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Abstract 15 

Classical null hypothesis significance testing is limited to the rejection of the point-null hypothesis; it does 16 
not allow the interpretation of non-significant results. Moreover, studies with a sufficiently large sample 17 
size will find statistically significant results even when the effect is negligible and may be considered 18 
practically equivalent to the ‘null effect’. This leads to a publication bias against the null hypothesis. There 19 
are two main approaches to assess ‘null effects’: shifting from the point-null to the interval-null hypothesis 20 
and considering the practical significance in the frequentist approach; using the Bayesian parameter 21 
inference based on posterior probabilities, or the Bayesian model inference based on Bayes factors. Herein, 22 
we discuss these statistical methods with particular focus on the application of the Bayesian parameter 23 
inference, as it is conceptually connected to both frequentist and Bayesian model inferences. Although 24 
Bayesian methods have been theoretically elaborated and implemented in commonly used neuroimaging 25 
software, they are not widely used for ‘null effect’ assessment. To demonstrate the advantages of using the 26 
Bayesian parameter inference, we compared it with classical null hypothesis significance testing for fMRI 27 
data group analysis. We also consider the problem of choosing a threshold for a practically significant effect 28 
and discuss possible applications of Bayesian parameter inference in fMRI studies. We argue that Bayesian 29 
inference, which directly provides evidence for both the null and alternative hypotheses, may be more 30 
intuitive and convenient for practical use than frequentist inference, which only provides evidence against 31 
the null hypothesis. Moreover, it may indicate that the obtained data are not sufficient to make a confident 32 
inference. Because interim analysis is easy to perform using Bayesian inference, one can evaluate the data 33 
as the sample size increases and decide to terminate the experiment if the obtained data are sufficient to 34 
make a confident inference. To facilitate the application of the Bayesian parameter inference to ‘null effect’ 35 
assessment, scripts with a simple GUI were developed. 36 

Keywords: Null effects, Practical significance, Practical equivalence, Bayesian inference, fMRI 37 

1. Introduction 38 

In the neuroimaging field, it is a common practice to identify statistically significant differences in local 39 
brain activity using the general linear model approach for mass-univariate null hypothesis significance 40 
testing (NHST) (Friston et al., 1994). NHST considers the probability of obtaining the observed data, or 41 
more extreme data, given that the null hypothesis of no difference is true. This probability, or p-value, of 42 
0.01, means that, on average, in one out of 100 ‘hypothetical’ replications of the experiment, we find a 43 
difference no less than the one found under the null hypothesis. We conventionally suppose that this is 44 
unlikely, therefore, we ‘reject the null’; that is, NHST employs ‘proof by contradiction’ (Cohen, 1994). 45 
Conversely, when the p-value is large, it is tempting to ‘accept the null’. However, the absence of evidence 46 
is not evidence of absence (Altman and Bland, 1995). Using NHST, we can only state that we have ‘failed 47 
to reject the null’. Therefore, in the classical NHST framework, the question of interpreting non-significant 48 
results remains. 49 

The most pervasive misinterpretation of non-significant results is that they provide evidence for the null 50 
hypothesis that there is no difference, or ‘no effect’ (Nickerson, 2000; Greenland et al., 2016; Wasserstein 51 
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and Lazar, 2016). In fact, non-significant results can be obtained in two cases (Dienes, 2014): 1) the data 52 
are insufficient to distinguish the alternative from the null hypothesis, or 2) an effect is indeed null or trivial. 53 
To date, the extent to which the problem of making ‘no effect’ conclusions from non-significant results 54 
have affected the field of neuroimaging remains unclear, particularly in functional magnetic resonance 55 
imaging (fMRI) studies1. Regarding other fields of science such as psychology, neuropsychology, and 56 
biology, it was found that in 38–72% of surveyed articles, the null hypothesis was accepted based on non-57 
significant results only (Finch et al., 2001; Schatz et al., 2005; Fidler et al., 2006; Hoekstra et al., 2006; 58 
Aczel et al., 2018). 59 

Not mentioning non-significant results at all is another problem. Firstly, some authors may consider non-60 
significant results disappointing or not worth publishing. Secondly, papers with non-significant results are 61 
less likely to be published. At the same time, NHST is usually based on the point-null hypothesis, that is, 62 
the hypothesis that the effect is exactly zero. However, the probability thereof is zero (Meehl, 1967; Friston 63 
et al., 2002a). This means that studies with a sufficiently large sample size will find statistically significant 64 
differences even when the effect is trivial or has no practical significance (Cohen, 1965, 1994; Serlin and 65 
Lapsley, 1985; Kirk, 1996). Therefore, ignoring non-significant results systematically biases our 66 
knowledge of true effects (Greenwald, 1975). This publishing bias is also known as the ‘file-drawer 67 
problem’ (Rosenthal, 1979; Ioannidis et al., 2014; De Winter and Dodou, 2015; for evidence in fMRI 68 
studies, see Jennings and Van Horn, 2012; Acar et al., 2018; David et al., 2018; Samartsidis et al., 2020). 69 

Having the means to assess non-significant results would mitigate these problems. To this end, two main 70 
alternatives are available: Firstly, there are frequentist approaches that shift from point-null to interval-null 71 
hypothesis testing, for example, equivalence testing based on the two one-sided tests (TOST) procedure 72 
(Shuirmann, 1987; Wellek, 2010). Secondly, Bayesian approaches that are based on posterior parameter 73 
distributions (Lindley, 1965; Greenwald, 1975; Kruschke, 2010) and Bayes factors (Jeffreys, 1939/1948; 74 
Kass and Raftery, 1995; Rouder et al., 2009). The advantage of frequentist approaches is that they do not 75 
require a substantial paradigm shift (Campbell and Gustafson, 2018; Lakens, 2017). However, it has been 76 
argued that Bayesian approaches may be more natural and straightforward than frequentist approaches 77 
(Edwards et al., 1963; Lindley, 1975; Friston et al., 2002a; Wagenmakers, 2007; Rouder et al., 2009; 78 
Denies, 2014; Kruschke and Liddell, 2017b). It has long been noted that we tend to perceive lower p-values 79 
as stronger evidence for the alternative hypothesis, and higher p-values as evidence for the null, i.e., the 80 
‘inverse probability’ fallacy as it is referred to by Cohen (1994). This is what we obtain in Bayesian 81 
approaches by calculating posterior probabilities. Instead of considering infinite ‘hypothetical’ replications 82 
and employing probabilistic ‘proof by contradiction’, Bayesian approaches directly provide evidence for 83 
the null and alternative hypotheses given the data, updating our prior beliefs in light of new relevant 84 
information. Bayesian inference allows us to ‘reject and accept’ the null hypothesis on an equal footing. 85 
Moreover, it allows us to talk about ‘low confidence’, indicating the need to either accumulate more data 86 
or revise the study design (see Fig. 1). 87 

                                                           
1 Here are some examples of ‘no effect’ conclusions that can be found in the fMRI literature: a) brain area was not 

activated, b) brain area was not involved in the function, c) no effect was found in the brain area (p>0.05), d) both 

groups showed no differences, which can be interpreted as evidence against the alternative hypothesis; e) patients 

have similar responses to both conditions (p>0.05), that is, they have difficulties in differentiating these conditions; f) 

lack of significant correlation during treatment suggest a protective impact of the therapy on brain areas.  
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 88 

Figure 1. Possible results for the same data, obtained using classical NHST and Bayesian parameter 89 
inference. Classical NHST detects only areas with a statistically significant difference (‘number one’). 90 
Bayesian parameter inference based on the logarithm of posterior probability odds (LPO) provides us with 91 
additional information that is not available in classical NHST: a) it provides relative evidence for the null 92 
(H0) and alternative (H1) hypotheses, b) it detects areas with a trivial effect size (‘number zero’), c) it 93 
indicates ‘low confidence’ areas surrounding the ‘number one’ and ‘number zero’. 94 

Despite the importance of this issue, and the high level of theoretical elaboration and implementation of 95 
Bayesian methods in common neuroimaging software programs, for example, Statistical Parametric 96 
Mapping 12 (SPM12) and FMRIB's Software Library (FSL), to date, only a few fMRI studies implemented 97 
the Bayesian inference to assess ‘null effects’ (for example, see subject-level analysis in Magerkurth et al., 98 
2015, group-level analysis in Dandolo and Schwabe, 2019; Feng et al., 2019). Therefore, this study is 99 
intended to introduce fMRI practitioners to the methods for assessing ‘null effects’. In particular, we focus 100 
on Bayesian parameter inference (Friston and Penny, 2003; Penny and Ridgway, 2013), as implemented in 101 
SPM12. Although Bayesian methods have been described elsewhere, the distinguishing feature of this study 102 
is that we aim to demonstrate the practical implementation of Bayesian inference to the assessment of ‘null 103 
effects’, and reemphasize its contributions over and above those of classical NHST. We deliberately aim to 104 
avoid mathematical details, which can be found elsewhere (Friston et al., 2002a, 2002b; Friston and Penny, 105 
2003; Penny et al., 2003, 2005, 2007, 2013). Firstly, we briefly review the frequentist and Bayesian 106 
approaches for the assessment of the ‘null effect’. Next, we compare the classical NHST and Bayesian 107 
parameter inference on the Human Connectome Project (HCP) and the UCLA Consortium for 108 
Neuropsychiatric Phenomics datasets, focusing on group-level analysis. We then consider the choice of the 109 
threshold of the effect size for Bayesian parameter inference and estimate the typical effect sizes in different 110 
fMRI task designs. To demonstrate how the common sources of variability influence NHST and Bayesian 111 
parameter inference, we examine their behaviour for different sample sizes and spatial smoothing. Finally, 112 
we discuss practical research and clinical applications of Bayesian inference. 113 

2. Theory 114 

In this section, we briefly describe the classical NHST framework and review statistical methods which can 115 
be used to assess the ‘null effect’. We also considered two historical trends in statistical analysis: the shift 116 
from point-null hypothesis testing to interval estimation and interval-null hypothesis testing (Murphy and 117 
Myors, 2004; Wellek, 2010; Cumming, 2013), and the shift from frequentist to Bayesian approaches 118 
(Kruschke and Liddell, 2017b). 119 

2.1. Classical NHST framework 120 

Most task-based fMRI studies rely on the general linear model approach (Friston et al., 1994; Poline and 121 
Brett, 2012). It provides a simple way to separate blood-oxygenated-level dependent (BOLD) signals 122 
associated with particular task conditions from nuisance signals and residual noise when analysing single-123 
subject data (subject-level analysis). At the same time, it allows us to analyse BOLD signals within one 124 
group of subjects or between different groups (group-level analysis). Firstly, we must specify a general 125 
linear model and estimate its parameters (β values). Some of these parameters reflect the mean amplitudes 126 
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of BOLD responses evoked in particular task conditions or groups of subjects. The linear contrast of these 127 
parameters, θ = cβ, represents the experimental effect of interest (hereinafter ‘the effect’), expressed as the 128 
difference between two conditions or groups of subjects. Next, we test the effect against the point-null 129 
hypothesis, H0: θ = γ (usually, θ = 0). To do this, we use test statistics that summarise the data in a single 130 
value, for example, the t-value. For the one-sample case, the t-value is the ratio of the discrepancy of the 131 
estimated effect from the hypothetical null value to its standard error. Thus, it represents the contrast-to-132 
noise ratio, which is similar to the signal-to-noise ratio (Welvaert and Rosseel, 2013). Finally, we calculate 133 
the probability of obtaining the observed t-value or a more extreme value, given that the null hypothesis is 134 
true (p-value). This is also commonly formulated as the probability of obtaining the observed data or more 135 
extreme data, given that the null hypothesis is true (Cohen, 1994). It can be simply written as a conditional 136 
probability P(D + |H0), where ‘D +’ denotes the observed data or more extreme data which can be obtained 137 
in infinite ‘hypothetical’ replications under the null (Schneider, 2014, 2018). If this probability is lower 138 
than some conventional threshold, or alpha level (for example, α = 0.05), then we can ‘reject the null 139 
hypothesis’ and state that we found a statistically significant effect. When this procedure is repeated for a 140 
massive number of voxels, it is referred to as ‘mass-univariate analysis’. However, if we consider m = 100 141 
000 voxels with no true effect and repeat significance testing for each voxel at α = 0.05, we would expect 142 
to obtain 5000 false rejections of the null hypothesis (false positives). To control the number of false 143 
positives, we must reduce the alpha level for each significance test by applying the multiple comparison 144 
correction (Worsley et al., 1992; Genovese et al., 2002; Nichols and Hayasaka, 2003; Nichols, 2012). 145 

To date, the classical NHST has been the most widely used statistical inference method in neuroscience, 146 
psychology, and biomedicine (Szucs and Ioannidis, 2017, 2020; Ioannidis, 2019). It is often criticised for 147 
the use of the point-null hypothesis (Meehl, 1967), also known as the ‘nil null’ (Cohen, 1994) or ‘sharp 148 
null’ hypothesis (Edwards et al., 1963). It was argued that the point-null hypothesis could be appropriate 149 
only in hard sciences such as physics, but it is always false in soft sciences; this problem is sometimes 150 
known as the Meehl’s paradox (Meehl, 1967, 1978; Serlin and Lapsley, 1985, 1993; Cohen, 1994; Kirk, 151 
1996). In the case of fMRI research, we face complex brain activity which is influenced by numerous 152 
psychophysiological factors. This means that with a large amount of data, we find a statistically significant 153 
effect in all voxels for any linear contrast (Friston, 2002a). For example, Gonzalez-Castillo et al. (2012) 154 
showed a statistically significant effect in over 95% of the brain for simple visual stimulation when 155 
averaging single-subject data from 100 runs (approximately four hours of scanning). Approximately half 156 
of the brain areas showed activation, whereas the other half showed deactivation. Whole-brain 157 
(de)activations can also be found when analysing large datasets such as the HCP (N ⁓ 1000) or UK Biobank 158 
(N ⁓ 10 000) datasets. When we increase the sample size, the effect estimate does not change much. Still, 159 
the standard error in the denominator of the t-value becomes increasingly smaller, resulting in negligible 160 
effects becoming statistically significant. Thus, the classical NHST ignores the magnitude of the effect. 161 
Attempts to overcome this problem led to the proposal of making a distinction between ‘statistical 162 
significance’ and ‘material significance’ (Hodges and Lehmann, 1954) or ‘practical significance’ (Cohen, 163 
1965; Kirk, 1996). That is, we can test whether the effect size is larger or smaller than some practically 164 
meaningful value using interval-null hypothesis testing (Friston et al., 2002a, 2002b, 2013). 165 

2.2. Frequentist approach to interval-null hypothesis testing 166 

Interval-null hypothesis testing is widely used in medicine and biology (Meyners, 2012). Consider, for 167 
example, a pharmacological study designed to compare a new treatment with an old treatment that has 168 
already shown its effectiveness. Let βnew be the mean effect on brain activity of the new treatment and βold 169 
the mean effect of the old treatment. Then, θ = (βnew – βold) is the relative effect of the new treatment. The 170 
practical significance is defined by the effect size (ES) threshold γ. If a larger effect on brain activity is 171 
preferable, then we can test whether there is a practically meaningful difference in a positive direction (H1: 172 
θ > γ vs. H0: θ ≤ γ). This procedure is known as the superiority test (see Fig. 2A). We can also test whether 173 
the effect of the new treatment is no worse (practically smaller) than the effect of the old treatment (H1: θ 174 
> –γ vs. H0: θ ≤ –γ). This procedure is sometimes known as the non-inferiority test (see Fig. 2B). If a smaller 175 
effect on brain activity is preferable, we can use the superiority or non-inferiority test in the opposite 176 
direction (see Fig. 2C–D). The combination of these two superiority tests allows us to find a practically 177 
meaningful difference in both directions (H1: θ > γ and θ < –γ vs. H0: –γ ≤ θ ≤ γ), that is, the minimum-effect 178 
test (see Fig. 2E). The combination of the two non-inferiority tests allows us to reject the hypothesis of 179 
practically meaningful differences in any direction (H1: –γ ≤ θ ≤ γ vs. H0: θ > γ and θ < –γ). This is the most 180 
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widely used approach to equivalence testing, known as the two one-sided tests (TOST) procedure (see Fig. 181 
2F). For more details on the superiority and minimum-effect tests, see (Serlin and Lapsey, 1985, 1993; 182 
Murphy and Myors, 1999, 2004). For more details on the non-inferiority test and TOST procedure see 183 
(Schuirmann, 1987; Rogers et al., 1993; Wellek, 2010; Meyners, 2012; Lakens, 2017). 184 

 185 

Figure 2. The alternative (H1) and null (H0) hypotheses for different types of interval-null hypotheses tests. 186 
A–B) One-sided tests in the positive direction (‘the larger is better’). C–D) One-sided tests in the negative 187 
direction (‘the smaller is better’). E) Combination of both superiority tests. F) Combination of both non-188 
inferiority tests. Scheme modified from Aisbett et al. (2020) 189 

The interval [–γ; γ] defines trivially small effect sizes that we consider to be equivalent to the ‘null effect’ 190 
for practical purposes. This interval is also known as the ‘equivalence interval’ (Schuirmann, 1987) or 191 
‘region of practical equivalence (ROPE)’ (Kruschke, 2011). The TOST procedure, in contrast to classical 192 
NHST, allows us to assess the ‘null effects’. If we reject the null hypothesis of a practically meaningful 193 
difference, we can conclude that the effect is trivially small. The TOST procedure can also be intuitively 194 
related to frequentist interval estimates, known as confidence intervals (‘confidence interval approach’, 195 
Westlake, 1972; Schuirmann, 1987). Confidence intervals reflect the uncertainty in the point estimation of 196 
the parameters defined by its standard error. The confidence level of (1 – α) means that among infinite 197 
‘hypothetical’ replications, (1 – α)% of the confidence intervals will contain the true effect under the null. 198 
Therefore, the TOST procedure is operationally identical to considering whether the (1 – 2α)% confidence 199 
interval falls entirely into the ROPE, as it uses two one-sided tests with an alpha level of α. 200 

Interval-null hypothesis testing can be used in fMRI studies not only to compare the effects of different 201 
treatments. For example, we can apply superiority tests in the positive and negative directions to detect 202 
‘activated’ and ‘deactivated’ voxels and additionally apply the TOST procedure to detect ‘not activated’ 203 
voxels. However, even though we can solve the Meehl’s paradox and assess the ‘null effects’ by switching 204 
from point-null to interval-null hypothesis testing within the frequentist approach, this approach still has 205 
fundamental philosophical and practical difficulties which can be effectively addressed using Bayesian 206 
statistics. 207 

2.3. Pitfalls of the frequentist approach 208 

The pitfalls of the frequentist approach have been actively discussed by statisticians and researchers for 209 
decades. We believe that the Bayesian approach is clearer and more coherent (Lindley, 1990). Unlike the 210 
frequentist approach, it does not require special modifications or adjustments to achieve similar practical 211 
goals. Here, we briefly mention a few of the main problems associated with the frequency approach. 212 
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(1) NHST is a hybrid of Fisher’s approach that focuses on the p-value (thought to be a measure of evidence 213 
against the null hypothesis), and Neyman-Pearson’s approach that focuses on controlling false positives 214 
with the alpha level while maximising true positives in long-run replications. These two approaches are 215 
argued to be incompatible and have given rise to several misinterpretations among researchers, for example, 216 
confusing the meaning of p-values and alpha levels (Edwards et al., 1963; Gigerenzer, 1993; Goodman, 217 
1993; Finch et al., 2001; Berger, 2003; Hubbard and Bayarri, 2003; Royall, 1997; Turkheimer et al., 2004, 218 
Perezgonzalez, 2015; Schneider, 2014; Szucs and Ioannidis, 2017; Greenland, 2019).  219 

(2) The logical structure of NHST is the same as that of ‘proof by contradiction’ or ‘indirect proof’, which 220 
becomes formally invalid when applied to probabilistic statements (Pollard and Richardson, 1987; Cohen, 221 
1994; Falk and Greenbaum, 1995; Nickerson, 2000; Sober, 2008; Schneider, 2014, 2018; Wagenmakers et 222 
al., 2017; but see Hagen, 1997). Valid ‘proof by contradiction’ can be expressed in syllogistic form as: 1) 223 
‘If A, then B’ (Premise №1), 2) ‘Not B’ (Premise №2), 3) ‘Therefore not A’ (Conclusion). Probabilistic 224 
‘proof by contradiction’ in relation to NHST can be formulated as: 1) ‘If H0 is true, then D + are highly 225 
unlikely, 2) ‘D + was obtained’, 3) ‘Therefore H0 is highly unlikely’. This problem is also referred to as the 226 
‘illusion of probabilistic proof by contradiction’ (Falk and Greenbaum, 1995). To illustrate the fallacy of 227 
such logic, consider the following example from Pollard and Richardson (1987): 1) ‘If a person is an 228 
American (H0), then he is most probably not a member of Congress’, 2) ‘The person is a member of 229 
Congress’, 3) ‘Therefore the person is most probably not an American’. Based on this, one ‘rejects the null’ 230 
and makes an obviously wrong inference, as only American citizens can be a member of Congress. At the 231 
same time, using Bayesian statistics, we can show that the null hypothesis (‘the person is an American’) is 232 
true (see the Bayesian solution of the ‘Congress example’ in the Supplementary Materials). The ‘illusion 233 
of probabilistic proof by contradiction’ leads to widespread confusion between the probability of obtaining 234 
the data, or more extreme data, under the null P(D + |H0) and the probability of the null under the data 235 
P(H0|D) (Pollard and Richardson, 1987; Gigerenzer, 1993; Cohen, 1994; Falk and Greenbaum, 1995; 236 
Nickerson, 2000; Finch et al., 2001; Hoekstra et al., 2006; Goodman, 2008; Wasserstein and Lazar, 2016; 237 
Greenland, 2016; Amrhein and Roth, 2017). The latter is a posterior probability calculated based on Bayes’ 238 
rule. The fact that researchers usually treat the p-value as a continuous measure of evidence (the Fisherian 239 
interpretation) only exacerbates this problem. ‘The lower the p-value, the stronger the evidence against the 240 
null’ statement can be erroneously transformed to statements such as ‘the lower the p-value, the stronger 241 
the evidence for the alternative’ or ‘the higher the p-value, the stronger the evidence for the null’. NHST 242 
can only provide evidence against, but never for, a hypothesis. In contrast, posterior probability provides 243 
direct evidence for a hypothesis; hence, it has a simple intuitive interpretation. 244 

(3) The p-value is not a plausible measure of evidence (Cornfield, 1966; Royall, 1986, 1997; Berger and 245 
Sellke, 1987; Berger and Berry, 1988; Goodman, 1993; Wagenmakers et al., 2007, 2008, 2017; Hubbard 246 
and Lindsay, 2008; Johansson, 2011; Wasserstein and Lazar, 2016; bet see Greenland, 2019). The 247 
frequentist approach considers infinite ‘hypothetical’ replications of the experiment (sampling 248 
distribution); that is, the p-value depends on unobserved data. One of the most prominent theorists of 249 
Bayesian statistics, Harold Jeffreys, put it as follows: ‘What the use of P implies, therefore, is that a 250 
hypothesis that may be true may be rejected because it has not predicted observable results that have not 251 
occurred’ (Jeffreys, 1948, p. 357). In turn, the sampling distribution depends on the researcher’s intentions. 252 
These intentions may include different kinds of multiplicities, such as multiple comparisons, double-sided 253 
comparisons, secondary analyses, subgroup analyses, exploratory analyses, preliminary analyses, and 254 
interim analyses of sequentially obtained data with optional stopping (Gopalan and Berry, 1998). Two 255 
researchers with different intentions may obtain different p-values based on the same dataset. The problem 256 
is that these intentions are usually unknown. When null findings are considered disappointing, it is tempting 257 
to increase the sample size until one obtains a statistically significant result. However, a statistically 258 
significant result may arise when the null is, in fact, true, which can be shown by Bayesian statistics. That 259 
is, the p-value usually exaggerates evidence against the null hypothesis. The discrepancy that may arise 260 
between frequentist and Bayesian inference is also known as the Jeffreys–Lindley paradox (Jeffreys, 261 
1939/1948; Lindley, 1957). In addition, it is argued that a consistent measure of evidence should not depend 262 
on the sample size (Cornfield, 1966). However, identical p-values provide different evidence against the 263 
null hypothesis for small and large sample sizes (Wagenmakers, 2007). In contrast, evidence provided by 264 
posterior probabilities and Bayes factors does not depend on the testing or stopping intentions or the sample 265 
size (Kruschke and Liddell, 2017b; Wagenmakers, 2007). 266 
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(4) Although frequentist interval estimates (Cohen, 1990, 1994; Cumming, 2013) and interval-based 267 
hypothesis testing (Murphy and Myors, 2004; Wellek, 2010; Meyners, 2012; Lakens, 2017) greatly 268 
facilitate the mitigation of the abovementioned pitfalls in data interpretation, they are still subject to some 269 
of the same types of problems as the p-values and classic NHST (Cortina and Dunlap, 1997; Nickerson, 270 
2000; Belia et al., 2005; Wagenmakers et al., 2008; Kruschke, 2013; Kruschke and Liddell, 2017a; Hoekstra 271 
et al., 2014; Morey et al., 2015; Greenland et al., 2016). Confidence intervals also depend on unobserved 272 
data and the intentions of the researcher. Moreover, the meaning of confidence intervals seems 273 
counterintuitive to many researchers. For example, one of the most common misinterpretations of the (1 – 274 
α)% confidence interval is that the probability of finding an effect within the confidence interval is (1 – 275 
α)%. In fact, it is a Bayesian interval estimate known as a credible interval. 276 

Nevertheless, we would like to emphasise that we do not advocate abandoning the frequency approach. 277 
Correctly interpreted frequentist interval-based hypothesis testing with a priori power analysis defining the 278 
sample size and proper multiplicity adjustments often lead to conclusions similar to those of Bayesian 279 
inference (Lakens et al., 2018). However, even honest researchers with transparent intentions may find it 280 
logically and practically difficult to carry out an appropriate power analysis and make multiplicity 281 
adjustments (Berry and Hochberg, 1999; Cramer et al., 2015; Schönbrodt et al., 2015; Streiner, 2015; 282 
Sjölander and Vansteelandt, 2019). These procedures may be even more complicated in fMRI research than 283 
in psychological or social studies (see discussion on power analysis in Mumford and Nichols, 2008; Joyce 284 
and Hayasaka, 2012; Mumford, 2012; Cremes et al., 2017; Poldrack et al., 2017; multiple comparisons in 285 
Nichols and Hayasaka, 2003; Nichols, 2012; Eklund et al., 2016; and other types of multiplicities in 286 
Turkheimer et al., 2004; Chen et al., 2018, 2019, 2020; Alberton et al., 2020). For example, at the beginning 287 
of a long-term study, one may want to check whether stimulus onset timings are precisely synchronised 288 
with fMRI data collection and perform preliminary analysis on the first five subjects. The question of 289 
whether the researcher must make an adjustment for this technical check when reporting the results for the 290 
final sample become important in the frequentist approach. Such preliminary analyses (or other forms of 291 
interim analyses) are not a source of concern in Bayesian inference. Or, for example, one may want to find 292 
both ‘(de)activated’ and ‘not activated’ brain areas and use two superiority tests in combination with the 293 
TOST procedure. It is not trivial to make appropriate multiplicity adjustments in this case. In contrast, 294 
Bayesian inference suggests a single decision rule without the need for additional adjustments. Moreover, 295 
to our knowledge, practical implementations of superiority tests and the TOST procedure in common 296 
software for fMRI data analysis do not yet exist. At the same time, Bayesian analysis has already been 297 
implemented in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/software/spm12) and is easily accessible to end-298 
users. It consists of two steps: Bayesian parameter estimation and Bayesian inference. In general, it is not 299 
necessary to use Bayesian analysis at the subject level of analysis to apply it at the group level. One can 300 
combine computationally less demanding frequentist parameter estimation for single subjects with 301 
Bayesian estimation and inference at the group level. In the next sections, we consider the group-level 302 
Bayesian analysis implemented in SPM12.  303 

2.4. Bayesian parameter estimation 304 

Bayesian statistics is based on Bayes’ rule: 305 

𝑃(𝐻|𝐷) =
𝑃(𝐷|𝐻)𝑃(𝐻)

𝑃(𝐷)
  (1) 306 

where P(H|D) is the probability of the hypothesis given the obtained data or posterior probability. P(D|H) 307 
is the probability of obtaining the exact data given the hypothesis or the likelihood (notice the difference 308 
from P(D + |H), which includes more extreme data). P(H) is the prior probability of the hypothesis (our 309 
knowledge of the hypothesis before we obtain the data). P(D) is a normalising constant ensuring that the 310 
sum of posterior probabilities over all possible hypotheses equals one. For example, if we consider two 311 
mutually exclusive hypotheses H0 and H1, then P(D) = P(D|H0) P(H0) + P(D|H1)P(H1) and P(H0|D) + 312 
P(H1|D) = 1. 313 

In verbal form, Bayes’ rule can be expressed as: 314 

Posterior ∝ Likelihood × Prior 315 
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This means that we can update our prior beliefs about the hypothesis based on the obtained data. The main 316 
difficulty in using Bayesian statistics lies in choosing the appropriate prior assumptions. If the data are 317 
organised hierarchically, which is the case for neuroimaging data, priors can be specified based on the data 318 
using an empirical Bayesian approach. The lower level of the hierarchy corresponds to the experimental 319 
effects at any given voxel, and the higher level of the hierarchy comprises the effect over all voxels. Thus, 320 
the variance of the experimental effect over all voxels can be used as the prior variance of the effect at any 321 
given voxel. This approach is known as the parametric empirical Bayes (PEB) with the ‘global shrinkage’ 322 
prior (Friston and Penny, 2003). The prior variance is estimated from the data under the assumption that 323 
the prior probability density corresponds to a Gaussian distribution with zero mean. In other words, a global 324 
experimental effect is assumed to be absent. An increase in local activity can be detected in some brain 325 
areas; a decrease can be found in others, but the total change in neural metabolism in the whole brain is 326 
approximately zero. This is a reasonable physiological assumption because studies of brain energy 327 
metabolism have shown that the global metabolism is ‘remarkably constant despite widely varying mental 328 
and motoric activity’ (Raichle and Gusnard, 2002), and ‘the changes in the global measurements of blood 329 
flow and metabolism’ are ‘too small to be measured’ by functional imaging techniques such as PET and 330 
fMRI (Gusnard and Raichle, 2001). 331 

Now, we can rewrite Bayes’ rule (eq. 1) for the effect θ = cβ: 332 

𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)
  (2) 333 

In the process of Bayesian updating with the ‘global shrinkage’ prior, the effect estimate ‘shrinks’ toward 334 
zero. The greater the uncertainty of the effect estimate (variability) in a particular voxel, the less confidence 335 
in this estimate, and the more it shrinks (see Fig. 3).  336 

 337 

Figure 3. Schematic of Bayesian updating with the ‘global shrinkage’ prior. Scheme modified from 338 
Stephan (2016). 339 

After Bayesian parameter estimation, we can apply one of the two main types of Bayesian inference (Penny 340 
and Ridgway, 2013): Bayesian parameter inference (BPI) or Bayesian model inference (BMI). BPI is also 341 
known as Bayesian parameter estimation (Kruschke and Liddell, 2017b). However, we deliberately 342 
separate these two terms, as they correspond to two different steps of data analysis in SPM12. BMI is also 343 
known as Bayesian model comparison, Bayesian model selection, or Bayesian hypothesis testing (Kruschke 344 
and Liddell, 2017b). We chose the term BMI as it is consonant with the term BPI. 345 

2.5. Bayesian parameter inference 346 

The BPI is based on the posterior probability of finding the effect within or outside the ROPE. Let effects 347 
larger than the ES threshold γ be ‘activations’, those smaller than –γ be ‘deactivations’, and those falling 348 
within the ROPE [–γ; γ] be ‘no activations’. Then, we can classify voxels as ‘activated’, ‘deactivated’, or 349 
‘not activated’ if: 350 

Pact = P(θ > γ|D) ≥ Pthr  (3.1) 351 
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Pdeact = P(θ < –γ|D) ≥ Pthr (3.2) 352 

Pnull = P(–γ ≤ θ ≤ γ|D) ≥ Pthr (3.3) 353 

where Pthr is the posterior probability threshold (usually Pthr = 95%). Note that Pact + Pdeact + Pnull = 1. 354 

If none of the above criteria are satisfied, the data in a particular voxel are insufficient to distinguish voxels 355 
that are ‘(de)activated’ from those that are ‘not activated’. Hereinafter, we refer to them as ‘low confidence’ 356 
voxels (Magerkurth et al., 2015). This decision rule is also known as the ‘ROPE-only’ rule (Kruschke and 357 
Liddell, 2017a, see also Greenwald (1975), Wellek (2010), Liao et al. (2019). To the best of our knowledge, 358 
the application of this decision rule to neuroimaging data was pioneered by Friston et al. (2002a, 2002b, 359 
2003). For convenience and visualisation purposes, we can use the natural logarithm of the posterior 360 
probability odds (LPO), for example: 361 

𝐿𝑃𝑂𝑛𝑢𝑙𝑙 =  𝑙𝑛 (
𝑃𝑛𝑢𝑙𝑙

𝑃𝑎𝑐𝑡 + 𝑃𝑑𝑒𝑎𝑐𝑡
) =  𝑙𝑛 (

𝑃𝑛𝑢𝑙𝑙

1 − 𝑃𝑛𝑢𝑙𝑙
)  (4) 362 

This allows us to more effectively discriminate voxels with a posterior probability close to unity (Penny 363 
and Ridgway, 2013). LPOnull > 3 corresponds to Pnull > 95%. In addition, LPO also allows us to identify the 364 
connection between BPI and BMI. The maps of the LPO are termed posterior probability maps (PPMs) in 365 
SPM12. 366 

Another possible decision rule considers the overlap between ROPE and the 95% highest density interval 367 
(HDI). HDI is a type of credible interval (Bayesian analogue of the confidence interval), which contains 368 
only the effects with the highest posterior probability density. If the HDI falls entirely inside the ROPE, we 369 
can classify voxels as ‘not activated’. In contrast, if the HDI lies completely outside the ROPE, we can 370 
classify voxels as either ‘activated’ or ‘deactivated’. If the HDI overlaps with the ROPE, we cannot make 371 
a confident decision (we can consider them to be ‘low confidence’ voxels). This decision rule is known as 372 
the ‘HDI+ROPE’ rule (Kruschke and Liddell, 2017a). It is more conservative than the ‘ROPE-only’ rule, 373 
as it does not consider the effects from the tails of a posterior probability distribution. When the posterior 374 
distributions are skewed, the ‘HDI+ROPE’ decision rule should be used. However, in SPM12, the 375 
‘HDI+ROPE’ and ‘ROPE-only’ decision rules should produce similar results because SPM12 utilises 376 
normal distributions. These decision rules are illustrated in Fig. 4. 377 

 378 

Figure 4. Possible variants of the posterior probability distributions of the effect θ = cβ in A) ‘activated’ 379 
voxels, B) ‘deactivated’ voxels, C) ‘not activated’ voxels, D) ‘low confidence’ voxels. The ‘ROPE only’ 380 
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rule considers only the coloured parts of the distributions. The ‘HDI+ROPE’ rule considers overlap between 381 
the ROPE and 95% HDI. Scheme modified from Magerkurth et al. (2015) 382 

2.6. Bayesian model inference 383 

With BPI, we consider the posterior probabilities of the linear contrast of parameters θ = cβ. Instead, we 384 
can consider models using BMI.  385 

Let Halt and Hnull be two non-overlapping hypotheses represented by models Malt and Mnull. These models 386 
are defined by two parameter spaces: 1) Malt: θ > γ and θ < –γ, and 2) Mnull: –γ ≤ θ ≤ γ. 387 

Now, we can rewrite Bayes’ rule (eq. 1) for Malt and Mnull 388 

𝑃(𝑀𝑎𝑙𝑡|𝐷) =
𝑃(𝐷|𝑀𝑎𝑙𝑡)𝑃(𝑀𝑎𝑙𝑡)

𝑃(𝐷)
  (5.1) 389 

𝑃(𝑀𝑛𝑢𝑙𝑙|𝐷) =
𝑃(𝐷|𝑀𝑛𝑢𝑙𝑙)𝑃(𝑀𝑛𝑢𝑙𝑙)

𝑃(𝐷)
  (5.2) 390 

If we divide equation (5.1) by (5.2), P(D) is cancelled out, and we obtain: 391 

𝑃(𝑀𝑎𝑙𝑡|𝐷)

𝑃(𝑀𝑛𝑢𝑙𝑙|𝐷)
=

𝑃(𝐷|𝑀𝑎𝑙𝑡)

𝑃(𝐷|𝑀𝑛𝑢𝑙𝑙)
 

𝑃(𝑀𝑎𝑙𝑡)

𝑃(𝑀𝑛𝑢𝑙𝑙)
 (6) 392 

In verbal form equation (6) can be expressed as: 393 

Posterior Odds = Bayes Factor × Prior Odds 394 

The Bayes factor (BF) is a multiplier that converts prior model probability odds to posterior model 395 
probability odds. It indicates the relative evidence for one model against another. For example, if 𝐵𝐹𝑛𝑢𝑙𝑙 =396 
𝑝(𝐷|𝑀𝑛𝑢𝑙𝑙)

𝑝(𝐷|𝑀𝑎𝑙𝑡)
= 2, then the observed data are twice as likely under the null model than under the alternative.  397 

A connection exists between the BPI (eq. 2–4), and BMI (eq. 6) (see Morey and Rouder, 2011; Liao et al., 398 
2019): 399 

𝐵𝐹𝑛𝑢𝑙𝑙 = (
𝑃(−𝛾 ≤ 𝜃 ≤ 𝛾|𝐷)

1 − 𝑃(−𝛾 ≤ 𝜃 ≤ 𝛾|𝐷)
) (

1 − 𝑃(−𝛾 ≤ 𝜃 ≤ 𝛾)

𝑃(−𝛾 ≤ 𝜃 ≤ 𝛾)
)  (7) 400 

or, in verbal form: 401 

𝐵𝐹(𝑅𝑂𝑃𝐸)𝑛𝑢𝑙𝑙 =
𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝜃 𝑖𝑛 𝑅𝑂𝑃𝐸)

𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 (𝜃 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸)

𝑃𝑟𝑖𝑜𝑟(𝜃 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑅𝑂𝑃𝐸)

𝑃𝑟𝑖𝑜𝑟(𝜃 𝑖𝑛 𝑅𝑂𝑃𝐸)
 402 

For convenience, BF may also be expressed in the form of a natural logarithm: 403 

LogBF(ROPE)null ∝ LPOnull 404 

See Schematic illustration of BF(ROPE)null in Fig. 5A. 405 
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 406 

Figure 5. Schematic of BFs used in BMI. A) BF(ROPE) is related to the areas under the functions of the 407 
posterior and prior probability densities inside and outside the ROPE. B) BF(SDR) is the relation between 408 
the posterior and prior probability at θ = 0. 409 

The calculation of BF may be computationally challenging, as it requires integration over the parameter 410 
spaces. However, if the ROPE has zero width (γ = 0), then the BF has an analytical solution known as the 411 
Savage–Dickey ratio (SDR) (Wagenmakers et al., 2010; Fritson and Penny, 2011; Rosa et al., 2012; Penny 412 
and Ridgway, 2013). The interpretation of the SDR is simple: if the effect size is less likely to equal zero 413 
after obtaining the data (posterior probability at θ = 0) than before (prior probability at θ = 0), then 414 
BF(SDR)null < 1; that is, we have more evidence for Malt (see Fig. 5B). 415 

2.7. Relations between frequentist and Bayesian approaches 416 

Now we can point out the conceptual links between the frequentist and Bayesian approaches. 417 

(1) Parameter estimation. When we have no prior information, that is, all parameter values are a priori 418 
equally probable (‘flat’ prior), Bayesian parameter estimation reduces to frequentist parameter estimation 419 
(maximum likelihood estimation; Friston et al., 2002a). 420 

(2) Multiplicity adjustments. One of the major concerns in frequentist inference is the multiplicity 421 
problem. In general, after the Bayesian parameter estimation, it is not necessary to classify any voxel as 422 
‘(de)activated’ or ‘not activated’. If we consider unthresholded maps of posterior probabilities, LPOs, or 423 
LogBFs, the multiple comparisons problem does not arise (Friston and Penny, 2003). However, if we apply 424 
a decision rule to classify voxels, we should control for wrong decisions across multiple comparisons 425 
(Woolrich et al., 2009, see also possible loss functions in Muller et al., 2006; Kruschke and Liddell, 2017a). 426 
The advantage of hierarchical PEB with the ‘global shrinkage’ prior is that it automatically accounts for 427 
multiple comparisons without the need for ad hoc multiplicity adjustments (Berry, 1988; Friston and Penny, 428 
2003; Scott and Berger, 2010; Gelman et al., 2012). The frequentist approach processes every voxel 429 
independently, whereas the PEB algorithm considers joint information from all voxels. Frequentist 430 
inference uncorrected for multiple independent comparisons is prone to label noise-driven, random 431 
extremes as ‘statistically significant’. Bayesian analysis specifies that extreme values are unlikely a priori, 432 
and thus they shrink toward a common mean (Lindley, 1990; Westfall et al., 1997; Berry and Hochberg, 433 
1999; Friston et al., 2002a, 2002b; Gelman et al., 2012; Kruschke and Liddell, 2017b). If we consider 434 
thresholded maps of posterior probabilities, for example, Pact > 95%, then as many as 5% of ‘activated’ 435 
voxels could be falsely labelled so. This is conceptually similar to the false discovery rate (FDR) correction 436 
(Berry and Hochberg, 1999; Frison et al., 2002b; Friston and Penny, 2003; Storey, 2003; Muller et al., 437 
2006; Schwartzman et al., 2009). In practice, BPI with γ = 0 should produce similar results (in terms of the 438 
number of ‘(de)activated’ voxels) as classical NHST with FDR correction. If we increase the ES threshold, 439 
fewer voxels will be classified as ‘(de)activated’, and at some γ value, BPI will produce results similar to 440 
the more conservative Family Wise Error (FWE) correction2. 441 

                                                           
2 FDR correction controls the rate of false discoveries (false positives in frequentist terminology) among all significant 

voxels. FWE correction controls the rate of any false positives in the whole brain. 
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(3) Interval-based hypothesis testing. Frequentist interval-based hypothesis testing is conceptually 442 
connected with BPI, particularly, the ‘HDI+ROPE’ decision rule. The former considers the intersection 443 
between ROPE and the confidence intervals. The latter considers the intersection between ROPE and the 444 
HDI (credible intervals). 445 

(4) BPI and BMI. BMI based on BF(ROPE) is conceptually linked to BPI based on the ‘ROPE-only’ 446 
decision rule. The interval-based Bayes factor BF(ROPE) is proportional to the posterior probability odds. 447 
When ROPE is infinitesimally narrow, BF can be approximated using the SDR. Note that even though 448 
BF(SDR) is based on the point-null hypothesis, it can still provide evidence for the null hypothesis, in 449 
contrast to BPI with γ = 0. However, BF(SDR) in PEB settings has not yet been tested using empirical fMRI 450 
data. Because the point-null hypothesis is always false (Meehl, 1967), BPI and BF(ROPE) are preferred 451 
over BF(SDR). 452 

2.8. Definition of the effect size threshold 453 

The main difficulty in applying interval-based methods is the choice of the ES threshold γ. To date, only a 454 
few studies have been devoted to determining the minimal relevant effect size. One of them suggested a 455 
method to objectively define γ at the subject level of analysis which was calibrated by clinical experts and 456 
may be implemented for pre-surgical planning (Magerkurth et al., 2015). At the same time, the problem of 457 
choosing the ES threshold γ for group-level Bayesian analysis remains unresolved. 458 

Several ways in which to define the ES threshold are available. Firstly, we can conduct a pilot study to 459 
determine the expected effect sizes. Secondly, we can use data from the literature to determine the typical 460 
effect sizes for the condition of interest. Thirdly, we can use the default ES thresholds that are commonly 461 
accepted in the field. One of the first ES thresholds proposed in the neuroimaging literature was γ = 0.1% 462 
(Friston et al., 2002b). This is the default ES threshold for the subject-level BPI in SPM12. For the group-463 
level BPI, the default ES threshold is one prior standard deviation of the effect γ = 1 prior SDθ (Friston and 464 
Penny, 2003). Fourthly, γ can be selected in such a way as to ensure maximum similarity of the activation 465 
patterns revealed by classical NHST and Bayesian inference. This would allow us to reanalyse the data 466 
using Bayesian inference, reveal similar activation patterns as was previously the case for classic inference, 467 
and detect the ‘not activated’ and ‘low confidence’ voxels. Lastly, we can consider the posterior 468 
probabilities at multiple ES thresholds or compute the ROPE maps (see below).  469 

It should also be noted that the ES threshold can be expressed as unstandardised (raw β values or percent 470 
signal change) and standardised values (for example, Cohen’s d). Raw β values calculated by SPM12 at the 471 
first level of analysis represent the BOLD signal in arbitrary units. However, they can be scaled to a more 472 
meaningful unit, the BOLD percent signal change (PSC) (Poldrack et al., 2011; Chen et al., 2017). 473 
Unstandardised and standardised values have disadvantages and advantages. Different ways exist in which 474 
to scale β values to PSC (Pernet, 2014; Chen et al., 2017), which is problematic when comparing the results 475 
of different studies. Standardised values represent the effect size in terms of the standard deviation units, 476 
which supposedly facilitate the comparison of results between different experiments. However, 477 
standardised values are relatively more unstable between measurements and less interpretable (Baguley, 478 
2009; Chen et al., 2017). Moreover, Cohen’s d is closely related to the t-value (for one sample case, 𝑑 =479 

 𝑡/√𝑁) and may share some drawbacks with t-values. Reimold et al. (2005) showed that spatial smoothing 480 
has a nonlinear effect on voxel variance. Using t-values or Cohen’s d for inference in neuroimaging may 481 
lead to spatially inaccurate results (spatial shift of local maxima in t-maps or Cohen’s d maps compared to 482 
PSC-maps). In this study, we focused on PSCs. 483 

3. Methods 484 

We used the HCP and UCLA datasets to: 1) compare classical NHST and BPI, 2) consider different 485 
approaches to ES thresholding and estimate typical effect sizes, 3) demonstrate the behaviour of classical 486 
NHST and BPI depending on the sample size and spatial smoothing, and 4) illustrate a possible practical 487 
application of BPI. 488 

3.1. Datasets 489 
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Seven block-design tasks were considered from the HCP dataset, including working memory, gambling, 490 
motor, language, social cognition, relation processing, and emotion processing tasks (Barch et al., 2013). 491 
Two event-related tasks, including the stop-signal and task-switching tasks were considered from the 492 
UCLA dataset (Poldrack et al., 2016). The length, conditions, and number of scans of the tasks are provided 493 
in the Supplementary Materials (Table S1). A subset of 100 unrelated subjects (S1200 release) was selected 494 
from the HCP dataset (54 females, 46 males, mean age = 29.1 ± 3.7 years) for assessment. A total of 115 495 
subjects from the UCLA dataset were included in the analysis (55 females, 60 males, mean age = 31.7 ± 496 
8.9 years) after removing subjects with no data for the stop-signal task, a high level (>15%) of errors in the 497 
Go-trials, and those of which the raw data were reported to be problematic (Gorgolewski et al., 2017). See 498 
the fMRI acquisition parameters in the Supplementary Materials, Par. 1. 499 

3.2. Preprocessing 500 

The minimal preprocessing pipelines for the HCP and UCLA datasets were described by Glasser et al. 501 
(2013) and Gorgolewski et al. (2017), respectively. Spatial smoothing was applied to the preprocessed 502 
images with a 4 mm full width at half maximum (FWHM) Gaussian smoothing kernel. Additionally, to 503 
compare the extent to which the performance of classical NHST and BPI depended on the smoothing, we 504 
applied 8 mm FWHM smoothing to the emotion processing task. Spatial smoothing was performed using 505 
SPM12. The results are reported for the 4 mm FWHM smoothing filter, unless otherwise specified. 506 

3.3. Parameter estimation 507 

Frequentist parameter estimation was applied at the subject level of analysis. A detailed description of the 508 
general linear models for each task design is available in the Supplementary Materials, Par. 2. Fixation 509 
blocks and null events were not modelled explicitly in any of the tasks. Twenty-four head motion regressors 510 
were included in each subject-level model (six head motion parameters, six head motion parameters one 511 
time point before, and 12 corresponding squared items) to minimise head motion artefacts (Friston et al., 512 
1996). Raw β values were converted to PSC relative to the mean whole-brain ‘baseline’ signal 513 
(Supplementary Materials, Par. 3). The linear contrasts of the β values were calculated to describe the 514 
effects of interest θ = cβ in different tasks. The sum of positive terms in the contrast vector, c, is equal to 515 
one. The list of contrasts calculated in the current study to explore typical effect sizes is presented in Table 516 
S1. At the group level of analysis, the Bayesian parameter estimation with the ‘global shrinkage’ prior was 517 
applied using SPM12 (v6906). We performed a one-sample test on the linear contrasts created at the subject 518 
level of analysis. 519 

3.4. Classical NHST and Bayesian parameter inference 520 

Classical inference was performed using voxel-wise FWE correction with α = 0.05. This is the default SPM 521 
threshold and is known to be conservative and to guarantee protection from false positives (Eklund et al., 522 
2016). Although voxel-wise FWE correction may be too conservative for small sample sizes, it is 523 
recommended when large sample sizes are available (Woo et al., 2014). 524 

BPI, accessible via the SPM12 GUI, allows the user to declare only whether the voxels are ‘activated’ or 525 
‘deactivated’. The classification of voxels as being either ‘not activated’ or ‘low confidence’ requires the 526 
posterior mean and variance. At the group level of analysis, SPM12 does not save the posterior variance 527 
image. However, the posterior variance can be reconstructed from the image of the noise hyperparameter 528 
using a first-order Taylor series approximation (Penny and Ridgway, 2013). Therefore, in the current study, 529 
BPI was performed using in-house scripts available at 530 
(https://github.com/Masharipov/Bayesian_inference). For the ‘ROPE-only’ rule, the posterior probability 531 
threshold was Pthr = 95% (LPO > 3). For the ‘HDI+ROPE’ rule, we used 95% HDI. 532 

We compared the number of ‘activated’ voxels (as a percentage of the total number of voxels) detected by 533 
Bayesian and classical inference. We also compared the number of ‘activated,’ ‘deactivated,’ and ‘not 534 
activated’ voxels detected using BPI with the ‘ROPE-only’ and ‘HDI+ROPE’ decision rules and different 535 
ES thresholds. To estimate the influence of the sample size on the results, all the above-mentioned analyses 536 
were performed with samples of different sizes: 5 to 100 subjects from the HCP dataset and 5 to 115 subjects 537 
from the UCLA dataset, in steps of 5 subjects. Ten random groups were sampled for each step. 538 
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3.5. Effect size thresholds 539 

We considered three ES thresholds: firstly, the default ES threshold for the subject-level γ = 0.1% (BOLD 540 
PSC); secondly, the default ES threshold for the group-level γ = 1 prior SDθ; thirdly, the γ(Dicemax) 541 
threshold, which ensures maximum similarity of the activation patterns revealed by classical NHST and 542 
BPI. The similarity was assessed using the Dice coefficient:  543 

𝐷𝑖𝑐𝑒(𝛾) =  
2 ∗ 𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝛾)

𝑉𝑐𝑙𝑎𝑠𝑠𝑖𝑐 + 𝑉𝑏𝑎𝑦𝑒𝑠𝑖𝑎𝑛(𝛾)
 (8) 544 

where 𝑉𝑐𝑙𝑎𝑠𝑠𝑖𝑐 is the number of ‘activated’ voxels detected using classical NHST, 𝑉𝑏𝑎𝑦𝑒𝑠𝑖𝑎𝑛(𝛾) is the 545 

number of ‘activated’ voxels detected using BMI with the ES threshold 𝛾, and 𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is the number of 546 

‘activated’ voxels detected by both methods. A Dice coefficient of 0 indicates no overlap between the 547 
patterns, and 1 indicates complete overlap. Dice coefficients were calculated for γ ranging from 0% to 0.4% 548 
in steps of 0.001%.  549 

3.6. Estimation of typical effect sizes 550 

In the current study, we aimed to provide a reference set of typical effect sizes for different task designs 551 
(block and event-related) and different contrasts (‘task-condition > control-condition,’ ‘task-condition > 552 
baseline,’) in a set of a priori defined regions of interest (ROI). Effect sizes were expressed in PSC and 553 
Cohen’s d. ROI masks were defined using anatomical and a priori functional masks. For more details, see 554 
Supplementary Materials, Par. 4. 555 

3.7. Evaluating BPI on contrasts with no expected practically significant difference  556 

BPI should be able to detect the ‘null effect’ in the majority of voxels when comparing samples with no 557 
expected practically significant difference. For example, there may be two groups of healthy adult subjects 558 
performing the same task or two sessions with the same task instructions. To test this, we used fMRI data 559 
from the emotion processing task. To emulate two ‘similar’ independent samples, 100 healthy adult 560 
subjects’ contrasts (‘Emotion > Shape’) were randomly divided into two groups of 50 subjects. A two-561 
sample test comparing the ‘Group #1’ and ‘Group #2’ was performed with the assumption of unequal 562 
variances between the groups (SPM12 default option). To emulate ‘similar’ dependent samples, we 563 
randomized ‘Emotion > Shape’ contrasts from right-to-left (RL) and left-to-right (LR) phase encoding 564 
sessions in the ‘Session #1’ and ‘Session #2’ samples. Each sample consisted of 50 contrasts from the RL 565 
session and 50 from the LR session. A paired test designed to compare ‘Session #1’ and ‘Session #2’ was 566 
equivalent to the one-sample test on 50 ‘RL > LR session’ and 50 ‘LR > RL session’ contrasts. 567 

4. Results 568 

4.1. Results for contrasts with no expected practically significant difference 569 

Classical NHST did not show a significant difference between ‘Group #1’ and ‘Group #2’ (see 570 
Supplementary Materials, Fig. S1). BPI with the ‘ROPE-only’ decision rule and default ES threshold γ = 1 571 
prior SDθ = 0.190% classified 83.4% of voxels as having ‘no difference’ in which the null hypothesis was 572 
accepted (see Fig. S1). The ‘HDI+ROPE’ rule classified 76.2% of voxels as having ‘no difference’. 573 

Classical NHST did not reveal a significant difference between ‘Session #1’ and ‘Session #2’ (see Fig. S2). 574 
The prior SDθ was 0.005%. In this case, using the default ES threshold γ = 1 prior SDθ did not allow the 575 
detection of any ‘no difference’ voxels, because the ROPE was unreasonably narrow. The ‘null effect’ was 576 
detected in all voxels beginning with a γ = 0.013% threshold using the ‘ROPE-only’ and ‘HDI+ROPE’ 577 
decision rules (see Fig. S2). 578 

In this way, when comparing two ‘similar’ independent samples (two groups of healthy subjects performing 579 
the same task), BPI with the default group-level threshold (one prior SDθ) allowed us to correctly label 580 
voxels as having ‘no difference’ for the majority of the voxels of the brain. However, when comparing two 581 
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‘similar’ dependent samples (two sessions from the same task), the one prior SDθ threshold became 582 
inadequately small. 583 

Therefore, the default one prior SDθ threshold is not suitable when the difference between dependent 584 
conditions is very small (paired sample test or one-sample test). In such cases, one can use an a priori 585 
defined ES threshold based on previously reported effect sizes or provide an ES threshold at which most of 586 
the voxels can be labelled as having ‘no difference’, allowing the critical reader to decide whether this 587 
speaks in favour of the absence of differences. 588 

4.2. Comparison of classical NHST and BPI results 589 

Generally, classical NHST with voxel-wise FWE correction and BPI with the ‘ROPE-only’ decision rule 590 
and default group-level ES threshold γ = 1 prior SDθ revealed similar (de)activation patterns in all 591 
considered contrasts (see Fig. 6, Table 1, Supplementary materials, Tables S2–S10). The median ES 592 
threshold based on Dicemax and median default group-level ES threshold across all considered contrasts were 593 
close in magnitude to the default subject-level ES threshold γ = 0.1%: γ(Dicemax) = 0.118% and γ = 1 prior 594 
SDθ = 0.142%. The median Dicemax across all the considered contrasts reached 0.904. At the same time, BPI 595 
allowed us to classify ‘non-significant’ voxels as ‘not activated’ or ‘low confidence’. As it can be clearly 596 
seen from Figure 6, areas with ‘non-activated’ voxels surround clusters with ‘(de)activated’ voxels. Both 597 
are separated by areas comprising ‘low confidence’ voxels. 598 

 599 

Figure 6. Examples of results obtained with classical NHST and BPI. Six contrasts were chosen for the 600 
illustration purposes (four event-related and two block-design tasks). Classical NHST was implemented 601 
using voxel-wise FWE correction (α = 0.05). BPI was implemented using the ‘ROPE-only’ decision rule, 602 
Pthr = 95% (LPO > 3) and γ = 1 prior SDθ. Axial slice z = 18 mm (MNI152 standard space). 603 

Table 1. Maximum Dice coefficient and corresponding effect size thresholds for each task. 604 

 

Contrast, θ 

1 prior SDθ, 

% 

‘ROPE-only’ decision rule ‘HDI+ROPE’ decision rule 

γ(Dicemax), % Dicemax γ(Dicemax), % Dice 

Emotion processing 
Emotion > Shape 0.135 0.116 0.904 0.104 0.912 

Working memory 
2-back > baseline 0.325 0.136 0.925 0.125 0.932 
2-back > 0-back 0.089 0.095 0.891 0.089 0.903 

Language 
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Story > Math 0.255 0.119 0.896 0.108 0.904 

Motor 
LF > baseline 0.149 0.148 0.897 0.135 0.907 
RF > baseline 0.171 0.160 0.886 0.144 0.897 
T > baseline 0.268 0.205 0.904 0.181 0.913 

Gambling 
Reward > baseline 0.254 0.132 0.917 0.122 0.924 
Loss > baseline 0.249 0.134 0.918 0.118 0.925 
Reward > Loss 0.032 0.044 0.894 0.037 0.886 

Social cognition 
Social > baseline 0.325 0.139 0.939 0.124 0.944 
Social > Random 0.104 0.114 0.896 0.104 0.907 

Relational processing 
Relational > baseline 0.390 0.154 0.935 0.143 0.940 
Relational > Match 0.051 0.073 0.892 0.066 0.894 

Stop-signal task 
Correct Stop > baseline 0.069 0.066 0.895 0.061 0.906 
Correct Stop > Go 0.064 0.052 0.906 0.047 0.917 

Task-switching 
Switch > baseline 0.133 0.075 0.907 0.067 0.916 
Switch > No switch 0.030 0.037 0.924 0.033 0.925 

Summary 
Median 0.142 0.118 0.904 0.106 0.913 

As expected, compared with the ‘HDI+ROPE’ rule, using the ‘ROPE-only’ rule slightly increases the 605 
number of ‘(de)activated’ and ‘not activated’ voxels (see Table 1 and Tables S2-10). The ‘HDI+ROPE’ 606 
rule labelled more voxels as ‘low confidence’. In principle, the difference between these rules would only 607 
be expected to increase with skewed distributions, which is not the case in SPM12. Thus, we recommend 608 
using the ‘ROPE-only’ decision rule (as well as in Friston et al., 2002a, 2002b, 2003; Wellek, 2010; Liao 609 
et al., 2019). In the following sections, we focus primarily on describing the results for the ‘ROPE-only’ 610 
rule. 611 

4.3. Comparison of BPI results with different ES thresholds 612 

Here, we first consider the results for the emotional processing task and then consider other tasks. Using 613 
the default single-subject ES threshold γ = 0.1% for the emotional processing task (‘Emotion > Shape’ 614 
contrast), 58.8% of all voxels can be classified as ‘not activated,’ 30.8% as ‘low confidence,’ and 10.1% as 615 
‘activated’ (see Fig. 7, Table S2). The default group-level ES threshold γ = 1 prior SDθ = 0.135% allowed 616 
us to classify 75.0% of all voxels as ‘non-activated,’ 17.5% as ‘low confidence,’ and 7.4% as ‘activated’ 617 
(see Fig. 7, Table S2). Both types of thresholds were comparable to those of classical NHST for the 618 
detection of ‘activated’ voxels. The maximum overlap between ‘activations’ patterns revealed by classical 619 
NHST and BPI was observed at γ(Dicemax) = 0.116% (see Fig. 8, Table 1). 620 
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 621 

Figure 7. Number of voxels classified into the four categories depending on the ES threshold γ. The results 622 
for the emotion processing task (‘Emotion>Shape’ contrast) are presented for illustration. Abbreviations: 623 
L AMY – left amygdala. 624 

 625 

Figure 8. Dependence of the Dice coefficient on the ES threshold γ. Results for the emotion processing 626 
task (‘Emotion>Shape’ contrast). The red lines denote γ(Dicemax). Abbreviations: L AMY – left amygdala. 627 

For the ‘2-back > 0-back,’ ‘Left Finger > baseline,’ ‘Right Finger > baseline,’ and ‘Social > Random’ 628 
contrasts, the three ES thresholds that were considered—0.1%, one prior SDθ, γ(Dicemax)—produced similar 629 
results (see Table 1 and Tables S3, S5, S7). For the event-related stop-signal task (‘Correct Stop > baseline’ 630 
and ‘Correct Stop > Go’ contrasts), one prior SDθ and γ(Dicemax) were close in terms of their values but 631 
smaller than 0.1% (see Table 1). Block designs tend to evoke higher BOLD PSC than event-related designs; 632 
therefore, a lower prior SDθ should be expected for event-related designs and higher prior SDθ for block 633 
designs. Within a single design, in contrasts such as ‘task-condition > baseline’, higher BOLD PSC and 634 
prior SDθ would be expected than in contrasts in which the experimental conditions are compared directly. 635 
For example, the contrast ‘2-back > baseline’ has prior SDθ = 0.325% and contrast ‘2-back > 0-back’ has 636 
prior SDθ = 0.089%. 637 

As previously noted, some contrasts did not elicit robust activations: ‘Reward > Loss’, ‘Relational > 638 
Match’, (Barch et al., 2013) and ‘Switch > No switch’ (Gorgolewski et al., 2017). The corresponding 639 
γ(Dicemax) thresholds were 0.044%, 0.073%, and 0.037% (see Tables 1, S6, S8, and S10). The prior SDθ 640 
were 0.032%, 0.051%, and 0.030%. Correspondingly, BPI with the γ = 1 prior SDθ threshold classified 0%, 641 
18.4%, and 42.2% of voxels as ‘not activated’. This demonstrates that when we compare conditions with 642 
similar neural activity and minor differences, it becomes more difficult to separate ‘(de)activations’ from 643 
the ‘null effects’ using the γ = 1 prior SDθ threshold. 644 
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4.4. Typical effect sizes in fMRI studies 645 

A complete list of effect sizes (BOLD PSC and Cohen’s d) estimated for different tasks and a priori defined 646 
ROIs is presented in the Supplementary Materials (Tables S11–19). Here, we focus only on the BOLD 647 
PSC. The violin plots for some of these are shown in Figure 9. 648 

 649 

Figure 9. Typical BOLD PSC in fMRI studies. The box plots inside the violins represent the first and third 650 
quartile, and the black circles represent median values. Contrasts from the same task are indicated in one 651 
colour. Abbreviations: L/R – left/right, AMY – amygdala, V1 – primary visual cortex, DLPFC – 652 
dorsolateral prefrontal cortex, BA – Brodmann area, STG – superior temporal gyrus, A1 – primary auditory 653 
cortex, NAc – nucleus accumbens, IPL – inferior parietal lobule, IFG/FO – inferior frontal gyrus/frontal 654 
operculum. 655 

For example, the median BOLD PSC in the left amygdala ROI, one of the key brain areas for emotional 656 
processing, was 0.263%, which is approximately twice as large as one prior SDθ (see Fig. 7). Thus, using 657 
this PSC as the ES threshold in future studies may cause the ROPE to become too wide compared to the 658 
effect sizes typical for tasks with such designs. Therefore, such a threshold can be used to detect large and 659 
highly localised effects. However, it may fail to detect small but widely distributed effects previously 660 
described for HCP data (Cremers et al., 2018). 661 

In general, median PSCs within ROIs were up to 1% for block designs and 0.5% for event-related designs. 662 
The maximum PSCs reached 2.5% and were usually observed in the primary visual cortex (V1) for visual 663 
tasks comparing experimental conditions with baseline activity. For ‘moderate’ physiological effects, PSC 664 
varied in the range 0.10.2%, for example, for the ‘2-back > 0-back’ contrast, the median PSC in the right 665 
dorsolateral prefrontal cortex (R DLPFC in Fig. 9) was 0.137%. Likewise, for the ‘Social > Random’ 666 
contrast, the right inferior parietal lobule (R IPL) median PSC was 0.137%, for the ‘Correct Stop > Go’, 667 
the right inferior frontal gyrus/frontal operculum (R IFG/FO) median PSC was 0.120%. For more ‘strong’ 668 
physiological effects, the PSC was in the range 0.20.3%, for example, for the ‘Emotion > Shape’ contrast, 669 
the median PSC in the left amygdala was 0.263%, and for the ‘Story > Math’ contrast, the median PSC in 670 
the left Brodmann area 45 (Broca’s area) was 0.269%. For the motor activity, for example the ‘Right Finger 671 
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> baseline’ contrast, the median PSC in the left precentral gyrus was 0.239%, in the left postcentral gyrus 672 
was 0.362%, in the left putamen was 0.290%, and in the right cerebellum was 0.401%. For the contrasts 673 
that did not elicit robust activations (Barch et al., 2013), the PSC was approximately 0.05%; for example, 674 
for the ‘Reward > Loss’ contrast, the median PSC in the left nucleus accumbens was 0.043%, and for the 675 
‘Relational > Match’ contrast, the median PSC in the left dorsolateral prefrontal cortex was 0.062%. 676 

4.5. ROPE maps 677 

We considered BPI with two consecutive thresholding steps: 1) calculate the LPOs (or PPMs) with a 678 
selected ES threshold γ, 2) apply the posterior probability threshold pth = 95% or consider the overlap 679 
between 95% HDI and ROPE. We can reverse the thresholding sequence and calculate the ROPE maps. 680 

For the ‘(de)activated’ voxels, the ROPE map contains the maximum ES thresholds that allow voxels to be 681 
classified as ‘(de)activated’ based on the ‘ROPE-only’ or ‘HDI+ROPE’ decision rules. For the ‘not 682 
activated’ voxels, the map contains the minimum effect size thresholds that allow voxels to be classified as 683 
‘not activated’.  684 

The procedure for calculating the ROPE map can be performed as follows. Let us consider a gradual 685 
increase in the ROPE radius (i.e., the half-width of ROPE or the ES threshold γ) from zero to the maximum 686 
effect size in observed volume. (1) For voxels in which PSC is close to zero, at a certain ROPE radius, the 687 
posterior probability of finding the effect within the ROPE becomes higher than 95%. This width is 688 
indicated on the ROPE map for ‘not activated’ voxels. (2) For voxels in which the PSC deviates from zero, 689 
at a certain ROPE radius, the posterior probability of finding the effect outside the ROPE becomes lower 690 
than 95%. This width is indicated on the ROPE map for ‘(de)activated’ voxels. The same maps can be 691 
calculated for the ‘HDI+ROPE’ decision rule. 692 

Examples of the ROPE maps are shown in Figure 10. From our point of view, ROPE maps, as well as 693 
unstandardised effect size (PSC) maps, may facilitate an intuitive understanding of the spatial distribution 694 
of a physiological effect under investigation (Chen et al., 2017). They can also be a useful addition to 695 
standard PPMs. 696 
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 697 

Figure 10. ROPE maps for all tasks considered in the present study. The ROPE maps are presented using 698 
different colours for the ‘activated’, ‘deactivated’, and ‘not activated’ voxels. The green bars represent the 699 
minimum ROPE radii at which voxels with a PSC close to zero can be classified as ‘not activated’ based 700 
on the ‘ROPE-only’ decision rule. The red and blue bars represent the maximum ROPE radii at which 701 
voxels of which the PSC deviates from zero can be classified as ‘activated’ and ‘deactivated’, respectively. 702 

4.6. Effects of spatial smoothing on classical NHST and BPI 703 

Two main differences were identified with respect to the influence of the spatial smoothing between 704 
classical NHST and BPI. Firstly, some voxels with a negligible BOLD PSC could be classified as ‘not 705 
significant’ at lower smoothing and as ‘activated’ at higher smoothing using classical NHST. At the same 706 
time, BPI classified these voxels as ‘low confidence’ at lower smoothing and as ‘not activated’ at higher 707 
smoothing. Higher spatial smoothing increased the number of both ‘(de)activated’ and ‘not activated’ 708 
voxels classified by BPI, and decrease the number of ‘low confidence’ voxels. 709 

Secondly, higher smoothing blurred the spatial localisation of local maxima of t-maps and PPMs (LPO-710 
maps) to a different extent. Consider, for example, the emotion processing task (‘Emotion > Shape’ 711 
contrast). The broadening of two peaks in the left and right amygdala was more noticeable on the t-map 712 
than on the PPM (see Fig. 11). 713 
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 714 

Figure 11. Influence of spatial smoothing on classical NHST and BPI: results for the emotion processing 715 
task (‘Emotion > Shape’ contrast). Classical NHST was implemented using voxel-wise FWE correction (α 716 
= 0.05). BPI was implemented using the ‘ROPE-only’ decision rule, Pthr = 95% (LPO > 3) and γ = 1 prior 717 
SDθ = 0.135%. Axial slice z = 14 mm (MNI152 standard space). In the panels on the right, 1-D images 718 
are presented for t-values and LPOs along the x-axis for y = 4 mm. The red arrows indicate a noticeable 719 
broadening of two peaks of local maxima (left and right amygdala) at higher smoothing. 720 

Smoothing was previously shown to have a nonlinear effect on the voxel variances and thus to affect more 721 
t-maps than β value maps, sometimes leading to counterintuitive artefacts (Reimold et al., 2005). This is 722 
especially noticeable at the border between two different tissues or between the two narrow peaks of the 723 
local maxima. If the peak is localised close to white matter voxels with low variability, then smoothing can 724 
shift the peak to the white matter. If low-variance white matter voxels separate two close peaks, then after 725 
smoothing, they may serve as a ‘bridge’ between the two peaks. To avoid this problem, Reimold et al. 726 
(2005) recommended using masked β value maps. In the present study, we suggest that PPMs based on 727 
BOLD PSC thresholding can mitigate this problem. Importantly, smoothing artefacts can also arise on 728 
Cohen’s d maps. Therefore, PPMs based on PSC thresholding may be preferable to PPMs based on Cohen’s 729 
d thresholding.  730 

4.7. Sample size dependencies for classical NHST and BPI 731 

An enlargement of the sample size led to an increase in the number of ‘activated’ and ‘not activated’ voxels, 732 
and a decrease in the number of ‘low confidence’ voxels. This is due to a decrease in the posterior variance. 733 
The curve of the ‘activated’ voxels rose much slower than that of the ‘not activated’ voxels. For the emotion 734 
processing task (‘Emotion > Shape’ contrast, block-design, two sessions, 352 scans), the largest gain in the 735 
number of ‘activated’ and ‘not activated’ voxels can be noted from 20 to 30 subjects (see Fig. 12A). With 736 
a sample size of N > 30, the number of ‘activated’ and ‘not activated’ voxels increased less steeply. The 737 
‘not activated’ and ‘low confidence’ voxels curves intersected at N = 30 subjects. After the intersection 738 
point, the graphs reached a plateau. 739 
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 740 

Figure 12. Dependencies of the number of ‘activated’, ‘not activated’, and ‘low confidence’ voxels on the 741 
sample size. BPI was implemented using γ = 1 prior SDθ. A) The emotional processing task (‘Emotion > 742 
Shape’ contrast, two sessions). B) The emotional processing task (‘Emotion > Shape’ contrast, one session). 743 
C) The stop-signal task (‘Correct Stop > Go’ contrast). The error bars represent the mean and standard 744 
deviation across ten random groups. 745 

Considering only half of the emotional processing task data (one session, 176 scans), the intersection point 746 
shifted from N = 30 to N = 60 (see Fig. 12B). For the event-related task (‘Correct Stop > Go’ contrast, the 747 
stop-signal task, 184 scans), all considered dependencies had the same features as for the block-design task, 748 
and the point of intersection was at N = 60 subjects (see Fig. 12C). Therefore, the moment at which the 749 
graphs reach a plateau depends mainly on the amount of data at the subject level, that is, on the number of 750 
scans, blocks, and events. The task designs from the HCP and UCLA datasets have relatively short durations 751 
(for example, the stop-signal task has approximately 15 ‘Correct Stop’ trials per subject). Studies with a 752 
longer scanning time generally require a smaller sample size to enable inferences to be made with 753 
confidence. 754 

Classical NHST with the voxel-wise FWE correction showed a steady linear increase in the number of 755 
‘activated’ voxels with increasing sample size (see Fig. 13). With a further increase in the sample size, the 756 
number of statistically significant voxels revealed by classical NHST is expected to approach 100% (see, 757 
for example, Gonzalez-Castillo et al., 2012). In contrast, the BPI with the γ = 1 prior SDθ threshold 758 
demonstrated exponential dependencies. We observed a steeper increase at small and moderate sample 759 
sizes (N = 1560). The curve of the ‘activated’ voxels flattened at large sample sizes (N > 80). BPI offers 760 
protection against the detection of ‘trivial’ effects that can appear as a result of an increased sample size if 761 
classical NHST with the point-null hypothesis is used (Friston et al., 2002a; Friston, 2012; Chen et al., 762 
2017). This is achieved by the ES threshold γ, which eliminates physiologically (practically) negligible 763 
effects. Figure 13 presents an illustration of the Jeffreys-Lindley paradox, that is, the discrepancy between 764 
results obtained using classical and Bayesian inference, which is usually manifested at higher sample sizes 765 
(Jeffreys, 1939/1948; Lindley, 1957; Friston, 2012).  766 

 767 

Figure 13. Dependencies of the number of ‘activated’ voxels on the sample size. Classical NHST was 768 
implemented using FWE correction (α = 0.05). BPI was implemented using γ = 1 prior SDθ. A) The 769 
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emotional processing task (block design, ‘Emotion > Shape’ contrast). B) The stop-signal task (event-770 
related design, ‘Correct Stop > Go’ contrast). The error bars represent the mean and standard deviation 771 
across ten random groups. 772 

4.8. Example of practical application of BPI 773 

In contrast to classical NHST, Bayesian inference allows us to:  774 

(1) Provide evidence that there is no practically meaningful BOLD signal change in the brain area 775 
when comparing the two task conditions. 776 

(2) Establish double dissociations (Friston et al., 2002a). 777 
(3) Provide evidence for practically equivalent engagement of one area under different experimental 778 

conditions in terms of local brain activity. 779 
(4) Provide evidence for the absence of a practically meaningful difference in BOLD signals between 780 

groups of subjects or repeated measures. 781 

To illustrate a possible application of Bayesian inference in research practice, we used a working memory 782 
task. Let us consider an overlap between the ‘2-back > baseline’ and ‘0-back > baseline’ contrasts (see Fig 783 
14, purple areas). We cannot claim that brain areas revealed by this conjunction analysis were equally 784 
engaged in the ‘2-back’ and ‘0-back’ conditions. To provide evidence for this notion, we can use BPI and 785 
attempt to identify voxels with a practically equivalent BOLD signal in the ‘2-back’ and ‘0-back’ conditions 786 
(see Fig 14, green). Overlap between the ‘2-back > baseline’ and ‘0-back > baseline’ and the ‘2-back = 0-787 
back’ effects was found in several brain areas: visual cortex (V1, V2, V3), frontal eye field (FEF), superior 788 
eye field (SEF), parietal eye field (PEF, or posterior parietal cortex), lateral geniculate nucleus (LGN) and 789 
left primary motor cortex (M1) (see Fig. 14, white). This result can be easily explained by the fact that both 790 
experimental conditions require the subject to analyse perceptually similar visual stimuli and push response 791 
buttons with the right hand, which should not depend much on the working memory load. At the same time, 792 
it does not follow directly from simple conjunction analysis.  793 

 794 

Figure 14. Example of possible application of BPI based on the working memory task. Abbreviations: L/R 795 
– left/right, V1, V2, V3 – primary, secondary, and third visual cortex, FEF – frontal eye field, SEF – 796 
superior eye field, PEF – parietal eye field, LGN – lateral geniculate nucleus, M1 – primary motor cortex 797 
(M1). 798 

5. Discussion 799 

BPI allows us to simultaneously find ‘(de)activated’, ‘not activated’, and ‘low confidence’ voxels using a 800 
single decision rule. The ‘not activated’ decision means that the effect is negligible to an extent that it can 801 
be considered equivalent to the null for practical purposes. The ‘low confidence’ decision means we need 802 
more data to make a confident inference, that is, we need to increase the scanning time, sample size, or 803 
revisit the task design. The use of hierarchical PEB with the ‘global shrinkage’ prior enables us to check 804 
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the results as the sample size increases and allows us to decide whether to optionally terminate the 805 
experiment if the obtained data are sufficient to make a confident inference. All the above features are 806 
absent from the classical NHST framework.  807 

An important advantage of Bayesian inference is that we can use graphs such as those shown in Figure 12 808 
to determine when the obtained data are sufficient to make a confident inference. We can plot such graphs 809 
for the whole brain or for a priori defined ROIs. When the curves reach a plateau, the data collection can 810 
be stopped. If the brain area can be labelled as either ‘(de)activated’ or ‘not activated’ at a relatively small 811 
sample size, it will be still so at larger sample sizes. If the brain area can be labelled as ‘low confidence’, 812 
we must increase the sample size to make a confident inference. At a certain sample size, it could possibly 813 
be labelled as either ‘(de)activated’ or ‘not activated’. In the worst case, we can reach the plateau and still 814 
label the brain area as ‘low confidence’. However, even in this case, we can make a definite conclusion: 815 
the task design is not sensitive to the effect and should be revised. Bayesian inference allows us to monitor 816 
the evidence for the alternative or null hypotheses after each participant without special adjustment for 817 
multiplicity (Edwards et al., 1963; Berger and Berry, 1988; Wagenmakers, 2007, Schönbrodt et al., 2015; 818 
Kruschke and Liddell, 2017b). The optional stopping of the experiment not only allows more freedom in 819 
terms of the experimental design, but also saves limited resources and is even more ethically justified in 820 
certain cases3 (Edwards et al., 1963; Wagenmakers, 2007).  821 

In contrast, frequentist inference depends on the researcher’s intention to stop data collection and thus 822 
requires a definition of the stopping rule based on a priori power analysis. The sequential analysis and 823 
optional stopping in frequentist inference inflate the number of false positives. Moreover, even if the a 824 
priori defined sample size is reached, the researcher can still obtain a non-significant result. In this case, 825 
the researcher can follow two controversial paths within the classical NHST framework. Firstly, the sample 826 
size could be further increased to force an indecisive result to a decisive conclusion. The problem is that 827 
this conclusion would always be against the null hypothesis. Thus, an unbounded increase in the sample 828 
size introduces a discrepancy between classical NHST and Bayesian inference, also known as the Jeffreys-829 
Lindley paradox. Secondly, one may argue that high a priori power and non-significant results provide 830 
evidence for the null hypothesis (see, for example, Cohen, 1990). However, even high a priori power and 831 
non-significant results do not provide direct evidence for the null hypothesis. In fact, a high-powered non-832 
significant result may arise when the obtained data provide no evidence for the null over the alternative 833 
hypothesis, according to Bayesian inference (Denies and Mclatchie, 2017). This does not mean that power 834 
analysis is irrelevant from a Bayesian perspective. Although power analysis is not necessary for Bayesian 835 
inference, it can still be used within the Bayesian framework for study planning (Kruschke and Liddell, 836 
2017b). At the same time, power analysis is a critical part of frequentist inference, as it depends on 837 
researcher intentions, such as the stopping intention. 838 

The main difficulty with the application of BPI is the need to define the ES threshold. However, the problem 839 
of choosing a practically meaningful effect size is not unique to fMRI studies, as it arises in every mature 840 
field of science. It should not discourage us from using BPI, as the point-null hypothesis is never true in the 841 
soft sciences. From our perspective, there are several ways to address this problem. Firstly, the ES threshold 842 
can be chosen based on previously reported effect sizes in studies with a similar design or perform a pilot 843 
study to estimate the expected effect size.  844 

Based on the fMRI literature, the largest BOLD responses are evoked by sensory stimulation and vary 845 
within 1–5% of the overall mean whole-brain activity. In contrast, BOLD responses induced by cognitive 846 
tasks vary within 0.1–0.5% (Friston et al., 2002b; Poldrack et al., 2011; Chen et al., 2017). The results 847 
obtained in this study support this notion. Primary sensory effects were >1%, and motor effects were >0.3%. 848 
Cognitive effects can be classified into three categories. 849 

(1) ‘Strong’ effects of 0.20.3% (for example, emotion processing in the amygdala, language 850 
processing in Broca’s area),  851 

(2) ‘Moderate’ effects of 0.10.2% (for example, working memory load in DLPFC, social cognition 852 
in IPL, response inhibition in IFG/FO), 853 

                                                           
3 This is especially true for PET studies. The BPI method described in this work can also be applied to PET data to 

reduce the sample size and thus exposure to radioactivity (Svensson et al., 2020). 
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(3) ‘Weak’ effects of 0.05% in contrasts without robust activations (for example, reward processing in 854 
the nucleus accumbens, relational processing in DLPFC). 855 

However, choosing the ES threshold based on relatively older studies can be challenging because fMRI 856 
designs become increasingly complex over time, and it can be difficult to find previous experiments 857 
reporting unbiased effect size with a similar design. In this case, one can use the ES threshold equal to one 858 
prior SD of the effect (Friston and Penny, 2003), which can be thought as a neuronal ‘background noise 859 
level’ or a level of activity that is generic to the whole brain (Eickhoff et al., 2008). BPI with this ES 860 
threshold generally works well for both ‘(de)activated’ and ‘not activated’ voxel detection. However, it 861 
may not be suitable in cases with very small differences between the dependent samples. In addition, 862 
researchers who rely more on the frequentist inference may use the γ(Dicemax) threshold to replicate the 863 
results obtained previously with classical NHST and additionally search for ‘not activated’ and ‘low 864 
confidence’ voxels. Finally, the degree to which the posterior probability is contained within the ROPEs of 865 
different widths could be specified or the ROPE maps in which the thresholding sequence is inverted could 866 
be calculated. The ROPE maps can be shared in public repositories, such as Neurovault, along with PPMs, 867 
and subsequently thresholded by any reasonable ES threshold. 868 

Classical NHST is limited to the detection of ‘(de)activated’ voxels. However, in a properly designed and 869 
conducted study, the ‘null effect’ can be just as valuable and exciting as rejecting the null hypothesis. 870 
Although the interval-based frequentist methods can be used to assess the ‘null effects’, they are less 871 
intuitive and more complicated in practice. At the same time, the results obtained with BPI have intuitively 872 
simple interpretations, as they provide direct evidence for the null or the alternative hypothesis, given the 873 
obtained data. Moreover, BPI has already been implemented in SPM12, which greatly facilitates its use by 874 
fMRI practitioners. 875 

The ability to provide evidence for the null hypothesis may be especially beneficial for clinical 876 
neuroimaging. Possible issues that can be resolved using this approach are: 877 

(1) Let the brain activity in certain ROIs due to a neurodegenerative process decrease by more than γ 878 
per year on average without any treatment. To prove that a new treatment effectively protects 879 
against neurodegenerative processes, we can provide evidence that, within one year of treatment, 880 
brain activity was reduced by less than X%. 881 

(2) Assume that an effective treatment should change the brain activity in certain ROIs by at least X%. 882 
Then, we can prove that a new treatment is practically ineffective if the activity has changed by 883 
less than X%.  884 

(3) Consider two groups of subjects taking a new treatment and a placebo, respectively. Using BPI, we 885 
can provide evidence that the result of the new treatment is does not differ from that of the placebo. 886 

(4) Consider two groups of subjects taking an old effective treatment and a new treatment. Using BPI, 887 
we can provide evidence that the new treatment is no worse than the old effective treatment. 888 

(5) Consider a new treatment for a disease that is not related to brain function. Using BPI, we can 889 
provide evidence that the new treatment does not have side effects on brain activity. 890 

6. Conclusions 891 

Herein, a discussion of the use of the Bayesian and frequentist approaches to assess the ‘null effects’ was 892 
presented. We demonstrated that Bayesian inference may be more intuitive and convenient in practice than 893 
frequentist inference. Crucially, Bayesian inference can detect ‘(de)activated’, ‘not activated,’ and ‘low 894 
confidence’ voxels using a single decision rule. Moreover, it allows for interim analysis and optional 895 
stopping when the obtained sample size is sufficient to make a confident inference. We considered the 896 
problem of defining a threshold for the effect size and provided a reference set of typical effect sizes in 897 
different fMRI designs. Bayesian inference and assessment of the ‘null effects’ may be especially beneficial 898 
for basic and applied clinical neuroimaging. The developed SPM12-based scripts with a simple GUI is 899 
expected to be useful for the assessment of ‘null effects’ using BPI. 900 

7. Limitations and future work 901 
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Firstly, we did not consider BMI, which is currently mainly used for the analysis of effective connectivity. 902 
A promising area of future research would be to compare the advantages of BMI and BPI when analysing 903 
local brain activity. Secondly, the ‘global shrinkage’ prior must be compared with other possible priors. 904 
Thirdly, we used Bayesian statistics only at the group level. Future studies could consider the advantages 905 
of using the Bayesian approach at both the subject and group levels. 906 
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