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Abstract 

When acquiring information about choice alternatives, decision makers may have varying 

levels of control over which and how much information they sample before making a choice. 

How does control over sampling affect the quality of experience-based decisions? Here, 

combining variants of a numerical sampling task with neural recordings, we show that control 

over when to stop sampling can enhance (i) behavioral choice accuracy, (ii) the build-up of 

parietal decision signals, and (iii) the encoding of numerical sample information in multivariate 

electroencephalogram (EEG) patterns. None of these effects were observed when 

participants could only control which alternatives to sample, but not when to stop sampling. 

Furthermore, levels of control had no effect on early sensory signals or on the extent to which 

sample information leaked from memory. The results indicate that freedom to stop sampling 

can amplify decisional evidence processing from the outset of information acquisition and lead 

to more accurate choices. 
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Introduction 

Humans routinely acquire information about choice alternatives before deciding between 

them. In many situations, decision makers can control which and how much information they 

sample. For example, when deciding which of two products to buy, a customer may 

deliberately study reviews and testimonials before making a final choice. In other situations, 

the availability and amount of relevant information is determined by external factors. For 

instance, when selecting job applicants in an organization that uses standardized interviews, 

an employer must decide based on the applicants’ answers to the same set of predefined 

questions. More generally, decision scenarios can differ in the extent to which an agent has 

control over sampling, in terms of which and how much information is sampled before a choice 

is made. 

 

One experimental setup suitable for studying how control over sampling may affect decision 

making is a numerical sampling paradigm1,2 in which participants can view sequential samples 

of possible choice outcomes before deciding for one or the other option. The paradigm has 

been used extensively in behavioral studies of risky choice to examine how decision makers 

choose between options they learned about from experience (i.e., through sampling the payoff 

distribution) as opposed to from formal description (e.g., “25% chance to obtain €10, otherwise 

€0”)3,4. Across these studies, researchers have also varied the extent to which participants 

were able to control the sampling process themselves. While the standard paradigm allows 

participants to decide freely which alternatives to sample and how often2, some studies have 

pre-specified the total number of samples to be taken5–8 or included matched (“yoked”) 

conditions in which participants had no control at all over the sampling sequence9. However, 

the latter variants of the sampling paradigm have been devised primarily to reduce confounds 

in comparisons with decisions from description10; it remains unclear how control over sampling 

may alter experience-based decision making itself. 

 

Several lines of evidence suggest that a sense of control can be beneficial in cognitive 

tasks11,12. Agency in information acquisition has, for instance, been found to improve 

subsequent memory performance13, even when exposure to the information was held 

constant14. Another line of work has shown better performance in tasks self-selected by the 

participant than when the same tasks were selected by an experimenter15. More generally, 

various studies have identified performance benefits associated with volitional control per se 

and indicated that such effects could be mediated by motivational factors16,17. However, the 

effects of control cannot easily be generalized across domains. In several contexts, control 

does not seem to impact task performance18,19 or can be detrimental—for instance, when 

control is perceived as irrelevant or as too complex20 (but see 15). In the domain of decisions 

from experience using the sampling paradigm, evidence regarding the role of agency in the 

sampling process is still sparse. One recent meta-analysis suggested that control over 

sampling may alter the temporal weighting of numerical samples in subsequent choice4. 

However, this analysis was limited to comparisons across studies and did not address the 

performance benefits (or drawbacks) that may be associated with control over sampling, or 

the neurocognitive processes that might underlie them. 

 

Here, we used specially designed variants of a numerical sampling paradigm combined with 

EEG recordings to study how control over sampling affects experience-based decision 
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making. We systematically varied whether participants were free to decide which and how 

much information to sample (full control), or only which information to sample (partial control; 

with a pre-specified total number of samples), or whether they had no control over sampling 

at all. Critically, our design controlled for differences in stimulus presentation by matching the 

sample sequences in the no-control conditions with those in the self-controlled tasks (see 

Methods). We found that full, but not partial control over sampling had a distinct beneficial 

effect on choice accuracy, and that this benefit was associated with a stronger encoding of 

numerical sample information from the outset of information acquisition. 

Results 

Participants (n = 40) observed sequential samples (Arabic digits 1–9) of the potential payouts 

of choice options (left/right) before deciding on one of them (Fig. 1a). In different conditions, 

participants (i) could determine from which option(s) to sample and when to stop sampling 

(“full control”, 1–19 samples/trial, n = 20 participants) or (ii) could determine only from which 

option to sample for a fixed number of samples (“partial control”, 12 samples/trial, n = 20 

participants). Each participant additionally performed the task in a “yoked” condition with 

matched sample sequences (see Methods) that they could not control. Our behavioral and 

EEG analyses focus on the effects of control (full or partial) relative to the matched (yoked) 

no-control conditions. 
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Fig. 1 Experimental task and behavioral results. a Schematic illustration of an example trial. 

Participants were asked to decide between two choice options (left/right). Prior to choice, participants 

could draw up to 19 samples (full control group) or were required to draw a fixed number of 12 samples 

(partial control group). In yoked baseline conditions, participants judged replays of previously recorded 

sampling streams. b Mean accuracy (proportion of times the sampled sequence was judged correctly) 

in each condition. c Decision weights (see Methods) of samples occurring early, mid, or late in the 

sampling sequence, for each sampling condition. d Difference in decision weight between late and early 

samples. Higher values indicate that late samples had a stronger relative influence on choice than early 

samples (“recency” effect). Error indicators in all panels show SE. 

 

Behavior 

 

We examined choice accuracy with respect to the average value of the samples observed in 

each option. Mean choice accuracy was 83.8% under full control (SE = 1.4%, yoked baseline: 

80.3%, SE = 1.2%) and 79.6% under partial control (SE = 1.6%, yoked baseline: 80.3%, SE 

= 1.6%). A mixed 2×2 ANOVA with the factors control over sampling (self-controlled or yoked; 

within participants) and control type (full or partial; between participants) showed no main 

effects [self-controlled/yoked: F(1,38) = 2.143, p = 0.151, ηp² = 0.053; full/partial: F(1,38) = 

1.321, p = 0.258, ηp² = 0.034], but a significant interaction of the two factors [F(1,38) = 5.108, 

p = 0.03, ηp² = 0.118)]. Post hoc tests showed significantly higher accuracy under full control 
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than in the yoked baseline [t(19) = 2.644, p = 0.032, d = 0.605, Bonferroni corrected], but no 

such effect under partial control [t(19) = −0.561, p > 0.9, d = −0.108]. Thus, relative to matched 

baseline conditions, we found an accuracy benefit of control over sampling under full control, 

but not under partial control. 

 

We next examined if and to what degree the integration of sample information over time 

differed between conditions. To this end, we examined the samples’ decision weights (see 

Methods, Behavioral data analysis) separately for early, mid-, and late portions of the sampling 

sequence (Fig. 1c). We found a pronounced “recency” pattern21,22, with decision weight 

increasing over the course of the trial. In other words, later samples generally had a higher 

impact on the final choice than earlier samples. For comparison between sampling conditions, 

we quantified recency as the difference in decision weight between late and early samples 

(Fig 1d). A mixed 2×2 ANOVA, specified analogously as for accuracy above, showed no 

significant main effects [self-controlled/yoked: F(1,38) = 0.8, p=0.377, ηp² = 0.021; full/partial: 

F(1,38) = 3.363, p = 0.075, ηp² = 0.081], and no interaction between the two factors [F(1,38) = 

1.483, p = 0.231, ηp² = 0.038]. Thus, we found no impact of control over sampling on recency. 

Together, full control over sampling was characterized by increased choice accuracy but was 

not distinguished in the extent to which sample information “leaked”23, or was forgotten, in the 

course of a trial. 

 

Visual evoked responses 

 

Turning to the EEG data, we first examined visual evoked responses to test whether the 

sampling conditions differed in terms of early sensory processing of the sample stimuli (e.g., 

due to potential differences in stimulus-directed visual attention24). Figure 2a shows the 

occipitoparietal ERP difference between stimuli occurring in the right and left visual fields, 

subtracted between contralateral channels (see Methods, ERP analysis). Statistical analysis 

showed no differences between sampling conditions in the time window of either the P1 (80–

130ms) or the N1 component (140–200ms) of the visual ERP [all F(1,38) < 1.71, all p > 0.20, 

all ηp² < 0.044; mixed 2×2 ANOVAs specified as in the behavioral analysis above]. We thus 

found no evidence for differences in early visual processing between the sampling conditions. 
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Fig. 2 Univariate EEG results with ERPs time-locked to number sample onset. a Early visual ERPs 

(left − right stimuli, right channels subtracted from left channels) in each sampling condition. Gray 

shadings indicate time windows of the P1 and N1 components, respectively (80–130 ms and 140–200 

ms). b The difference in centro-parietal (CPP) amplitudes between samples occurring late vs. early in 

the trial (see panels c–d), plotted separately for each sampling condition (including yoked). c The 

“ramping up” of CPP amplitudes over early, mid, and late samples in the partial control condition. Gray 

shadings indicate the time window from which average amplitudes were extracted in panel b. d same 

as c, for the full-control condition. Error indicators in all panels show SE. 

 

Centro-parietal positivity (CPP) / P3  

 

We next examined CPP responses over centro-parietal channels between 300 ms and 600 

ms after stimulus onset. The amplitude of the CPP response to a sample generally increased 

in the course of the trial (Figures 2b–d), which is in line with previous studies implicating the 
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CPP in decisional evidence accumulation25,26. Figures 2c and 2d illustrate the monotonic 

ramping-up of CPP across samples occurring early, mid, and late in the trial (see Methods) 

under partial and full control. Descriptively, the build-up of CPP was stronger under full control. 

For statistical analysis, we examined the increase in CPP amplitude from early to late samples 

in the individual sampling conditions (Fig. 2b). A significant increase in amplitude was evident 

in each condition (including yoked; Fig 2b, all p < 0.02, t-tests against zero, uncorrected). A 

mixed 2×2 ANOVA comparing the amplitude difference between conditions showed no 

significant main effects [self-controlled/yoked: F(1,38) = 1.579, p = 0.217 ηp² = 0.04; full/partial: 

F(1,38) = 1.534, p = 0.223, ηp² = 0.039], but a significant interaction [F(1,38) = 11.408, p = 

0.002, ηp² = 0.231]. Post-hoc t-tests showed that the CPP increased more steeply in the full 

control condition than in the yoked baseline [t(19) = 2.772, p = 0.024, d = 0.687, paired t-test, 

corrected], whereas no such effect was evident under partial control [t(19) = −1.932, p = 0.137, 

d = −0.355]. These findings suggest that the increased choice accuracy under full control was 

associated with a stronger build-up of a cumulative decision variable26, as indicated by a 

steeper increase of centro-parietal decision signals within trials. 

 

RSA 

 

Our results so far show that decisions made with full control over sampling were more accurate 

and accompanied by a stronger build-up of parietal choice signals (Fig. 2c–d), but there was 

no evidence for differences in early visual processing (Fig. 2a) or in the leakage of sample 

information over time (Fig. 1b–c). One possibility is that a benefit of full control may have arisen 

at the stage of numerical processing, in encoding the abstract decisional value of the sampled 

number information proper. We used an RSA-based approach (see Methods) to examine the 

neural encoding of numerical sample values, building on previous findings of numerical 

distance effects in multivariate EEG patterns27–30. Specifically, we correlated the multivariate 

similarity structure of samples (1–9) in our EEG data with theoretical models reflecting (i) 

numerical distance and (ii) extremity of the sample values (see Methods for details). 

 

Numerical distance. We found robust encoding of numerical distance in multivariate EEG 

signals between approximately 160 and 800 ms after sample onset (Fig. 3b, pcluster < 0.001, t-

test against zero), replicating previous findings in tasks without sampling control27–30. To test 

whether the strength of this effect differed between levels of sampling control, we examined 

its time course in the various conditions (full, partial, yoked baselines) using mixed 2×2 

ANOVAs (specified analogously as above). The analysis showed no main effects (all pcluster > 

0.05) but a significant interaction cluster between 320 ms and 580 ms (pcluster = 0.009). We 

further compared the average numerical distance effects in the time window of this cluster. 

We found the effect to be significantly larger (relative to yoked baseline) under full control 

[t(19) = 3.65, p = 0.003, d = 1.05, corrected], but not under partial control [t(19) = −1.065, p = 

0.6, d = −0.340, corrected]. In other words, the encoding of number information in sample-

level neural signals was enhanced under full control, mirroring the pattern of findings for CPP 

build-up (Fig. 2b) and choice accuracy (Fig. 1b). 
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Fig. 3 RSA Results. a Upper: Model RDM reflecting the pairwise numerical distance between sample 

values. Lower: Grand mean EEG RDM averaged across participants and sampling conditions in a 

representative time window between 300 and 600 ms after sample onset. b Time course of numerical 

distance effects in multivariate EEG patterns, plotted separately for each sampling condition. Black bar 

indicates time windows of significant numerical distance encoding (collapsed across sampling 

conditions). Purple bar indicates the time window of significant differences between sampling conditions 

(interaction effect, see Results). c Mean numerical distance effects by condition. Left: First half of 

samples in each choice trial. Right: Second half. d Model RDM reflecting the sample values’ extremity 

in terms of their absolute distance from the midpoint of the sample range (i.e., 5). e Time course of 

extremity encoding in multivariate EEG, plotted separately for each sampling condition. All error bars 

and shadings show SE. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.03.446960doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.03.446960
http://creativecommons.org/licenses/by/4.0/


10 

We next asked whether the enhanced number encoding under full control was driven solely 

by late samples occurring near the time of the decision to stop sampling. To this end, we 

repeated the RSA analysis separately for the first (Fig. 3c, left) and second (Fig. 3c, right) half 

of the samples in a trial. Importantly, a significant enhancement under full control was already 

evident in the first half of samples [t(19) = 2.279, p = 0.034, d = 0.707], that is, long before 

participants stopped sampling. The effect in the second half of samples was similar [t(19) = 

2.237, p = 0.037, d = 0.673; partial control: both p > 0.24]. In sum, we found no indication that 

enhanced number encoding under full control occurred only near the time of deliberate (vs. 

forced) stopping. Rather, the effect appeared to emerge early in the sampling sequence. We 

note again that we only interpreted effects in relation to the respective matched (yoked) control 

conditions, as other comparisons may suffer from non-trivial confounds (see Methods, 

Experimental design). 

 

Extremity. Inspection of the empirically observed RDM (Fig. 3a, lower) suggests that besides 

numerical distance, the multivariate EEG patterns also encoded the extremity of the sample 

values (i.e., their absolute distance from the mid-point of the sample range29,27). Using a model 

RDM of numerical extremity (Fig. 3d; note that the model is orthogonal to the numerical 

distance RDM in Fig. 3a, upper), we found a significant effect between approximately 260 ms 

and 800 ms (t-test against zero, pcluster < 0.001) in the EEG data collapsed across conditions. 

However, testing for differences between sampling conditions yielded no significant results (all 

pcluster > 0.05). Together, while both numerical distance and numerical extremity were reflected 

in our multivariate EEG data, only numerical distance mirrored the enhancement under full 

control that was observed in CPP build-up and in behavior. 

 

Neurometric distortions. Recent studies of sequential number comparisons (without 

participant control over sampling) have shown that neural number representations can be 

distorted (e.g., anti-compressed) away from the linearly monotonic distance structure of our 

idealized model RDMs (Fig. 3a). We used a “neurometric” approach29 to test (i) whether such 

distortions were replicated in our task and (ii) whether they differed between levels of control. 

To this end, we parameterized our model RDMs to reflect the distance structure of transformed 

values 𝑣 = 𝑠𝑖𝑔𝑛(𝑥 + 𝑏) |𝑥 + 𝑏|𝑘, where 𝑥 are the numerical sample values (1–9 normalized to 

the range [−1, 1]), exponent 𝑘 determines the shape of the transformation (𝑘 < 1 compression; 

𝑘 = 1 linear; 𝑘 > 1 anti-compression), and 𝑏 reflects a bias towards smaller (𝑏 < 0) or larger 

numbers (𝑏 > 0). Our EEG data, averaged across all conditions, were best explained by 

parameterizations 𝑘 > 1 and 𝑏 > 0 (Fig. 4a; both p < 0.003, t-tests of individual subject 

maxima against 1 and 0, respectively, averaged over parameterized distance and extremity). 

Thus, the neural number representation was anti-compressed and biased towards larger 

magnitudes (Fig. 4b), strongly resembling the distortions observed in previous work27,29. In 

comparisons between levels of control, however, we found no evidence for differences in the 

degree of anti-compression (Fig. 4c, left; both p > 0.545, t-tests of 𝑘 against yoked baselines 

or bias; Fig. 4c, right; both p > 0.131, t-tests of 𝑏 against yoked baselines). In other words, 

under full control, the encoding of numerical sample information was amplified (Fig. 3) without 

any notable changes in its general representational geometry. 
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Fig. 4 Neurometric distortions. a Grand mean neurometric map, combined across all task conditions. 

Color scale indicates change in EEG encoding strength (𝛥 𝑟, averaged over distance- and extremity 

models) as a function of non-linear distortions of numerical value (𝑘 < 1: compression; 𝑘 > 1: anti-

compression, 𝑏: bias). Dashed lines indicate linear (𝑘 = 1) and unbiased (𝑏 = 0) models. Parts of the 

map that are not overlaid with a slightly opaque mask contain values with a significant increase relative 

to unbiased linear encoding (p < 0.001, corrected using false discovery rate). White markers show 

maxima (diamond: mean; dots, individual participants). b Neurometric function, parameterized 

according to the maximum mean correlation identified in a. c Neurometric parameter estimates in the 

individual sampling conditions, left: exponent (𝑘); right: bias (𝑏). Error bars show SE. 
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Discussion 

Using variants of a numerical sampling paradigm and controlling for stimulus confounds, we 

observed increased choice accuracy when participants had control over the sampling process 

before committing to a choice. On the neural level, the behavioral benefit was reflected in a 

stronger encoding of the numerical sample information in multivariate EEG patterns and in a 

steeper build-up of centroparietal choice signals. The key determinant of these effects was 

participants’ control over how much information to sample. Freedom to decide only which 

options to sample, but not when to stop sampling, did not bring about the same effects, in 

either behavior or neural signals. 

 

Drawing on a well-established sequential sampling framework25,31,32, our behavioral and neural 

findings provide a neurocognitive perspective on how control over sampling may boost choice 

accuracy. We observed no differences in early visual ERPs known to be modulated by top-

down visual attention24,33,34, but a robust enhancement further downstream in the processing 

hierarchy, at the level of symbolic number encoding35,36. Our results replicate recent findings 

of a “neuronal numberline” in multivariate EEG patterns, where the neural representation of 

for example, number “6” is more similar to that of “7”, than to that of “9”27–30. We found this 

representation of numerical magnitude to be amplified under full control, mirroring the pattern 

observed in behavioral performance. Importantly, number encoding was already enhanced for 

samples occurring early in the trial, long before participants stopped sampling to make a final 

choice. Consistent with this finding, we also observed a steeper rise in parietal indices of 

evidence accumulation (CPP/P325,26) across samples, as if each individual sample contributed 

stronger evidence to the ongoing decision formation. In a sequential sampling framework 

where evidence is accumulated into a running decision variable25,31,32,37,38, our EEG and 

behavioral findings may thus both be attributable to an improvement in numerical evidence 

processing. 

 

One possible explanation for our findings relates to motivational factors. Previous work has 

shown that the ability to actively control the environment and/or one’s subjective experiences 

can have beneficial effects, for example on memory13,14, self-regulation and error monitoring39, 

learning and inductive inference11,40, and various other aspects of cognition and 

behavior12,16,17,41,42. Our findings add to these literatures by showing that control can also 

confer benefits in sample-based decision making, specifically when participants can control 

when to stop sampling. While the extrinsic rewards for choice accuracy were identical across 

our task conditions, control over stopping can add an incentive to optimize the time spent on 

a trial43,44. There is typically a trade-off between speed and accuracy of task execution45, such 

that faster decisions come at the cost of lower accuracy (but see 46). However, the present 

findings under full control cannot be explained by such a trade-off, given that we observed 

benefits relative to yoked trials of identical length. As we used exact copies of the participant-

generated sampling sequences in our baseline conditions, we can also rule out the possibility 

that the results are attributable to “amplification effects”47, where participants tend to stop 

sampling when the cumulative difference between options happens to be large (leading to 

objectively easier trials; see below). With these simpler explanations ruled out, our findings 

suggest that control per se may lead to more efficient sample encoding, potentially through 

increased task engagement when decision time can be optimized on a trial by trial basis. 
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We found no differences between conditions in the temporal weighting of sample information 

over the course of a trial. A clear recency effect (relative overweighting of late samples) was 

evident in all task conditions, including yoked baselines. This pattern appears to be at odds 

with a previous meta-analysis of numerical sampling studies4, where recency effects were 

observed solely in conditions with full agency over sampling. However, the present pattern is 

consistent with established findings of recency effects in other sequential integration tasks 

where sample presentation is entirely experimenter-controlled21,22,27,29,37,48,49. We found no 

evidence that the extent to which sample information presented early in the sequence is down-

weighted (or "leaks" from memory23) was affected by control over sampling. We also found no 

indication of differences in the representational geometry of the sampled information in neural 

signals. Neurometric analysis showed an anti-compression of numerical values27,29 in all 

conditions, regardless of the level of control. The absence of differences in these more 

qualitative aspects of information processing in our tasks suggests that the cognitive benefits 

of full control may best be described as an overall increase in the gain of neural processing50,51, 

which amplify the critical decisional information in a sample (here, numerical magnitude). 

 

None of the benefits observed under full control were evident in our partial control condition, 

where participants could only decide which option to sample next, but not when to terminate 

sampling. Although the partial control condition gave participants some level of agency 

(relative to the yoked conditions without control52,53), we suspect that it may not have induced 

a strong sense of control over the task. It even seems possible that participants may have 

perceived the requirement to perform a prescribed number of sampling actions as externally 

controlled and a cognitive burden54. Indeed, post hoc examination of left/right sampling 

patterns showed that our participants resorted to stereotypical sampling routines (either 

alternating between options: “a-b-a-b-...” or sampling first one option and then the other: “a-a-

a-...-b-b-b”) in 67.61% of trials (median over participants)55. In other words, participants made 

little use of the freedom to vary their left/right sampling strategy trial by trial (and/or sample by 

sample), potentially due to a lack of perceived benefits56. In this light, it is perhaps not 

surprising that we found no processing enhancements under partial control, in either behavior 

or neural signals. 

 

Numerical sampling tasks similar to ours have been used extensively in the past to study 

decisions from experience1 in complement to the common use of symbolic descriptions to 

study risky choice57,58. Experience-based choices can differ systematically from description-

based choice, especially in terms of probability weighting2,4. A much-discussed aspect of this 

“description–experience gap” is that participants in experience-based tasks tend to rely on 

relatively few samples4,59,60. Also in our experiment, participants in the full-control condition 

chose to sample less than they could have61. Although one explanation is that small samples 

can render choices objectively simpler47,62, our findings suggest that small samples may also 

defy typical accuracy trade-offs if the decision to stop sampling lies in the autonomy of the 

sampling agent (see also 63). Granting participants full control over sampling may thus not only 

enable but directly promote reliance on small samples through more efficient processing of 

the sample evidence. 

 

In summary, we found that control over sampling can enhance the neural encoding of decision 

information and improve choice accuracy. The results add to a growing collection of findings 

that exercising agency can benefit performance in cognitive tasks and shed light on the neural 

processes that support such benefits. 
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Materials and Methods 

Participants 

 

Forty healthy volunteers took part in the experiment (20 female, 20 male; mean age 26.3 ± 

3.7 years; all right-handed). All participants provided written informed consent and received a 

flat fee of €10 and €10 per hour as compensation, as well as a performance-dependent bonus 

(€9.35 ± €0.48 on average). The study was approved by the ethics committee of the Max 

Planck Institute for Human Development. 

 

Experimental design 

 

On each trial, in all experimental conditions, participants were asked to decide between one 

of two choice options (left/right). Each choice option yielded one of two numerical outcomes 

(drawn from the range 1, 2, …, 9) with probability p (0.1, 0.2, …, 0.9), and the other outcome 

with probability 1 − p. The outcome values and probabilities on each trial were constrained 

such that (i) no two of the four numerical outcome values were identical and (ii) the difference 

in expected value between the two options was always 0.9 (derived from piloting). Under these 

constraints, the choice problems presented on each trial were selected pseudorandomly, with 

the additional restriction that each sample value (1, 2, …, 9) occurred with approximately equal 

probability across the experiment. 

 

Half of the participants were assigned to the “full control” condition, where they were free to 

sample from the left or right option as often as they wished before making a final choice. The 

only restriction on sampling in the full-control condition was that a sample had to be taken 

within 3 seconds (otherwise the trial was restarted) and that the total number of samples could 

not exceed 19. The other half of participants were assigned to the “partial control” condition, 

which was identical to the full control condition except that a fixed number of 12 samples 

(derived from piloting) had to be drawn on every trial. In other words, participants in the partial 

control condition were also free to sample from the left or right option, but had no control over 

when to stop (or continue) sampling: They were always prompted to make a final choice after 

the 12th sample. 

 

In both sampling conditions, the beginning of a new trial was signalled by a green fixation 

stimulus (a combination of bulls eye and cross hair64) that turned white after one second. Upon 

pressing the left or right button on a USB response pad (using the left or right hand 

respectively), participants were shown a black circular disk (diameter 5° visual angle) 4.5° to 

the left (choice option 1) or right (choice option 2) of fixation after 0.2 to 0.4 s (randomly varied). 

After another delay of 0.8 s, the number sample was presented in white (font Liberation Sans, 

height 4°) in the disk area for 0.5 s (see Figure 1 for a schematic illustration). After this, the 

disk disappeared and participants were given 3 s to draw the next sample. The black disk 

served as a spatial cue to minimize differences in surprise about the sample location (left/right) 

in yoked conditions without sampling control (see below). The sampling procedure was 

repeated depending on condition (partial control: 12 samples; full control: up to 19 samples), 

and the resulting sample sequences (including their precise timing) were recorded (see yoked 

conditions below). In the full control condition, a third button on the response pad (above the 

“right” button) was available to stop the sampling sequence. In all conditions, after the 
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sampling was finished, the fixation stimulus changed color to blue for 1 s and participants were 

asked to make a final choice between the left and right options. The button and display 

procedure for the final choice was identical to that for drawing samples, except that the final 

choice outcome was displayed in green to indicate the obtained reward. 

 

Within both groups (full and partial control), each participant additionally performed the task in 

a “yoked” condition, where they had no control over sampling. Here, participants made 

decisions based on replays of previously recorded sampling streams (without any control over 

which and how many samples were shown or their timing). Accordingly, we refer to the yoked 

conditions as the no-control baseline conditions. In each group, half of the participants first 

performed the self-controlled sampling task (full or partial) and subsequently performed the 

no-control task with a replay of their own sampling sequences. In informal debriefing after the 

experiment, none of these participants reported having noticed that they had viewed exact 

replays of their own sampling sequences. The other half of the participants in each group 

performed the no-control task first (yoked to the sampling sequences of another participant in 

the same group) and the self-controlled task second. Control analysis showed no differences 

in choice accuracy between participants who performed the baseline task first (yoked to 

another participant’s sequences) or second (yoked to their own sequences) (all p > 0.05). 

Each participant performed 100 trials (five blocks of 20 trials with short breaks between blocks) 

in the self-controlled and yoked task variant, respectively. 

 

Participants in the full control group drew on average 8.6 samples (SD = 4.2, median = 8), 

compared with the 12 samples that had to be drawn in the partial control group. Due to the 

principled impossibility of matching full and partial control trials (e.g., with respect to the 

precise length and timing of the sampling sequences on individual trials), all our analyses 

focus on comparisons of differences to the matched (yoked) baseline condition within each 

group. This analysis strategy rules out stimulus confounds that may arise, for instance, due to 

“amplification effects” under full control, where stopping decisions may be more likely when 

the momentary difference between the accumulated option values happens to be large47. 

 

The experiment was programmed in Python using the Psychopy package65 and run on a 

Windows 10 PC. The experiment code is available on Zenodo 

(https://doi.org/10.5281/zenodo.3354368). Behavioral responses were recorded using a USB 

response pad (The Black Box ToolKit Ltd, UK). Throughout the experiment, eye movements 

were recorded using a Tobii 4C eye-tracker (Tobii Technology, Sweden; sampling rate 90 Hz). 

To reduce eye movements, participants’ gaze position was analyzed online while the 

experiment was run in all sampling conditions. The program displayed a warning message 

and restarted the trial whenever the gaze left the central fixation stimulus (threshold 5° visual 

angle) more than four times during a trial. On average 3% of trials per participant were 

restarted due to lack of fixation, or failure to draw a sample within 3 seconds (see above). 

 

Supplementary tasks 

 

After the main experiment, participants performed an additional short task on the same choice 

problems, where the options were not explored through sampling but described formally on 

screen (e.g., “8 with 60% or 4 with 40%?”). Due to a coding error, much of the data (84%) from 

this task was incorrectly recorded and the results are thus not reported here. Participants 

further completed a brief numeracy questionnaire (Berlin Numeracy Test, BNT66). Exploratory 
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analysis showed no significant correlations of the effects reported in our main analysis with 

BNT scores. 

 

EEG recording 

 

The experiment was performed in an electrically shielded and soundproof cabin. Scalp EEG 

was recorded with 64 active electrodes (actiCap, Brain Products GmbH Munich, Germany) 

positioned according to the international 10% system. Electrode FCz was used as the 

recording reference. We additionally recorded the horizontal and vertical electrooculogram 

(EOG) and electrocardiogram (ECG) using passive electrode pairs with bipolar referencing. 

All electrodes were prepared to have an impedance of less than 10kΩ. The data were recorded 

using a BrainAmp DC amplifier (Brain Products GmbH Munich, Germany) at a sampling rate 

of 1000 Hz, with an RC high-pass filter with a half-amplitude cutoff at 0.016Hz (roll-off: 

6dB/octave) and low-pass filtered with an anti-aliasing filter of half-amplitude cutoff 450Hz 

(roll-off: 24dB/octave). The dataset is organized in Brain Imaging Data Structure format 

(BIDS)67 according to the EEG extension68, and is available from https://gin.g-

node.org/sappelhoff/mpib_sp_eeg/. 

 

Behavioral data analysis 

 

Participants’ behavioral accuracy in each sampling condition was calculated with respect to 

the arithmetic mean of the samples that were presented for each option. Differences in 

accuracy between sampling conditions were analyzed using a mixed 2×2 ANOVA (self-

controlled/yoked; full/partial), followed up with Bonferroni-corrected pairwise t-tests. All 

statistical tests reported (including in the EEG analyses, see below) are two-tailed. 

 

To examine recency effects in the behavioral data, we used a reverse correlation approach69,70 

based on logistic regression. We first divided the samples in a trial into early, mid, and late 

samples. The first and last two samples in a trial were defined as early and late samples, 

respectively, and the remaining samples as “mid” samples. Trials with fewer than 5 samples 

overall were discarded in this analysis (between 1% and 41.5% of trials per participant, mean 

= 13.3%). For each participant, task condition, and time window, we regressed the participant’s 

final choices (left: 0, right: 1) onto the number sample values (numbers 1, 2, …, 9 rescaled to 

−4, −3, ..., 4), where the values for the left option were sign-flipped to reflect their opposite 

impact on the probability of choosing the right option29. We interpret the regression coefficients 

resulting from this analysis as a measure of “decision weight”, that is, of the influence that 

number samples (early, mid, or late) had on choice. 

 

EEG preprocessing 

 

The EEG recordings were visually inspected for noisy segments and bad channels. Ocular 

and cardiac artifacts were corrected using independent component analysis (ICA). To this end, 

we high-pass filtered a copy of the raw data at 1 Hz and downsampled it to 250 Hz. We then 

ran an extended infomax ICA on all EEG channels and timepoints that were not marked as 

bad in the prior inspection. Using the EOG and ECG recordings, we identified stereotypical 

eye blink, eye movement, and heartbeat artifact components through correlation with the 

independent component time courses. We visually inspected and rejected the artifact 

components before applying the ICA solution to the original raw data71. We then filtered the 
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ICA-cleaned data between 0.1 and 40 Hz, interpolated bad channels, and re-referenced each 

channel to the average of all channels. Next, the data were epoched from −0.2 to 0.8 s relative 

to each individual number sample onset. Remaining bad epochs were rejected using a 

thresholding approach from the FASTER pipeline (Step 2)72. On average, n = 1925 clean 

epochs (93.85%) per participant were retained for analysis. The epochs were downsampled 

to 250 Hz and baseline corrected relative to the period from −0.2 to 0 s before stimulus onset. 

All EEG analyses were performed in Python using MNE-Python73, MNE-BIDS74, and custom 

code. All analysis code is available at https://github.com/sappelhoff/sp_code. 

 

Event-related potential (ERP) analysis 

 

EEG analyses are reported for the epochs around the onset of the individual number samples. 

We first examined lateralized visual ERP components to test whether early visual processing 

differed between the sampling conditions. To this end, we subtracted the ERP for stimuli 

presented on the right from the ERP for stimuli presented on the left, and then subtracted the 

mean signal of right-hemispheric (O2, PO4, PO8, PO10) occipito-parietal channels of interest 

(based on previous literature75) from the corresponding left-hemispheric (O1, PO3, PO7, PO9) 

channels. Mean amplitudes of the lateralized evoked potential were extracted from 

prototypical time windows (P1 ERP component: 80 ms to 130 ms, N1 ERP component: 140 

ms to 200 ms) for each sampling condition and analyzed in a mixed 2×2 ANOVA (self-

controlled/yoked; full/partial). 

 

We further examined centro-parietal evoked responses (CPP/P3, averaged over the early, 

mid, and late samples in each trial) as a potential correlate of decisional evidence 

accumulation25,26. To this end, we averaged the signal over centro-parietal channels (Cz, C1, 

C2, CPz, CP1, CP2, CP3, CP4, Pz, P1, P2) and focused on a time window from 300 ms to 

600 ms, based on previous analyses of CPP/P3 responses during visual stimulus 

sequences29,48,76. 

 

Representational similarity analysis (RSA) 

 

To examine the encoding of numerical sample value in multivariate EEG patterns, we used an 

approach based on representational similarity analysis (RSA)77. To this end, the ERPs were 

additionally smoothed78 with a Gaussian kernel (35 ms half duration at half maximum). We 

then computed multivariate (dis)similarity in terms of the pairwise Euclidean distance between 

the ERP patterns associated with each sample value (numbers 1–9), yielding a 9×9 

representational dissimilarity matrix (RDM) for each time point of the analysis epoch. The EEG 

RDMs at each timepoint were compared with model RDMs reflecting (1) the samples’ 

numerical magnitude (“numerical distance”; upper panel Fig. 3a) and (2) their “extremity” (i.e., 

a sample’s absolute difference from the midpoint of the sample range, 5; Fig. 3d). To avoid 

confounds by potential deviations from a uniform distribution of sample values across the 

experiment, we additionally orthogonalized each model RDM to an RDM of the relative 

frequency of numerical sample occurrences29. Qualitatively similar results were obtained when 

this orthogonalization step was omitted. 

 

For quantitative analysis, we extracted the lower triangle (excluding the diagonal) from each 

model RDM and compared it with the EEG RDM data at each time point using the Pearson 

correlation coefficient. To analyze the overall encoding of numerical distance and extremity, 
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we used t-tests against zero with cluster-based permutation testing79 to control for multiple 

comparisons over time points (10,000 iterations, cluster-defining threshold = 0.05). We then 

re-computed the EEG RSA separately for each sampling condition to test for differences in 

number encoding. Differences between conditions were examined using mixed 2×2 ANOVAs 

(self-controlled/yoked; full/partial), again using cluster-based permutation testing to control for 

multiple comparisons over time points. Analogous RSA analyses were performed separately 

on the first and second half of samples from each trial (Fig. 3c). 

 

Data availability 

 

All data in BIDS format are available at https://gin.g-node.org/sappelhoff/mpib_sp_eeg. 

 

Code availability 

 

All analysis code is available at https://github.com/sappelhoff/sp_code. The experiment 

presentation code is available on Zenodo (https://doi.org/10.5281/zenodo.3354368). 
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