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Abstract 

Mounting evidence supports the idea that transcriptional patterns serve as more specific 

identifiers of active enhancers than histone marks1,2; however, the optimal strategy to identify 

active enhancers both experimentally and computationally has not been determined. In this 

study, we compared 13 genome-wide RNA sequencing assays in K562 cells and showed that the 5 

nuclear run-on followed by cap-selection assay (namely, GRO/PRO-cap) has significant 

advantages in eRNA detection and active enhancer identification. We also introduced a new 

analytical tool, Peak Identifier for Nascent-Transcript Sequencing (PINTS), to identify active 

promoters and enhancers genome-wide and pinpoint the precise location of the 5′ transcription 

start sites (TSSs) within these regulatory elements. Finally, we compiled a comprehensive 10 

enhancer candidate compendium based on the detected eRNA TSSs available in 120 cell and 

tissue types. To facilitate the exploration and prioritization of these enhancer candidates, we also 

built a user-friendly web server (https://pints.yulab.org) for the compendium with various 

additional genomic and epigenomic annotations. With the knowledge of the best available assays 

and pipelines, this large-scale annotation of candidate enhancers will pave the road for selection 15 

and characterization of their functions in a time-, labor-, and cost-effective manner in the future. 
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Regulation of transcription is a synergetic process that requires both trans-regulatory factors, like 

transcription factors, and cis-regulatory elements, like promoters and enhancers. In contrast to 

promoters, which initiate transcription in their proximal regions to produce stable RNA products, 

enhancers regulate transcription of their target gene(s) in a distal manner. Certain epigenomic 

signatures (enrichment of H3K4me1 and H3K27ac, high chromatin accessibility, and CBP/p300 5 

binding) are considered to be defining features of active enhancer loci3,4. However, studies also 

revealed that enhancers could themselves produce relatively short-lived divergent transcripts, 

called enhancer RNAs (eRNAs)5,6. More recent studies further showed that distal divergent 

transcription events are more reliable marks for active enhancers than epigenomic signatures1,2. 

Recently we have proposed7,8 and later experimentally verified2 the basic unit of active 10 

enhancers that are defined by the transcription start sites (TSSs) of the divergent eRNA 

transcription, and delimited by the promoter-proximal Pol II pause sites flanking these TSSs. 

Therefore, to identify active enhancers genome-wide in any given sample, it is critical to detect 

eRNAs and their TSSs with high sensitivity and specificity. 

 15 

eRNAs are usually in extremely low abundance in cells due to their short half-lives. Therefore, 

conventional RNA-seq experiments capture eRNAs with very low efficiency overall5. Recently, 

two categories of genome-wide RNA sequencing assays have been developed, focusing either on 

TSSs or on the actively-transcribing polymerase positions (Fig. 1a). We named the 8 assays 

(GRO9/PRO-cap10, CoPRO8, Start-seq11, CAGE12, RAMPAGE13, NET-CAGE14, csRNA-seq15, 20 

and STRIPE-seq16) from the former category as 5′ assays, because these assays enrich for active 

5′ TSSs of promoters and enhancers (Fig. 1a). We also named the 5 assays (GRO-seq17, PRO-

seq10, mNET-seq18, Bru-seq19, and BruUV-seq20) from the latter category as 3′ assays, because 
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they are designed to identify 3′ ends of the RNA transcripts (Fig. 1a). To enrich for RNA 

populations of interests, these assays implement various experimental strategies, including 

nuclei/chromatin isolation8–11,18, nuclear run-on8–10 or metabolic labeling19,20 with biotin or 

bromo-tagged nucleotides and affinity purification, Pol II immunoprecipitation18, size 

selection15,16, and enzymatic elimination of non-capped RNAs8–10,16, or chemical tagging of 5 

capped RNAs12–14. We summarized key experimental steps of both 5′ and 3′ assays in Fig. 1b. In 

fact, the list of all assays compared here, plus total RNA-seq21,22, have all been utilized in some 

capacity to identify enhancer elements. However, considering that most of these assays are not 

specifically designed to capture eRNAs, caution should be taken when exploiting the resulting 

data for identification of active enhancers or when deciding on the appropriate assay to use. 10 

Here, using datasets produced in the same ENCODE Tier 1 cell line, K562, we performed a 

comprehensive evaluation of the reliability and sensitivity in detecting eRNAs (thus identifying 

active enhancers genome-wide) across all available RNA sequencing assays, including seven 5′ 

assays (no K562 Start-seq dataset is available), five 3′ assays, and total RNA-seq (as the 

outgroup). 15 

 

Because these assays were initially designed for different purposes, various computational tools 

were developed for exploring and interpreting the raw experimental data—for example, Tfit23, 

dREG24,25, and dREG.HD26 were developed to identify transcriptional regulatory elements 

(TREs) from some 3′ assays, including GRO-seq and PRO-seq; FivePrime27 (based on 20 

paraclu28), GROcapTSSHMM7, and HOMER15 were introduced for analyzing data from CAGE, 

GRO-cap, and csRNA-seq, respectively. While all these tools can potentially be used to identify 

eRNA transcription and active enhancers, there has not been a systematic evaluation and 
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comparison of their performance with datasets generated by the aforementioned experimental 

assays. 

 

In this study, we systematically examined 13 experimental assays in terms of their sensitivity and 

specificity for capturing eRNAs. We also developed a novel computational tool, Peak Identifier 5 

for Nascent-Transcript Sequencing (PINTS), which is designed to identify enhancer candidates 

from all of these assays. Moreover, by comparing PINTS with 8 other widely-used 

computational tools, we found that PINTS gave the highest overall performance pertaining to 

robustness, sensitivity, and specificity, especially when analyzing data from 5′ RNA sequencing 

assays. Finally, we constructed a comprehensive enhancer candidate compendium for 120 cells 10 

and tissues using the robust and unified definition of active enhancers based on detected eRNA 

TSSs genome-wide1,2,7, and developed an online web server (https://pints.yulab.org/) to navigate, 

prioritize, and analyze enhancers based on a wide range of genomic and epigenomic annotations. 

We expect our enhancer compendium will be a valuable resource to the research community for 

the effective selection of candidate enhancers for further functional characterization in future 15 

studies. 

 

Results 

5′ assays enriching short and/or capped RNAs demonstrate higher sensitivity in eRNA 

detection with GRO-cap being the most sensitive assay 20 

To perform a quantitative comparison of eRNA detection sensitivity, we first normalized all 

libraries by down-sampling them to the same sequencing depth as the library with the lowest 
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depth (18.9 million mappable reads, Supplementary Table 1). We then conducted a pairwise 

comparison of their coverage at 741 previously identified super-enhancers29. The result shows 

that assays using nuclear run-on followed by cap-selection (GRO-cap7/PRO-cap, CoPRO8) have 

a higher coverage over all other assays (Cohen’s d of log-transformed coverage: 0.3926~1.1642). 

Since super-enhancers can span several kilobase pairs in the genome and are believed to be 5 

composed of clusters of enhancers, we also compared the assay sensitivity in a higher resolution 

manner by examining their coverage in 803 (635 intergenic, 113 intronic, and 55 others) bona 

fide enhancers (referred to as “true enhancer set” in this study, Supplementary Table 2) validated 

by CRISPR/Cas9-mediated deletion and CRISPRi in K562 cells30–38. With the same sequencing 

depth, GRO-cap ranks first in terms of sensitivity: it covers 85.80% of true enhancers (70.98% 10 

divergent: ≥ 5 reads detected from both strands and 14.82% unidirectional: ≥ 5 reads detected 

only on one strand; Fig. 1c and Supplementary Fig. 1a). csRNA-seq comes in second place with 

73.35% (46.33% divergent and 26.40% unidirectional) coverage of these validated true 

enhancers (Fig. 1c and Supplementary Fig. 1a). 

 15 

We further evaluated the sensitivity of these assays by their ability to capture unstable 

transcripts. eRNAs are usually less stable compared to RNAs of other types, as seen in the decay 

rates39 of transcripts originated from 514 enhancers from the true enhancer set, which are 

significantly more rapid than those of mRNAs (p-value: 1.022e-86, Cohen’s d: 0.9469). We then 

used as the cutoff between stable and unstable transcripts the 95th quantile of decay rates of 20 

mRNAs and surveyed the distribution of read counts captured in the two categories among all 

assays. Consistent with our conclusion above, GRO-cap has the smallest differences in read 

coverage between stable and unstable transcripts [Cohen’s d: -0.0028, 95% CI: (-0.0328, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 4, 2021. ; https://doi.org/10.1101/2021.06.02.446833doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.02.446833
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

0.0239)], indicating assays utilizing nuclear run-on followed by cap-selection have the greatest 

ability to enrich unstable transcripts, which is of particular importance for detecting eRNAs (Fig. 

1d and Supplementary Fig. 1b). We evaluated the effects of technical artefacts, including strand 

specificity and internal priming, and our results suggest all libraries have great strand specificity 

(average: 0.9797, SD: 0.0209) and low internal priming rates (Supplementary Notes). 5 

 

Sequencing reads from gene bodies and small RNAs in 3′ assays contribute to lower 

sensitivity in eRNA detection 

For the two families of assays that we compared in this study, we noticed that in general, 5′ 

assays are more sensitive in detecting eRNAs than 3′ assays, even for assays that use very similar 10 

enrichment strategies (Fig. 1b). For instance, while both GRO-cap and PRO-seq employ similar 

nuclear run-on procedures, there is a 41.22% difference between their divergent coverage of the 

true enhancer set (Fig. 1c). When inspecting genome-wide distribution of reads (Fig. 2a and 

Supplementary Fig. 2a), we noticed that 3′ assays have significantly higher proportions of reads 

coming from gene body regions (mean of 3′ assays: 65.62%, mean of 5′ assays: 13.01%, p-value 15 

from Mann-Whitney U test: 0.0029), which is not surprising as they are designed to reveal all 

actively transcribing RNA polymerases, whereas 5′ assays are specifically designed for 

identification of TSSs. Because eRNA transcription is on average much lower than that of 

genes7, such a high portion of gene body reads in 3′ assays dilute the signal from eRNAs and 

significantly lower their sensitivity in detecting active enhancers. As shown in Fig. 2b, 3′ assays 20 

detect a significant number of reads in the FAM89A gene body, whereas 5′ assays only have 

reads in the promoter regions of the FAM89A gene. As a result, almost all 3′ assays (except 

PRO-seq) have no discernable signal at a distal enhancer locus near the FAM89A gene that was 
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validated by CRISPRi35(Fig. 2b). Another potential problem for 3′ assays is that reads that are 

mapped to intergenic or intronic regions could be derived from either eRNAs, the unprocessed 

precursors of RNAs from other categories (e.g., pre-mRNAs), or read-through from an upstream 

transcription event (Supplementary Fig. 2b), which further reduces their sensitivity for detecting 

eRNAs. 5 

 

Most of the RNA transcripts in living cells belong to the families of highly abundant RNAs, e.g., 

rRNAs and snRNAs. When capturing eRNAs with next-generation sequencing-based methods, a 

successful exclusion of RNAs of these high-abundance families from the sequencing libraries 

during the preparation process would greatly enhance the efficiency and sensitivity of eRNA 10 

identification. We compiled a comprehensive list of high-abundance RNAs in human cells by 

incorporating annotations from GENCODE40, RefSeq41, and RMSK42. Based on this list, an 

average of 7.124% of the mappable reads in each assay originated from rRNAs despite most of 

the assays employed strategies to reduce rRNA inclusion (Fig. 2c and Supplementary Fig. 2c). 

By simulating a rRNA-depleted BruUV-seq library, we found that a complete depletion of 15 

rRNAs could contribute to a 1.76-fold boost in detecting eRNAs (Supplementary Fig. 2d). 

 

When the assay specifically enriches for short transcripts, like csRNA-seq, a relatively large 

proportion (31.49%) of the mappable reads were found to have originated from snRNAs (Fig. 2c 

and Supplementary Fig. 2c). Detection of such a disproportionally large fraction of snRNAs (Fig. 20 

2c) suggests a potential contamination in the sequencing library from the splicing intermediates. 

To test the possibility, we calculated the signal densities at all the splice sites in the human 
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genome according to GENCODE annotation (v24)40. As shown in Supplementary Fig. 2d, 

csRNA-seq does detect more signals at the splicing junctions compared to all the other assays. 

 

5′ assays have better specificity in detecting active enhancers, with GRO-cap having the 

best performance 5 

While genomic regions with detectable transcriptional events account for 75% of the human 

genome43, many of these events are considered to be spurious transcriptional noise44,45 because 

of their extremely low transcript yields compared to mRNAs and of the intrinsic promiscuity of 

RNA Pol II under certain circumstances46. Therefore, it is critical to detect and differentiate the 

reads that originated from spurious transcription in these assays. To that end, we collected non-10 

enhancer loci from eight Massively Parallel Reporter Assay (MPRA)47–51 and Self-Transcribing 

Active Regulatory Region Sequencing (STARR-seq)2,52,53 studies and further removed elements 

overlapping with predicted Enhancer-Like Sequence (ELS) or Promoter-Like Sequence (PLS) 

from candidate cis-regulatory elements (cCRE) annotations54 to generate a set of 7,097 loci 

(referred to as the “non-enhancer set”, Supplementary Fig. 2f, Supplementary Table 3). We 15 

observed that signal intensities in the true enhancer set are often higher than that in the non-

enhancer set (Fig. 2d and Supplementary Fig. 2g), with GRO-cap having the highest signal-to-

noise ratio (64-fold enrichment, Fig. 2d and Supplementary Fig. 2g). 

 

We also calculated false discovery rate (FDR) for each assay based on the overlap of their reads 20 

with both the true enhancer and non-enhancer sets. We found that 5′ assays generally have lower 

FDRs than those of 3′ assays (5′ assay mean: 0.2698 vs. 3′ assay mean: 0.5253, p-value from 
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Mann-Whitney U test: 5.089e-5, Fig. 2e and Supplementary Fig. 2h), with GRO-cap having the 

lowest FDR (mean: 0.1250, SD: 0.0046). 

 

A novel computational tool for identifying active enhancers and promoters from 5′ assays: 

Peak Identifier for Nascent-Transcript Sequencing (PINTS) 5 

High-throughput sequencing-based bioassays rely on sophisticated analyses to identify 

meaningful information from raw data, so it is essential to choose the appropriate computational 

tool to do the job. Two categories of tools are currently available for signal processing. Tools in 

the first category predict entire transcription units, they are primarily used for 3′ assays and often 

use a set of cutoffs for fold-changes, e.g., HOMER (GRO-seq)55 or Hidden Markov Models19,56, 10 

e.g., groHMM, to determine the start and end positions of transcription units. Tools in the second 

category usually identify narrower regions for potential regulatory elements (mainly promoters 

and enhancers, often referred to as peak callers) and include GROcapTSSHMM7, dREG24, Tfit23, 

dREG.HD26, TSScall11, HOMER (csRNA-seq)15, and FivePrime27 (based on Paraclu28). Based 

on previous studies, the peak of divergent TSSs, which is associated with eRNA transcription, is 15 

an effective mark for active enhancers1,2. Therefore, in this comparative study, we focused on the 

second category of computational tools. 

 

To achieve a higher resolution in identification of transcriptional regulatory elements, a common 

practice is to only look at the ends of the transcripts captured by these assays. When such a 20 

practice is adopted, two critical issues emerge when evaluating the statistical significance of 

peaks (i.e., TSSs), especially for the 5′ assays. First, when only taking the transcript ends into 

account, the fraction of zeros (no mapped reads per basepair) in local background increases, 
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which deflates read density in the local background and thus inflates the statistical significance 

of candidate TSSs and resulting in false positives. Second, multiple TSSs can localize in close 

proximity in the genome and therefore inflate the estimation of read density in the local 

background, resulting in diminished statistical significance for all TSSs in that locus and leading 

to false negatives in TSS detection. To address these issues, we developed Peak Identifier for 5 

Nascent-Transcript Sequencing (PINTS), which uses zero-inflated Poisson models to evaluate 

local read densities and employs interquartile range (IQR)-based refinement to ameliorate false 

negatives by conditionally masking candidate TSSs in the local background (Fig. 3). PINTS was 

inspired by MACS257 with modifications specifically implemented for identification of eRNA 

TSSs from genome-wide RNA sequencing assays (especially 5′ assays). After evaluating the 10 

significance of each TSS, PINTS defines TREs as divergent TSS pairs that are within 300bp 

from each other, as suggested by previous studies2 (Supplementary Fig. 3a, Methods). We 

identify candidate enhancers as the distal TREs that are farther than 500 bps away from known 

protein-coding gene TSSs2. 

 15 

Most peak callers can identify active enhancers from high-throughput datasets, but their 

resolution and computational requirements vary significantly 

Candidate enhancer loci identified by peak caller algorithms should share the same features as 

true enhancers with characteristic epigenomic marks (DHS, H3K27ac, H3K4me3, and 

H3K4me1) and transcription factor (CBP/p300, GATA1, and CTCF)-binding sites. Indeed, we 20 

found that candidate enhancers identified by most tools recapitulate these features of true 

enhancers (Fig. 4a, b and Supplementary Fig. 3a for GRO-cap and Supplementary Fig. 3b~l for 

all other assays). However, the distribution pattern of epigenomic marks and TF-binding sites of 
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candidate enhancers identified by MACS257, a widely used peak caller for analyzing ChIP-seq 

data, is remarkably distinct from those of the true enhancers, suggesting the default shifting 

model of MACS2 optimized for ChIP-seq data may not be suitable for identifying eRNA TSSs 

of active enhancers. 

 5 

We further surveyed the size distribution of these elements as an indication of peak-calling 

resolutions. We found that PINTS, GROcapTSSHMM, Tfit, and TSScall achieve higher 

resolution (average peak size of 185-258 bp) than other tools when analyzing 5′ assay data (Fig. 

4c and Supplementary Fig. 3m for all other assays). Notably peaks called by dREG.HD and 

MACS2 range between 548-751 bp in size, whereas dREG, FivePrime, and HOMER peaks 10 

range between 381-460 bp. 

 

The amount of computational resources required by a peak caller greatly affects its general 

applicability. Here, we compared the total amount of CPU time and peak memory usage that 

each peak caller requires for identifying divergent elements from 5′ assays (Fig. 4d and 4e). 15 

Based on our calculation, it is feasible to run PINTS, MACS2, HOMER, GROcapTSSHMM, 

TSScall, and FivePrime on a typical personal computer. 

 

PINTS achieves high overall robustness, sensitivity and specificity in detecting TREs from 

5′ assays 20 

A common strategy in functional studies of enhancers is to compare active enhancers across 

different conditions and diseases21,22, which requires the in silico enhancer-predicting tools to be 

robust against biological and experimental variances. To test the upper bound of robustness for 
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the aforementioned tools, we performed peaks calls using these tools on datasets from 12 assays 

by aligning each dataset to two commonly-used builds of human reference genome: hg19 and 

hg38. Because there is no variation in the RNA sequencing datasets themselves and the two 

reference genome builds are very similar (hg38 has 0.09% more ungapped non-centromeric 

sequences than hg19, only 0.17% of ungapped hg19 sequences are not in hg3858, Supplementary 5 

Fig. 4a), we expect that the differences in peak calls using these two different genome builds 

should be minimal across all datasets. Surprisingly, we found that by simply changing the 

reference genome builds, half of them have Jaccard index smaller than 0.9 for at least one assay 

(Fig. 4f). Furthermore, we noticed that Jaccard indices were even lower when we tried to 

evaluate robustness across real technical and biological replicates (average: 0.5068, SD: 0.2462), 10 

especially for TSScall and FivePrime, where their robustness is only 0.4013 (SD: 0.1038) and 

0.3836 (SD: 0.2028), respectively (Supplementary Fig. 4b). PINTS consistently have great 

robustness in both cases (average: 0.9761, SD: 0.0081 between hg19 and hg38 genome builds, 

and average: 0.7279, SD: 0.0515 across replicates). 

 15 

To evaluate sensitivity and specificity, two other key metrics of performance, we merged the true 

enhancer set with the promoter regions from GENCODE v2440 as the positive set, and non-

enhancer loci as the negative set (Method). As shown in Supplementary Fig. 4c, the negative set 

has distinct patterns of TF-binding motifs and chromatin marks compared to either the true 

enhancer or the promoter set. We then evaluated each tool’s performances for all 5′ assay 20 

datasets (Fig. 4g). The results show that PINTS achieves the best balance between sensitivity and 

specificity (PINTS mean AUC: 0.7796, SD: 0.0821; mean AUC for the second-best tool dREG: 

0.6518, SD: 0.1088). For all of these computational tools, we summarize their key requirements, 
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main characteristics, and applicability to different RNA sequencing assays in Supplementary Fig. 

5. 

 

An enhancer compendium for human cell and tissue types 

Having comprehensively evaluated the performance of all available whole-genome RNA 5 

sequencing assays and computational tools in identification of candidate enhancers genome-

wide, we reasoned that available 5′ assay datasets across different human cells and tissues could 

be analyzed by PINTS to construct a human enhancer candidate compendium. Previous studies 

have shown that, compared with histone marks, detecting enhancers by divergent eRNA TSSs 

has advantages in both resolution and specificity1,2. Such an eRNA-centric enhancer 10 

compendium, in addition to all the available enhancer datasets based on histone marks54,59, will 

be an invaluable resource to better understand gene regulation, to functionally annotate the non-

coding genome, and to help prioritize non-coding variants across disease cohorts by their 

potential impact on enhancer activities60. Toward this goal, we applied PINTS to identify 

candidate enhancers using 5′ assay datasets (i.e., GRO/PRO-cap, Co-PRO, csRNA-seq, NET-15 

CAGE, RAMPAGE, CAGE, and STRIPE-seq) across 33 cell lines, 7 in vitro differentiated cells, 

35 primary cells, and 45 tissue samples, including all available 5′ assay datasets through the 

ENCODE portal (Fig. 5a). Such a comprehensive catalog of enhancers across a wide range of 

human cells and tissues analyzed by the same exact computational pipeline provides an excellent 

resource to perform meaningful comparative genomic analyses to study the dynamics of 20 

enhancers and gene regulation in general, which will help focus on true biological differences 

while minimizing technical variations. In addition, for 7 human cell lines (K562, GM12878, 

HepG2, HeLa-S3, MCF-7, H9, and HCT116), we applied all other available tools (FivePrime, 
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HOMER, TSScall, dREG, dREG.HD, and Tfit) to identify candidate enhancers. We believe this 

unique resource of enhancers in 7 cell lines with multiple 5′ assay datasets analyzed by all 

available computational tools will greatly help further the studies of enhancers and their key 

architecture characteristics. All of these candidate enhancer calls are made publicly available 

through our web server (https://pints.yulab.org) described in detail below. We will regularly 5 

update our enhancer compendium as new datasets, especially those in new cell lines or samples, 

and assays, become available. 

 

In human K562 cells where datasets are available from all 5′ assays, our results show that GRO-

cap has by far the most number of distal TRE elements (19,006 identified by PINTS with 9,531 10 

unique enhancer calls – not identified by any other assay; the second-best dataset, csRNA-seq, 

only has 14,375 enhancer calls with 5,048 unique (Fig. 5b). This is not surprising given that 

GRO-cap has the best sensitivity in detecting eRNA transcription (Fig. 1c and 1d) and the GRO-

cap dataset has the second highest read depth (Fig. 5b). We selected three CRISPRi-validated 

enhancer-promoter pairs35 to visualize these differences and showed the variety in signal 15 

abundances between all assay datasets (Fig. 5c-e). For example, the enhancer which regulates the 

JUND gene (Fig. 5c) has decent accessibility and is supported by epigenomic marks, including 

H3K27ac and H3K4me1. As expected, all four 5′ assays can identify this enhancer. The 

expression levels of enhancers are not necessarily to be proportional to the levels of epigenomic 

marks, and for eRNAs whose expression levels are lower (e.g., the enhancer that regulates FTH1 20 

in Fig. 5d), assays that are more effective in capturing unstable transcripts are more likely to 

recover them. Finally, for the enhancer regulating TMA16, signals from histone marks are quite 
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minimal, but GRO-cap still captures clear signals of eRNA transcription at this locus and readily 

enables identification of this enhancer (Fig. 5e). 

 

An online web server for exploring and analyzing enhancers and various genomic and 

epigenomic features genome-wide 5 

To make it easier for biologists to explore the tens of thousands of candidate enhancers in our 

compendium and to prioritize these enhancers for further studies, we constructed an online web 

server (https://pints.yulab.org) that is publicly available, where users can query any human 

genomic region of their interest in a given biological sample to get a comprehensive list of 

candidate enhancers detected by any available 5′ RNA sequence assays (i.e., GRO/PRO-cap, 10 

csRNA-seq, NET-CAGE, CAGE, RAMPAGE, and STRIPE-seq) in that sample using any of the 

7 peak callers (PINTS, FivePrime, dREG, dREG.HD, HOMER, Tfit, and GROcapTSSHMM). 

We also included detailed annotations for each candidate enhancer, including epigenetic 

features54, core promoter elements61, potential transcription factor binding sites62, and presence 

of population variants and ClinVar mutations63, as shown in Fig. 6. Users can prioritize 15 

enhancers by requiring specific supporting 5′ assay data available, the presence of certain 

epigenomic features, core promoter elements and transcription factor binding sites, or containing 

different categories of population variants (common vs. rare) and ClinVar mutations (benign vs. 

pathogenic). For the transcription factor binding site analysis, our web server will automatically 

integrate the information from available RNA-seq data to only include those factors that are 20 

expressed in the selected cell line. 
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Furthermore, users can upload their own enhancers calls in a human cell line or type, our web 

server will automatically annotate all of their enhancers calls with the same pipeline as described 

above. We have integrated epigenomic features and RNA-seq data for 197 human-derived 

biosamples from the ENCODE project in our web server. For user-uploaded enhancer data in 

these samples, we automatically refine our annotations by only reporting binding sites of 5 

expressed transcription factors, and associating each enhancer with epigenomic features specific 

to the corresponding sample. 

 

Users can explore all annotations of their selected enhancers via our integrated genome browser; 

alternatively, they can easily export all annotations to a local machine in plain text format, which 10 

greatly facilitates any user-designed downstream analyses. 

 

Discussion 

eRNAs are increasingly being recognized as a critical marker for active enhancers genome-

wide1,2; however, the optimal strategy (both experimental assays and their analytical pipelines) to 15 

detect eRNAs and thus identify enhancer loci has not been unveiled. In this study, we 

systematically compared 13 in vivo genome-wide RNA sequencing assays in K562 cells and 

showed that 5′ assays are in general more sensitive than 3′ assays to detect eRNAs, because 

signals will not be diluted by active transcription in gene bodies. One additional, and critical 

advantage of the 5′ assays is that they reveal the precise location of eRNA TSSs, allowing for 20 

high-resolution detection and dissection of enhancer loci genome-wide as demonstrated in our 

recent work2. Overall, our results show that GRO/PRO-cap has the best overall performance in 

detecting active enhancers in terms of both sensitivity and specificity. 
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We noticed that when using current computational tools to identify TREs from various RNA 

sequencing datasets, very minor changes in sample processing could lead to more than 20% of 

changes in the final results, which brings the robustness of the peak calls into question. To 

address this issue, we introduced a new tool, PINTS, which was inspired by MACS57 but with 5 

unique implementations (e.g., using zero inflated Poisson distribution to account for sparsity of 

only mapping 5′ of all reads) that were designed specifically for defining TSSs precisely when 

analyzing 5′ RNA sequencing data. Our benchmarks indicate that PINTS achieves the best 

balance among robustness, applicability, sensitivity, and specificity, especially for 5′ RNA 

sequencing assays capable of detecting the precise location of eRNA TSSs. 10 

 

In this study, we used CRISPR/Cas9 and CRISPRi validated enhancers30–38 as the positive 

reference set, and MPRA/STARR-seq negative segments2,47–53 as non-enhancers. Although these 

two sets show quite different epigenomic profiles (Supplementary Fig. 2f), which indicates that 

our non-enhancer set is depleted of any true enhancers, there might still be a few false negatives 15 

in the non-enhancer set because not every enhancer works with every promoter, but in the 

published MPRA/STARR-seq datasets, only a very small number of promoters were used to test 

all candidate elements; furthermore, some tested elements might be truncated due to synthesis 

limitations (<200 bp) or random fragmentation of the genome. However, such cases are not 

expected to affect our relative ranking of different assays and thus will have minimal impact on 20 

our conclusions. 
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In summary, the comprehensive comparison and thorough analyses of 13 genome-wide RNA 

sequencing assays and 9 computational tools presented here help better understand the strengths 

and weaknesses for each assay and tool, with regard to detecting active enhancers in vivo. Given 

the fundamental importance of enhancers in gene regulation and the immense interest in 

accurately identifying active enhancers in a wide variety of samples across species, our results 5 

provide basic guidelines in selecting the proper experimental assays and the correct 

computational tools for future studies. 

 

Furthermore, we provide a detailed, comprehensive human enhancer compendium for 33 cell 

lines, 7 in vitro differentiated cells, 35 primary cells, and 45 tissues (120 in total). We used a 10 

unified definition2,7 of enhancers based on the detected divergent pairs of eRNA TSSs (i.e., peak 

calls from various genome-wide RNA sequencing assays, especially 5′ assays). Such a robust, 

unified and comprehensive catalogue of enhancers across 120 cell types and tissues is expected 

to shine light on the mechanism of gene regulation and architectural details of enhancers in 

general. Precise definition of enhancer element boundaries afforded by 5′ assays like PRO/GRO-15 

cap would alleviate potential concerns regarding whether full-length enhancer elements were 

selected and tested in follow-up functional studies, and thus improve coverage of elements by 

eliminating incomplete or ill-defined candidates. Such a well-defined catalogue of enhancers also 

provides an invaluable resource for follow-up studies to better understand the similarities and 

key differences in gene regulation across various tissues and conditions, and to identify key 20 

enhancers whose malfunctions can lead to specific disorders.  
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Methods 

Data preprocessing 

All datasets were managed and analyzed with BioQueue64 (Supplementary Table 1). Raw reads 

were preprocessed with fastp65 according to the experimental designs reported in original papers. 

Only reads longer than 14bp were kept for downstream analyses. All processed reads from RNA 5 

assays were aligned using STAR66 to primary assemblies of human reference genome hg38 

(GCF_000001305.15) together with rDNA (U13369.1) with parameters as --outSAMattributes 

All --outSAMmultNmax 1 --outFilterMultimapNmax 50. For studies using Drosophila cells 

(dm6) or other specific samples as spike-ins, Drosophila reference genome (dm6) or the 

corresponding reference sequences used in the original studies were incorporated into the index. 10 

To measure the robustness of peak prediction, we also mapped reads to primary assemblies of 

human reference genome hg19 (from UCSC, sequences from alternative loci/haplotypes were 

removed the same way as for hg38). 

Determining read coverage among reference regions 

Sequencing reads of replicates for the same assay were merged together and downsampled to the 15 

same sequencing depth (the same number of mappable reads) for three times using picard with 

parameter STRATEGY = Chained. These downsampled data were then converted to bed files to 

calculate the fraction of overlap between the sequencing reads and the reference regions in a 

strand-specific manner. 
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Classifying the transcription units as stable and unstable units with TT-seq 

Transcript annotations derived from TT-seq (GSE7579239) were downloaded from the GEO 

database. Transcription units with NA values were discarded. The 95th quantile of estimated 

decay rates for mRNAs was used as the cutoff between the unstable (above the cutoff) and stable 

(below the cutoff) transcription units. 5 

Characterizing the genome-wide distribution of reads 

The entire genome was classified into four categories based on the annotations in GENCODE 

(ver 24)40: exonic and intronic regions were defined as in GENCODE, except that any region 

with overlapping intronic and exonic annotation was considered as exonic; the 500bp regions 

flanking annotated transcription start sites of protein-coding transcripts were annotated as 10 

promoters; all other regions were considered as intergenic. Sequencing reads of various assays 

were assigned to the categories of promoters, introns, exons, or intergenic regions (in the exact 

order) if they were aligned to the corresponding annotated regions in the genome. 

Identifying sequencing reads from splicing intermediates 

The exact or approximate positions of transcript termini were inferred from the read ends and the 15 

abundance of their corresponding transcripts was normalized as RPM for this analysis. A list of 

annotated splice junctions and their 200bp flanking regions in the human genome was compiled 

based on GENCODE v2440. For each assay, we iterated through this list and recorded normalized 

read counts at each position. In Supplementary Fig. 2e, both the average of signals and the 95% 

confidence interval (estimated by bootstrap) of the averages were reported. 20 
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Compiling the true enhancer and non-enhancer sets 

The experimentally quantified enhancer activity of various DNA elements were collected from 

previous studies (enhancers: 938 from CRIPSR32 or CRIPSRi30,31,33–38; non-enhancers: 20,941 

from STARR-seq2,52,53 and 17,462 from MPRA47–51). Overlapping elements within the same 

category were merged until the resulting elements overlap with elements in the other category. 5 

Non-enhancer loci were excluded in the final set if they 1) were shorter than 250bp; 2) 

overlapped with PLS or ELS predicted by cCRE54, or 3) overlapped with possible promoters 

(1kb regions flanking TSSs in GENCODE). 

Calculating FDRs for assays 

multiBamSummary was used to generate tables of read counts across the genome in 500-bp bins. 10 

For each assay, the bins were ranked by counts in them and the top n bins were considered as 

true signals from the assay (four cutoffs were tested: 5,000, 10,000, 20,000, and 100,000, 

Supplementary Fig. 2h). If a bin overlapped with a locus in the true enhancer set, then the bin 

was considered as a true positive (TP); if a bin overlapped with a locus in the non-enhancer set, it 

was considered as a false positive (FP). The false discovery rates were calculated as: 15 

𝐹𝐷𝑅 =
∑𝐹𝑃

∑𝑇𝑃 + ∑𝐹𝑃 

PINTS 

Briefly, read ends are separated based on their mapping directions on the reference genome 

(forward or reverse), and the read counts are binned into 100-bp windows. Adjacent windows 

with reads available are merged to avoid splitting potential TRE elements. Within each window, 20 

the algorithm first finds peak seeds using a prominence-based approach. Then with a maximum-
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scoring pairing strategy28, the nearby seeds will be merged together as peak candidates if the 

density after merging meets the following condition: 

𝐷!"#$"% ≥ 𝛼 ×𝑚𝑖𝑛({𝐷&""%', 𝐷&""%(}) 

The default value for 𝛼 is 1, and PINTS’s resolution can be further fine-tuned by incorporating 

reference annotations. For example, when the transcript annotation is available, PINTS will try to 5 

avoid the overlap of peak candidates with more than one transcript. 

Next, to address the significantly increased sparsity of signals when only the read ends are taken 

into account, the Expectation-Maximization algorithm is used to fit zero-inflated Poisson (ZIP) 

models to both peak candidates and their neighborhood regions (λ for read density, π for the 

proportion of zeros that are not coming from a Poisson process), the probability mass function of 10 

these models has the following form:  

Pr(𝑋 = 𝑥) = :
𝜋 + (1 − 𝜋)𝑒)*, 𝑥 = 0

(1 − 𝜋)𝑒)*
𝜆+

𝑥! , 𝑥 > 0
 

Assume an unobservable latent random variable 𝑧,, for a window 𝑋 of 𝐼 observations, the 

complete log-likelihood is proportional to:  

ln 𝐿 ∝I[𝑧, ln(𝜋) + (1 − 𝑧,) ln(1 − 𝜋) + (1 − 𝑧,)(−𝜆 + 𝑥, ln 𝜆)]
-

,.'

 15 

In E-step at the (r + 1)th iteration, 𝑧, is estimated by its conditional expectation:  

�̂�,
(#0') = :

𝜋M (#)

𝜋M (#) + 𝑒)*2(")(1 − 𝜋M (#))
, 𝑥, = 0

0, 𝑥, > 0
 

 

In M-step, given 𝑍O,
(#0') the estimations of π and λ are updated as follows:  
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πP(#0') =
∑ �̂�,

(#0')-
,.'

𝐼

λQ(#0') =
∑ (1 − 𝑧,)𝑥,-
,.'
∑ (1 − 𝑧,)-
,.'

 

An interquartile range (IQR)-based refinement is applied before fitting ZIP models to the 

neighborhood regions. In this case, if certain peak candidates s in a local environment are 

considered as outliers by IQR (their densities are above Q3 + 1.5 × 𝐼QR, where IQR = Q3 −

Q1), these candidates will be masked. For libraries with low sequencing depth, instead of 5 

simultaneously masking all outlier peak candidates in the local background, PINTS masks one 

peak candidate at a time and calculates the resulting peak density in the local background. The 

process will be reiterated until PINTS either identifies the outlier candidates or reports the non-

existence of such outliers. The estimated densities are then used to determine the statistically 

significant peaks, which are further categorized into divergent peak pairs (peaks on opposite 10 

strands and within 300 bp) and unidirectional peaks. 

Generating peak calls with existing tools 

Peak calls for different assays were made using default parameters for other existing peak callers 

with the following exceptions. For MACS2, --keep-dup all was set so that reads mapped to the 

same loci would be kept. For FivePrime, parameters 𝐷!,3, 𝑃!,3, and 𝑆!,3 were optimized 15 

according to the sequencing depth of corresponding libraries, and both divergent TSS calls and 

enhancer calls were combined as the final output. All tools were allowed to create up to 16 

threads/subprocesses if they allow multithreading or parallel computing. For peak callers that do 

not primarily identify divergent peaks, unidirectional peaks were paired as long as they were 

within 300 bp and on opposite strands. Maximum memory usage and CPU time (sum of all 20 

threads) were monitored with the help from BioQueue64. All peak calls were generated on 
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machines with Intel Xeon Gold 6152 CPU @ 2.10 GHz with 88 cores, 1006 GB of RAM 

running CentOS 7.6.1810. 

Evaluating the systematic biases of different peak calling methods 

For each assay, divergent elements were identified using all applicable peak callers, including 

PINTS. To accommodate the size difference in these elements as well as elements in the true 5 

enhancer set, a 1,000-bp region centered around the midpoint of each element was used to 

evaluate the performance of different methods. 

Evaluating the upper bound of peak caller robustness 

Sequencing reads were aligned to another popular reference genome sequence, hg19, and 

divergent elements were identified accordingly with different peak callers. Peak calls generated 10 

from both genome releases were cross lifted using UCSC’s liftover and the average between the 

two Jaccard indices was considered as the upper bound robustness (UBR):  

UBR =
1
2 × (

|𝑃𝑒𝑎𝑘𝑠45 ∩ 𝑃𝑒𝑎𝑘46→45|
|𝑃𝑒𝑎𝑘𝑠45 ∪ 𝑃𝑒𝑎𝑘46→45|

+
|𝑃𝑒𝑎𝑘𝑠46 ∩ 𝑃𝑒𝑎𝑘45→46|
|𝑃𝑒𝑎𝑘𝑠46 ∪ 𝑃𝑒𝑎𝑘45→46|

) 

ROC 

For each assay, any element from the true and non-enhancer set was filtered out if there were no 15 

sequencing reads aligned to both strands of the element. The positive set was composed of an 

equal number of randomly sampled promoters (1kb regions flanking TSSs in GENCODE v24) 

from expressed genes and the filtered true enhancers. The negative set was composed as the 

filtered non-enhancers. ROCs were generated by calculating the number of divergent elements 

overlapping with the positive and negative sets under different cutoffs of scores: p-values of 20 

peaks for PINTS and MACS2, FDRs for TSScall, output SVR scores for dREG, likelihood ratio 
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scores for Tfit, and peak scores for HOMER (findcsRNATSS.pl and findPeak -style TSS). For 

dREG.HD, GROcapTSSHMM, FivePrime, and HOMER (GRO-seq), since there are either no 

scores or multiple scores returned in the final output, the sensitivity and specificity was evaluated 

and reported with their default parameters. 

PINTS web server 5 

The PINTS web server is powered by the Django web framework. dbSNP v15367 was used for 

annotating mutations among TREs; JASPAR 202062 was employed for annotating transcription 

factor registries and only TFs expressed in the corresponding the biosample (based on RNA-seq 

data from ENCODE) were included (see Supplementary Table 4 for list of datasets used and 

accession information). cCRE v254 was used for epigenomic annotation. Core promoter elements 10 

were annotated using the following strategy: for each major TSS (+1), the portal annotated the 

elements as having an initiator or an initiator-like element when the sequence of -3~+3 matches 

BBCABW; or the sequence of +1~+2 matches YR, respectively. The TATA box (-32~-21) and 

DPR elements (+17~+35) were identified using the previously published SVR model61. 

 15 
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Figure Legends 

Fig. 1. Comparison of currently available assays for detecting eRNAs. a, Schematics of 

enhancer and promoter/gene transcription by RNA Pol II (left panel) and characteristic profiles 

of 5′ and 3′ assays (right panel, light-blue shaded area). Black lines represent genomic DNA; 

nascent RNAs are purple curved lines with 5′ and 3′-end colored blue and red, respectively, with 5 

light-blue spheres as caps and yellow ovals indicate RNA Pol II. Arrows indicate the direction of 

sequencing reads, 5′ assay in blue, and 3′ assay in red. Representative read density profiles are 

colored accordingly in blue and red for 5′ and 3′ assays, respectively. TSS: transcription start 

site; CPS: cleavage polyadenylation site; TTS: transcription termination site. b, Enrichment 

strategies used by different 5′ and 3′ RNA assays. TEX: terminator exonuclease. * indicates that 10 

3′ RNA ends can only be estimated approximately by these assays. A detailed description is 

available in Supplementary Notes. c, The capability of different assays to capture validated 

enhancers (true enhancer set). All libraries were downsampled to the same sequencing depth. 

“Unidirectional” and “divergent” indicate the detection of eRNAs originated from either one or 

both strands of the enhancer loci, respectively. d, Differences in read coverage among stable and 15 

unstable transcripts. GRO-cap has the highest coverage of both stable and unstable transcripts, 

and the least preference toward stable transcripts. Read counts were log(𝑛 + 1) transformed; 

preferences (effect sizes) were evaluated as Cohen’s d.  

 

Fig. 2. Characterization of factors affecting assay sensitivity and evaluation of assay 20 

specificity in eRNA detection. a, Genome-wide distribution of sequencing reads originated 

from intergenic regions, introns, exons, and promoters detected by different assays. b, A genome 

browser snapshot of a gene (FAM89A) and its enhancer (highlighted in yellow), demonstrating 
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the different patterns of signals captured by 5′ (enriched in the promoter and enhancer regions) 

vs. 3′ (enriched in the promoter and gene body regions) assays. Signals are normalized by reads 

per million (RPM). c, Proportion of mappable reads from different assays originated from 

various abundant RNA families. d, Specificity in detecting eRNAs. Top track: differences of 

read coverage among true enhancer and non-enhancer loci, a pseudo-count (1) was added to each 5 

locus, and the coverage was log-transformed. Bottom track: signal-to-noise ratios depicted in 

forms of fold enrichment (FE), the results are based on bootstrapped samples, median statistics 

are used to calculate the fold changes. e, False discovery rates (FDRs) estimated by the overlap 

between the top 10,000 genomic bins and the reference (true and non- enhancer) loci. Pseudo-

replicates were used (N=3); error bars represent SD. 10 

 

Fig. 3. Peak Identifier for Nascent-Transcript Sequencing (PINTS): a novel computational 

tool for identifying active enhancers and promoters from 5′ assays. a, Improvement of TSS 

identification resolution by focusing only on read ends and using zero-inflated Poisson (ZIP) 

models to fit local background to address the significantly increased sparsity of signals. The thin 15 

grey lines indicate sequencing reads with the 5′ ends highlighted in red. b, The existence of other 

potential true peaks (pink) elevates the estimation of read density in the local background. c, 

Schematic plot shows how IQR-ZIP works. The blue box shows the read density distribution of 

the local background; the purple dot shows the density of the peak to be tested; the pink dot 

shows the density of a potential true peak close to the peak to be tested, whose read density is a 20 

clear outlier and thus excluded from local background estimation.  
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Fig. 4. PINTS achieves the best balance among resolution, robustness, sensitivity, 

specificity, and computational resources required. a and b, Profiles of GATA1 binding sites 

and H3K27ac pattern in true enhancer regions and distal TREs identified by different peak 

callers. c, Distribution of element sizes identified by different tools. d, CPU time consumed by 

peak callers to identify elements from various 5′ assay libraries. Average CPU time labeled 5 

inside each bar is in the unit of hours (N=6). The x-axis is in log(𝑛 + 1) scale. e, Maximum 

memory usage during peak calling from 5′ assay libraries. Average maximum usage labeled 

inside or on top of each bar is in the unit of gigabytes (N=6). For d and e, error bars represent 

SD. f, Robustness of peak calls made by different tools. Libraries were mapped to both hg19 and 

hg38, and robustness was measured as the Jaccard index between calls from hg19 and hg38 10 

(lifted over). Cells colored in gray indicates either that the tool cannot be applied to the 

corresponding assays or that one or more required datasets are not available. g, Aggregated ROC 

curves for each peak caller on all 5′ assay datasets. The solid lines represent the mean values; the 

corresponding shaded areas show the 95% confidence interval of the means (via bootstrap). For 

tools where ROCs cannot be calculated, solid dots represent their performance with default 15 

parameters, error bars show SD (see Methods). 

 

Fig. 5. A comprehensive human enhancer compendium. a, Summaries of all distal elements 

identified from different assays with PINTS in 7 cell lines (top) and 131 datasets generated by 

different assays across 120 biosamples included in our enhancer compendium (bottom). 20 

Differentiated cells stand for in vitro differentiated cells. b, The number of distal elements 

identified by PINTS from different assays in K562. The dark colors indicate the proportion of 

shared elements identified from at least one other assay; light colors indicate elements unique to 
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the corresponding assay. The number of mappable reads for each assay is listed in the 

parentheses. c, A known enhancer locus where most of these assays captured signals on both 

strands. d, A known enhancer locus where only GRO-cap and csRNA-seq captured detectable 

signals. e, A known enhancer locus where only GRO-cap captures clear signals. Signal tracks in 

c, d, and e were normalized by their sequencing depths (RPM).  5 

 

Fig. 6. Interactive PINTS web server. The server is composed of three modules: a catalog 

database containing our human enhancer compendium across 120 biosamples, a user interactive 

interface, and analytical engines. When the user provides genomic loci of their interest as search 

queries, previously annotated information related to the loci will be retrieved from the catalog 10 

database. The user can further refine the search results by a series of filters, including the 

supporting assays, callers, the presence of mutations, transcription factor binding sites, core 

promoter elements, and epigenomic marks. On the other hand, if the user chooses to upload peak 

calls generated from their own data, the uploads will be analyzed by the analytical engines to 

provide the same types of annotations as those in the catalog database. 15 
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