stage 2.  316 

 317 
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 318 

Figure 2–3. Immunohistochemistry-assisted ground truth. Figure 2. Labeling method 319 
of the ground truth dataset. The histological sections (hematoxylin and eosin stain, HE) 320 
were de-stained and re-labeled with immunohistochemistry against phosphohistone 321 
H3 (pHH3). Subsequently whole slide images of both staining methods were aligned 322 
on the cellular level via automated image registration and combined to decide if a tumor 323 
cell is a mitotic figure (MF) or not. Ground truth annotations comprised pHH3-positive 324 
cells that were recognizable on HE images (green circles) or were not readily 325 
identifiable on HE images (blue circles; especially prophase MF) as well as 326 
unambiguous late phase (especially telophase) MF that were pHH3-negative (red 327 
circles). Here these patterns are displayed as three distinct colors but in the ground 328 
truth dataset those structures were labeled as one label class. Figure 3a. High 329 
magnification image of an pHH3-stained tumor section with three positive tumor cells 330 
(green circles). Figure 3b. Histological image (HE stain) of the same tumor location 331 
than Fig. 2 with exemplary annotations by one of the study participants (blue circles). 332 
Compared to the pHH3-assisted ground truth, two annotations are true positives (TP), 333 
one is a false positive (FP) and one MF was missed (false negative, FN).  334 

 335 
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Performance evaluation 336 

The MC was defined as the number of annotations by participants within a MC-ROI. 337 

The pHH3-assisted MC was the number of ground truth annotations in the respective 338 

MC-ROI. Inter-observer agreement of the MCs between the three stages was 339 

calculated by the inter-observer correlation coefficient (ICC) and its 95% confidence 340 

interval (95% CI). ICC were evaluated as poor = 0–0.39, fair = 0.40–0.59, good = 0.6–341 

0.74, and excellent = 0.75–1.00.11 Differences were considered significant if the 95% 342 

CI did not overlap. The coefficient of variation (CV) between the pathologists at each 343 

stage was calculated. 344 

Performance of classifying MCs into low and high according to the prognostic cut-off 345 

of MC ≥ 5 8,32,38 was measured by accuracy as the number of correctly (below or above 346 

cut-off according to the pHH3-assisted ground truth) classified instances divided by all 347 

instances. To calculate the p-value for the difference in accuracy between Stage 2 and 348 

3, a generalized linear mixed model (GLMM) was used. We fitted a logistic regression 349 

using correct classification (1 = correct, 0 = incorrect) as outcome and using a random 350 

effect for the pathologist to account for repeated measures (40 slides per pathologist).  351 

For comparison of the manually selected approximate MC-ROIs, we produced images 352 

that visualize the region and a MC heatmap as an overlay on the WSI. The MC 353 

heatmap was based on the unverified algorithmic predictions and was calculated as 354 

previously described.11  355 

The performance of the participants and algorithm to identify and classify individual 356 

MFs in the MC-ROIs of stage 2 and 3 (object detection task) was determined by 357 

standard object detection metrics.10 True positives (TP), false positives (FP) and false 358 

negatives (FN) were calculated against the pHH3-assisted ground truth (Fig. 3). A 359 

pathologist’s annotation and a ground truth annotation were counted as TP if both had 360 

a maximum Euclidean distance of 25 pixels (equivalent to 6.25 µm). True negatives 361 

are not available for object detection tasks.10 Precision (also known as positive 362 

predictive value), recall (also known as sensitivity) and the F1-score (harmonic mean 363 

of precision and recall) were defined as described by Bertram et al. 10: precision = 364 

TP/(TP+FP); Recall=  TP/(TP+FN); F1 = 2× (precision × recall)/(precision+recall). 365 

Macro-averaged values were determined with the overall TP, FP, FN 366 

annotations/predictions of all cases totalled and thus every MF 367 

identification/classification did have the same weight regardless of the mitotic density 368 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2021. ; https://doi.org/10.1101/2021.06.04.446287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446287
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

of the case. This allows to evaluate the performance on the object level (each MF 369 

separately).44For the micro-averaged values, we determined the metrics (precision, 370 

recall, F1) for each slide and participant, and calculated the overall mean values at the 371 

end.44With this method, every case/slide has the same weight and the metrics 372 

represent the diagnostic performance on the sample level. 95% CI for the micro-373 

averaged precision, recall and F1-score were determined using bootstrapping (5000 374 

replicates, bias-corrected and accelerated CI). Differences between the object 375 

detection metrics were considered significant if the 95% CI did not overlap.  376 

 377 

Results 378 

Twenty-tree of 26 (88%) pathologists from 11 laboratories completed this study. The 379 

remaining pathologists were excluded from analysis as they did not return results (N = 380 

2) or did not examine all cases (N = 1). Of the included participants, 22 (96%) were 381 

Diplomates of the American (N = 12) or European (N = 10) College of Veterinary 382 

Pathologists and one (4%) had completed a residency in veterinary anatomic 383 

pathology. The duration of board certification ranged from 0 to 14 years (median of 6 384 

years).  385 

All 23 participants examined the 50 cases at the three examination stages (3,450 386 

instances) and thereby created 38,491, 59,634 and 68,570 annotations in stage 1, 2 387 

and 3, respectively. The number of annotations (all 50 cases combined) per participant 388 

for stage 1 ranged between 549 - 4,182 (mean: 1674; coefficient of variation, CV: 43%), 389 

for stage 2 between 1,263 - 4,412 (mean: 2593; standard deviation: 856, CV: 33%) 390 

and for stage 3 between 1,827 - 4,807 (mean: 2981; standard deviation: 638, CV: 391 

21%). The pHH3-assisted ground truth dataset comprised 2,617 annotations (40 cases 392 

only) and the algorithmic predictions comprised 3,063 MF candidates (50 cases) for 393 

the ROIs of stage 2 and 3.  394 

 395 

Computer-assisted MCs have higher agreement 396 

First, we evaluated the effect of computer assistance on the overall MC. The average 397 

MC for all cases and pathologists was 33.47 for stage 1, 51.86 for stage 2, 59.63 for 398 

stage 3 and 61.26 for the deep learning-based algorithm. Compared to stage 1, the 399 

average pathologist MC was increased by 54.9% in stage 2 and 78.2% in stage 3. 400 
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Number of cases in which the MCs had very low values were notably reduced in stage 401 

2 and 3. For example, MC = 0 were determined in 63 instances in stage 1 and only in 402 

12 and 3 instances in stage 2 and 3, respectively (. Agreement of the MCs was higher 403 

between stage 2 and 3 (examination of the same MC-ROI) compared to stage 1 and 2 404 

(mostly different MC-ROI). Inter-observer agreement of the MCs was good for stage 1 405 

(ICC: 0.70; 95% CI: 0.60 - 0.79) and excellent for stage 2 (ICC: 0.81; 95% CI: 0.74 - 406 

0.88) and stage 3 (ICC: 0.92; 95% CI: 0.88 - 0.96). The 95% CI of the ICC for stage 1 407 

and stage 3 do not overlap; thus the difference was statistically significant. The CV for 408 

the MCs was 78.2% for stage 1, 51.3% for stage 2 and 34.9% for stage 3, thus reduced 409 

by more than half with full computer assistance. Figure 4 shows the improvement in 410 

agreement of the MCs with the pHH3-assisted ground truth MCs if computer 411 

assistance for identification/classification of MFs (stage 3 as opposed to stage 2) was 412 

available.   413 

 414 

 415 

Figure 4. Scatterplots of the participant’s mitotic count (MC) values (stage 2 and 3) 416 

and the algorithmic (unverified) MC compared with the pHH3-assisted ground truth MC 417 

(all obtained in the same mitotic hotspot MC-ROI based on the algorithmic heatmap. 418 

The black line in the scatterplots indicate equal values for ground truth and pathologists 419 

or algorithmic MCs.  420 

 421 

Computer assistance improves accuracy of prognostic classification 422 

Next, we evaluated how the computer-assisted approach influenced determination of 423 

values below and above the cut-off of MC ≥ 5 for tumor prognostication (published cut-424 

off for the MC as a solitary prognostic parameter).8,32,38 For all pathologists and all 50 425 
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cases combined, 362, 170, and 116 instances were below and 788, 980, and 1034 426 

instances above the cut-off in stage 1, 2 and 3, respectively. Compared to the pHH3-427 

assisted ground truth MCs (available for 40 cases), accuracy of classification below or 428 

above the cut-off, respectively, was 75.8% (95% CI: 72.3% - 80.1%) for stage 1, 86.6% 429 

(95% CI: 84.2% - 89.7%) for stage 2, 91.7% (95% CI: 89.9% - 94.0%) for stage 3 and 430 

95% for the deep learning-based algorithm. The increase of accuracy of the 431 

participants between stage 1 and 2 (p < 0.0001), stage 2 and 3 (p = 0.0012) and stage 432 

1 and 3 (p < 0.0001) were significant. Due to the case selection strategy, the 433 

distribution of the hotspot MC values of the study cases is not representative of a 434 

routine diagnostic situation. We therefore divided the 40 cases into five tiers based on 435 

the pHH3-assisted ground truth MCs and determined individual accuracy values for 436 

these groups (Table 1). We determined that cases around the prognostic cut-off value 437 

had the lowest accuracy. However, also cases with a pHH3-assisted ground truth MCs 438 

between 25 and 49 had falsely low MCs in 20/138 instances (14.5%) without computer 439 

assistance (stage 1), while 9/138 (6.5%) and 1/138 (0.7%) instances of those cases 440 

were misclassified in stage 2 and 3, respectively.  441 

 442 

Table 1. Accuracy of the 23 study participants and the deep learning-based algorithm 443 
to classify mitotic counts (MC) as below (MC < 5) or above (MC ≥ 5) the prognostic 444 
cut-off as compared to the pHH3-assisted ground truth MC (GT-MC). 445 

GT-MC Number 
of cases 

Accuracy for Stage 1 * Stage 2 Stage 3 Algorithm 

0-4 4 Below cut-off 75.0% 50.0% 50.0% 50% 

5-9 7 Above cut-off 31.7% 70.2% 82.6% 100% 

10-24 8 Above cut-off 63.0% 89.1% 99.5% 100% 

25-49 6 Above cut-off 85.5% 93.5% 99.3% 100% 

≥50 15 Above cut-off 99.4% 100% 100% 100% 

All cases 40 Below/above 
cut-off 

75.8% 86.7% 91.7% 95% 

* the GT-MC and the participants MC of stage 1 were not determined in the same 446 
tumor location. The GT-MC and the MC of stage 2 and 3 were determined in the 447 
mitotic hotspot location based on the algorithmic heatmap. 448 

 449 
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Algorithmic area preselection is superior in finding mitotic hot spots 450 

We evaluated the distribution of the manually selected MC-ROIs in stage 1 by the 23 451 

participants. Visual assessment revealed that the approximate MC-ROIs were widely 452 

distributed throughout the tumor section in most cases, even if a high variability of the 453 

MC distribution (based on the algorithmic predictions) was present, i.e. mitotic hotspots 454 

were not detected consistently (Fig. 5–7). In only two cases was a similar tumor area 455 

was consistently chosen for the MC-ROI. In one case (No. 5; Fig. 8) a region within the 456 

tumor exhibiting local invasion was selected by all participants and in the other case 457 

(No. 37) the tumor location with highest cellular density was selected by 22/23 458 

participants. This contrasts with automated image analysis that will always propose the 459 

same tumor area (100% intra-algorithmic reproducibility).  460 

As it was the goal to find mitotic hotspots and we hypothesized that computer 461 

assistance is helpful for this, we compared the MCs of the participants in the manually 462 

selected MC-ROIs (stage 1) and algorithmically preselected MC-ROIs (stage 2). Of the 463 

1,150 MC pairs from all participants, in 908 instances (79.0%) the MCs were higher in 464 

stage 2 and in 55 instances (4.8%) the MC was the same in stage 1 and 2. MCs of 465 

stage 1 were higher in 187/1,150 MC pairs (16.2%) for all participants combined and 466 

in 0 - 20/50 MC pairs (median: 8; mean: 8.1) for each individual participant. For 151/187 467 

of those cases with higher MCs in stage 1, it was possible to perform pHH3-assisted 468 

MCs for both stages. Thereby we were able to prove that the mitotic density was truly 469 

higher in the manually selected MC-ROI in one instance (0.7%; ground truth MC = 4 470 

and 3 in the two tumor locations), the same in both stages in 4 instances (2.6%) and 471 

actually higher in the algorithmically preselected MC-ROIs in 146 instances (96.7%). 472 

Only for case 27 the algorithmically preselected MC-ROIs was considered 473 

inappropriate as it comprised a tumor area with crush artifact that resulted in many 474 

false positive predictions (pHH3-assisted MC was not available for this case).  475 

 476 
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 477 

Figure 5–8. Approximate location of the mitotic count region of interest (MC-ROI) 478 
selected manually by each study participant (represented by the rectangular boxes) in 479 
the whole slide images. The black box with the dashed line represents the 480 
algorithmically preselected MC-ROIs. The estimated MC heatmap is visualized by 481 
variable opacity of a green overlay (scale on the right side of image) on the histological 482 
image (hematoxylin and eosin stain) and is based on algorithmic mitotic figure 483 
predictions. Figure 5. Case no. 33 with widely distributed MC-ROIs. Dark green areas 484 
represent mitotic hotspots. Figure 6. Case no. 46 with widely distributed MC-ROIs. 485 
Figure 7. Case no. 38 with MC-ROIs mostly along the tumor periphery. Figure 8. Case 486 
no. 5 with similar MC-ROIs at a side of local tumor invasion.  487 

 488 

Computer-assisted MF detection improves recall  489 

The ability of the participants to identify and classify individual MFs was determined for 490 

the same MC-ROIs in stage 2 (unaided MF identification) and stage 3 (computer-491 

assisted MF identification). Annotations of each participant and predictions of the 492 

algorithm were compared to the pHH3-assisted ground truth. For the participants, we 493 

found an overall decrease of FNs by 38.4% between stage 2 (23,107) and stage 3 (N 494 

= 14,256) and an overall increase of TPs by 23.7% between stage 2 (N = 37,117) and 495 

stage 3 (N = 45,929). An improvement of FNs and TPs was present for 22/23 496 

participants and a negligible decline (by 3 annotations; <1%) was present for the 497 

participant that had the lowest number of FN and highest number of TN in stage 2. FPs 498 

only had an overall decrease by 3.8% between stage 2 (N = 10,981) and stage 3 (N = 499 
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10,582) whereas FPs were lower for 9 participants and higher for 14 participants. 500 

Subsequently, the macro-averaged recall had an overall increase by 14.6 percentage 501 

points (maximum 30 percentage points; 22/23 participants improved), the macro-502 

averaged precision had an overall increase of 2.3 percentage points (maximum 21 503 

percentage points; 11/23 participants improved) and the macro-averaged F1-score 504 

had an overall increase of 10.7 percentage points (maximum of 22.9 percentage 505 

points; 23/23 participants improved) between stage 2 and 3 (Table 2, Fig. 9–11). 506 

Differences between the two examination stages of the micro-averaged F1-score (12.4 507 

percentage points), precision (5.2 percentage points) and recall (14.9 percentage 508 

points) were similar (Table 2). 95% confidence intervals for the micro-averaged F1-509 

score, recall and precision did not overlap between stage 2 and 3 (Fig. 9); thus the 510 

improvement is significant. The deep learning-based algorithm (unverified predictions) 511 

had an almost balanced proportion of FP detections (N = 406) and FN detections (N = 512 

496) and subsequently similar values for precision (0.84), recall (0.81) and the F1-513 

score (0.83). The overall performance (F1-score) of the algorithms was comparatively 514 

high as it was not reached by participants in stage 2 and was only slightly exceeded 515 

by two participants in stage 3 (Fig 11). The F1-score of the algorithm was significantly 516 

better than the score of the participants of both stages (CI did not overlap).  517 

 518 
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 519 

Figure 9–11. Object detection performance (identification and classification of mitotic 520 
figures) of the 23 participants and the deep learning-based algorithm in stage 2 and 3. 521 
Figure 9. micro-averaged F1-score (upper graph), precision (middle graph) and recall 522 
(lower graph) with their 95% confidence intervals. The difference is considered 523 
significant (p<0.05) if the intervals do not overlap. Figure 10. Recall and precision for 524 
the individual participants in stage 2 and 3 (connected by a black arrow) and the 525 
precision-recall-curve for the algorithm (at different classification thresholds. For the 526 
algorithmic predictions for the present study, a single classification threshold was used 527 
that resulted in a recall of 0.81 and precision of 0.84. Figure 11. F1-scores for the 528 
individual participants for stage 2 and 3. The dashed black line represents the F1-score 529 
of the algorithmic predictions.   530 

 531 
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Table 2. Performance (macro- and micro-averaged metrics with range or 95% 532 
confidence interval, CI) of the 23 participants (partially or fully computer-assisted of 533 
stage 2 and 3, respectively) and the deep-learning-based algorithm (unverified 534 
predictions) for detecting individual mitotic figures in in mitotic hotspot regions of 535 
interest compared to a pHH3-assisted ground truth.  536 

Metrics  Precision Recall F1-score 

Examination stage 2 3 2 3 2 3 

Participants, macro-
averaged values 
(range) 

0.80 (0.56 
- 0.95) 

0.83 (0.58 
- 0.94) 

0.62 (0.37 
- 0.82) 

0.76 (0.54 - 
0.87) 

0.68 
(0.53 - 
0.79) 

0.79 (0.67 
- 0.84) 

Participants, micro-
averaged values 
(95% CI) 

0.74 (0.72 
- 0.76) 

0.79 (0.78 
- 0.81) 

0.62 (0.60 
- 0.63) 

0.76 (0.75 - 
0.78) 

0.63 
(0.61 - 
0.64) 

0.75 (0.74 
- 0.77) 

Deep learning-based 
algorithm, macro-
averaged value 

0.84 0.81 0.83 

Deep learning-based 
algorithm, micro-
averaged value (95% 
CI) 

0.83 (0.80 - 0.85) 0.80 (0.76 - 0.84) 0.80 (0.77 - 0.82) 

 537 

Participants considered algorithmic MC-ROI preselection to be the most helpful 538 

feature  539 

Twenty-one of the 23 study participants (91%) filled out the concluding survey after 540 

they finished stage 3. Analysis revealed that participants considered MC-ROI selection 541 

to be the most difficult aspect of performing the manual MC (stage 1) whereas spotting 542 

potential MF candidates and classifying them against look-alikes was considered 543 

comparably easy. Subsequently most participants had the subjective impression that 544 

algorithmic MC-ROI preselection was extremely or very helpful and visualization of 545 

algorithmic predictions as well as display of their algorithmic confidence values was 546 

generally considered helpful to a lesser degree. Almost all participants (N = 20 / 21) 547 

indicated that their decision of classifying MFs against look-alikes was consciously 548 

influenced in stage 3 by the algorithmic confidence value at variable degrees ranging 549 

from being influenced in very few to many potential MF candidates, especially if 550 

participants were uncertain about the MF candidate (N = 17 / 20). Most participants (N 551 

= 15 / 21) considered digital microscopy generally inferior (to a variable degree) to light 552 

microscopy for identification of MF and mostly deemed fine-focusing / z-stacking 553 

necessary for at least some MF candidates (N = 14 / 21). The majority of the 554 

participants (81%; N = 17 / 21) considered the rectangular shape of the MC-ROI to be 555 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2021. ; https://doi.org/10.1101/2021.06.04.446287doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446287
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

acceptable for performing the MC in the examined cases, while two participants found 556 

the shape inappropriate (two participants had no opinion).  557 

 558 

Discussion 559 

The present study confirmed that inconsistency and inaccuracy of the MC arises from 560 

a combination of inappropriate MC-ROI selection (failure to find mitotic hot spots), 561 

incomplete MF identification and imprecise MF classification. We addressed all three 562 

aspects with our computer-assisted MC approach via algorithmic area preselection 563 

(stage 2), MF candidate visualization (stage 3) and display of algorithmic confidence 564 

values (stage 3). We were able to prove significantly increased performance on the 565 

overall MC-level and individual MF-level with computer assistance. Participants of the 566 

present study reported that screening tumor sections for mitotic hotspots is the most 567 

difficult task of manual MCs and subsequently deemed algorithmic MC-ROI 568 

preselection by far the most useful tool. In fact, we have shown that algorithmic area 569 

preselection was superior to manual area selection in almost all instances. 570 

Nevertheless, visualization of potential MF candidates also had a strong positive effect 571 

on the pathologists’ ability to find MFs in MC-ROIs (recall). In contrast, the benefit of 572 

displaying the algorithmic confidence values was considered controversial by 573 

participants (see below) and did not seem to have a strong positive impact on 574 

precision. It was beyond the scope of the present study to determine the prognostic 575 

value of computer-assisted MCs, which should be done in future studies. While we 576 

have shown a more consistent classification of the cases into prognostic cut-off values 577 

(in our case MC < 5 and ≥ 5 8,32,38) with computer assistance, we have also found an 578 

overall higher MC for our computer-assisted methods. Therefore, new prognostic cut-579 

off values and stratifications have to be determined (likely for each individual computer-580 

assisted approach / software tool). For example, Elston et al. 18 have proposed a cut-581 

off of 0 for group 1 ccMCTs with good prognosis (group 2: 1-7; group 3: > 7). This 582 

prognostic group is notably reduced in larger tumor sections (by a factor of 21x) if full 583 

computer assistance (stage 3) is used due to the improved sensitivity of MF detection. 584 

A limitation of the present study is that only a few cases with a truly low MC (below cut-585 

off value) were included and future studies need to verify our results for this subgroup.  586 

A particular strength of the present study was the use of a pHH3-assisted ground truth 587 

for performance evaluation. Most previous studies have evaluated their MF algorithms 588 
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against a majority vote of pathologists annotations from HE images,3,5,12,30,35,41,43 which 589 

might be problematic due to human limitations in performing this task. If a consensus 590 

is generated by such a large group of participants as in the present study, a majority 591 

vote is very likely to include predominantly clear MFs and would not contain many 592 

morphologically inconclusive or equivocal, but still “true” MFs. Hence, a majority vote 593 

will not necessarily represent the biological truth.10 The advantage of pHH3 594 

immunohistochemistry (as opposed to HE images) is that MFs are easily spotted (high 595 

sensitivity) and much more easily classified against look-alikes (high specificity with 596 

the exception of telophase MF).16,19,33 We highlight that some of the annotated pHH3-597 

positive cells were extremely difficult to classify as MFs in the HE image (especially 598 

early prophase or if cells were tangentially sectioned) and might therefore have been 599 

missed (false negative) by study pathologists in all MC approaches. It is acknowledged 600 

that pHH3-derived labeling may overestimate prophase MFs and underestimate 601 

telophase MFs as compared to solely HE-based labeling.36 Therefore, we decided to 602 

use a combination of the pHH3 and HE image for annotating the ground truth. We 603 

believe that our ground truth labeling approach is the most objective and accurate 604 

reference method available for MFs to date and was independent of the participants 605 

(as opposed to a majority vote ground truth). 606 

We have shown that identification of mitotic hotspots can be tremendously improved 607 

with computer assistance.5 An advantage of algorithms is that they can efficiently 608 

analyze entire WSIs with 100% intra-algorithmic reproducibility and are therefore able 609 

to determine the mitotic distribution consistently in entire or even multiple tumor 610 

sections. A limitation of our deep learning method was that 10% of the cases analyzed 611 

had an algorithmic MC-ROI preselection outside of the tumor area and one case had 612 

an algorithmic MC-ROI preselection in an area of crush artifacts. A previous study 613 

reported inappropriate MC-ROI selection in 58% of the cases.7 While it was beyond 614 

the scope of the present study to investigate approaches to resolve this problem, we 615 

propose that computer-assisted MC tools include one of the following features: 1) 616 

restriction of the algorithmic predictions to the actual tumor area, which can be 617 

delineated manually by a pathologist 7 or segmented automatically by means of deep 618 

learning-based algorithms;20 2) heat map visualization of mitotic density for manual 619 

selection / correction of the MC-ROI; 3) proposal of the top 3-5 hotspots areas from 620 

which pathologists can choose. Another aspect that needs to be considered for future 621 

implementation of computer-assisted approaches is the shape of the MC-ROI. Even 622 
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though most participants found the rectangular shape appropriate for the examined 623 

ccMCT cases, it might possibly be useful to be able to adjust the MC-ROI shape for 624 

tumor types that have a highly variable cellular density and/or may include a variable 625 

high proportion of non-neoplastic tissue, that should be excluded from the MC-ROI.17,29  626 

Even if pathologists examine the same image sections, variability of the number of 627 

enumerated MFs has been noted 15,40,41,43 and computer assistance seems to be a 628 

promising solution for improving MF identification/classification. Similar to the 629 

comparison between stage 2 and 3 of the present study, Pantanowitz et al. 30 630 

investigated the influence of computer assistance on the pathologist’s performance of 631 

annotating MFs in “hpf” images. Pathologists in this study 30 had a somewhat lower 632 

performance (F1-score) overall as compared to our results (7.1% lower without and 633 

7.7% lower with computer assistance), which might be related to the ground truth 634 

definition used. Pantanowitz et al. 30 used the majority vote of 4/7 pathologists to define 635 

a “true” MF (see above). Nevertheless, Pantanowitz et al. 30 demonstrated a similar 636 

increase of the overall F1-score as in the present study (10% vs. 10.7%); however, 637 

they had a slightly lower increase of the overall recall (11.7% vs. 14.6%) and higher 638 

increase of overall precision (8.8% vs. 2.3%) than our study. This might also be related 639 

to the ground truth definition used, or the performance of the image analysis algorithm 640 

applied, or due to the level of the individual pathologists' acceptance of the algorithmic 641 

predictions. Of note, our results demonstrate that individual pathologists may have high 642 

recall / low precision, moderate recall / moderate precision, or high precision / low 643 

recall. This is probably influenced to a large part by the decision criteria of individual 644 

pathologists for ambiguous patterns, and standardized morphological criteria for MFs 645 

might be helpful to harmonize the pathologist’s decision.17 Although all pathologists 646 

had overall a high performance (F1-score), the individual precision-recall-tradeoff of 647 

different pathologists may have a tremendous influence on the MCs and the prognostic 648 

stratification based on specific cut-off values. Our results show that the computer-649 

assisted approach (stage 3) generally shifted the individual pathologists somewhat 650 

towards a more harmonic trade-off between recall and precision (moderate 651 

recall/moderate precision). The overall direction of the shift coincides with the 652 

precision/recall of the algorithmic results and could be influenced by a confirmation 653 

bias of the experts. Unlike the study by Pantanowitz et al. 30 we supplied the study 654 

participants with the algorithmic confidence value in stage 3. Although the model 655 

confidence scores overall had a strong correlation with the ground truth, some 656 
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participants commented that a few confidence values contrasted their degree of 657 

certainty. Interestingly, many participants felt that they were (negatively) biased by the 658 

confidence values especially for difficult MF candidates. A previous study has in fact 659 

shown that pathologist may fail to identify a high proportion of incorrect (false negative 660 

and false positive) algorithmic predictions 26 and future studies need to determine the 661 

(positive or negative) effect of this bias in a diagnostic setting.  662 

The results of our study were highly dependent upon adequate performance of the 663 

applied algorithm. Algorithms always exhibit 100% intra-algorithmic reproducibility, but 664 

accuracy may vary largely between different algorithms (inter-algorithmic variability; 665 

depending on numerous factors). The algorithm used in this study was created and 666 

evaluated on a distinct dataset without employing IHC labeling. Yet, the algorithmic 667 

predictions of the present study were highly accurate (F1-score) compared to the 668 

pHH3-assisted ground truth (as compared to the study participants). The high 669 

performance of the algorithm used for the present study can be attributed to the 670 

advanced deep learning methods applied,5 the high quality and quantity of the dataset 671 

used for training of the algorithm 12 and the high representativeness of the training 672 

dataset for the present study cases. However, we also experienced several incorrect 673 

MF predictions and few inappropriate algorithmic MC-ROI preselections, which 674 

necessitates review by trained experts (computer-assisted MC) and further research 675 

on algorithmic solutions.  676 

One of the most relevant concerns that cannot be considered solved to date is 677 

robustness in the application of such algorithms on images that are acquired with other 678 

scanners or have strong differences in HE staining (domain shift).3,4,10 The 679 

consequence is that algorithms cannot necessarily be applied to images from different 680 

laboratories without prior validation and possibly modification (such as by color 681 

normalization and augmentation 36,40, domain adaptation 4 and/or transfer learning 3). 682 

A limitation of deep learning-based models is that the specific decision criteria are 683 

mostly not transparent (“black box”) and situations in which the algorithm may fail are 684 

not easily foreseeable. It is those “unexpected” situations that highlight the necessity 685 

of careful validation of each new application for its intended use. Deep learning models 686 

can be tested statistically (using metrics such as recall, precision or the F1 score),10 687 

and each laboratory that wants to use a MF algorithm should validate its performance 688 

based on those metrics. The 50 cases included in the present study support the 689 
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impression that the algorithm works reliably in many cases, yet the included cases may 690 

not represent all potential sources of error. Therefore, we consider computer-assisted 691 

approaches with verification by a trained pathologist to be highly beneficial; at least 692 

until more experience and progress is gained through research and routine use of 693 

these applications. Access to intermediate results of the algorithmic pipeline (such as 694 

visualization of MF predictions) may allow a higher degree of comprehensibility by the 695 

reviewing pathologist and should therefore be encouraged. Future studies need to 696 

determine which degree of expert review is required, how reliably pathologists can 697 

detect algorithmic errors and to what degree the decision of pathologists is consciously 698 

and unconsciously biased by algorithmic predictions.  699 

 700 

Conclusion 701 

Our results demonstrate that computer assistance using an accurate deep-learning 702 

based model is a promising method for improving reproducibility and accuracy of MCs 703 

in histological tumor sections. Full computer assistance (assistance in MC-ROI 704 

selection and MF identification/classification) was superior to partial computer 705 

assistance (only assistance in MC-ROI selection) in the present study. This study 706 

shows that computer-assisted MCs may be a valuable method for standardization in 707 

future research studies and routine diagnostic tumor assessment using digital 708 

microscopy. Furthermore, improved work efficiency (such as by MC-ROI preselection) 709 

may be of interest for diagnostic laboratories and additional studies need to evaluate 710 

the degree of verification of algorithmic predictions required. Future research should 711 

also evaluate whether computer-assisted MC approaches will benefit tumor 712 

prognostication (compared to patient outcome).  713 
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