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Abstract

Deterministic epidemic models, such as the SIRS model or an SIR model with demography,
that allow for replenishment of susceptibles typically display damped oscillatory behaviour.
If the population is initially fully susceptible, once an epidemic takes off a distinct trough
will exist between the first and second waves of infection where the number of infectious
individuals falls to a low level. Epidemic dynamics are, however, influenced by stochastic
effects, particularly when the number of infectives is low. At the beginning of an epidemic,
stochastic die-out is possible and well characterised through use of a branching process
approximation to the full non-linear stochastic dynamics. Conditional on an epidemic taking
off, stochastic extinction is highly unlikely during the first epidemic wave, but the probability
of extinction increases again as the wave declines. Extinction during this period, prior
to a potential second wave of infection, is defined as ‘epidemic fade-out’. We consider a
set of observed epidemics, each distinct and having evolved independently, in which some
display fade-out and some do not. While fade-out is necessarily a stochastic phenomenon, in
general the probability of fade-out will depend on the model parameters associated with each
epidemic. Accordingly, we ask whether time-series data for the epidemics contain sufficient
information to identify the key driver(s) of different outcomes—fade-out or otherwise—across
the sub-populations supporting each epidemic. We apply a Bayesian hierarchical modelling
framework to synthetic data from an SIRS model of epidemic dynamics and demonstrate
that we can 1) identify when the sub-population specific model parameters supporting each
epidemic have significant variability and 2) estimate the probability of epidemic fade-out for
each sub-population. We demonstrate that a hierarchical analysis can provide more accurate
and precise estimates of the probability of fade-out than is possible if considering each
epidemic in isolation. Our methods may be applied more generally, to both epidemiological
and other biological data to identify where differences in outcome—fade-out or recurrent
infection/waves are purely due to chance or driven by underlying changes in the parameters
driving the dynamics.

1 Introduction

Recurrent infectious diseases such as measles and chickenpox in populations where susceptibles replenish
have been of mathematical and epidemiological interest for many years (Bartlett, 1957, 1960; Bjørnstad,
Finkenstädt, & Grenfell, 2002; Keeling & Grenfell, 1997; London & Yorke, 1973). Replenishment of susceptibles
can happen through births, immigration, or loss of immunity to the disease. Following the introduction of
the pathogen to a fully susceptible population, when modelled deterministically, prevalence of infection can
exhibit damped oscillatory behaviour. During the troughs preceded by the outbreaks of infection, prevalence
drops to a low level until the infection takes off again (with an effective reproduction number, Reff > 1) to
generate the next outbreak.

Disease dynamics are however, impacted by stochasticity, particularly at low levels of prevalence. This
gives rise to variability in the epidemic trajectory as well as the possibility for extinction of the pathogen from
the population (Lloyd, 2004). At the beginning of the epidemic when the prevalence is low, the pathogen can
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“fade-out” without infecting a significant number of people. This type of initial extinction is well studied
using branching processes (Allen, 2015; Allen & van den Driessche, 2013; Britton et al., 2019).

If the initial fade-out does not occur, the epidemic will take off and extinction during the outbreak is highly
unlikely. As the epidemic advances in time and the number of susceptibles depletes, the effective reproduction
number reduces. Once it drops below one, the epidemic is not self sustaining and prevalence begins to decline,
ultimately reaching a low level(Lloyd, 2004). Once prevalence is at a low level, stochastic effects become
apparent and the probability of extinction begins to increase (Anderson & May, 1979). This probability
is likely to reach a maximum during the time period in which, under a deterministic analysis, the first
trough between outbreaks would have occurred (Lloyd, 2004). If extinction does not occur, the replenishment
of susceptibles will increase the effective reproduction number (Reff > 1), and a second outbreak may be
initiated.

When stochastic effects drive the prevalence of infection to zero before the potential second outbreak can
take place, it is known as an epidemic fade-out. The notion of epidemic fade-out can be seen in studies
by Anderson and May (1979, 1992); Ballard, Bean, and Ross (2016); Bartlett (1957, 1960); Camacho et al.
(2011); Camacho and Cazelles (2013); Keeling and Grenfell (1997); Lloyd-Smith et al. (2005); Meerson and
Sasorov (2009); van Herwaarden (1997).

We consider multiple outbreaks of a recurrent infectious disease that take place independently in a set of sub-
populations. The sub-populations we consider are in contained environments and separated from each other.
Examples of such sub-populations are islands, ships, or individuals in a clinical trial. There is no movement
between these sub-populations and transmission of the disease in one sub-population does not influence
the other. Different transmission patterns are likely to arise from stochastic effects and variations in the
sub-populations’ disease-related factors such as transmission rates, infectious and/or latent periods or disease
resistance, and other factors such as social, cultural, demographic, and geographic factors. Infectious disease
model parameters of these sub-populations will therefore be rarely identical. Identifying and understanding
the consequences of the existence of this variability is the major goal of this study.

In this study, we investigate if it is possible to identify whether differences in observing epidemic fade-outs
in multiple sub-populations can be attributed just to stochastic effects or if they are influenced by different
characteristics of each sub-population. We apply a simulation-based approach by generating synthetic data
for two populations from a stochastic SIRS model (introduced in Section 2). The data for one population
is generated by independent stochastic SIRS models with identical parameters across the sub-populations,
while the data for the second population is generated using stochastic SIRS models with different parameters
across the sub-populations. The sub-populations may or may not display an epidemic fade-out. We apply a
stochastic Bayesian hierarchical framework to estimate model parameters, introducing an efficient two-step
Approximate Bayesian Computation (ABC) methodology. Using the estimated model parameters within
the hierarchical framework, we illustrate that we are able to identify, when present, the level of variability
between the model parameters of the sub-populations. After estimating the parameters, we characterise their
influence on the probability of epidemic fade-out.

2 Background

2.1 The Markovian SIRS model in a closed sub-population

For a well-mixed sub-population of size N , S(t), I(t) and R(t) denote the numbers of susceptible, infectious,
and recovered individuals at time t. The model is parameterised by β, the contact rate, γ, the rate of recovery,
and µ, the waning immunity rate (Figure 1). Noting that R(t) = N − S(t)− I(t), a stochastic SIRS system
can be modelled with a continuous-time Markov chain with bi-variate states (S(t), I(t)) and transition rates
presented in Table 1.

Table 1: Transition rates of an SIRS model
Event Transition Rates
Infection (s, i)→ (s− 1, i+ 1) βsi/(N − 1)
Recovery (s, i)→ (s, i− 1) γi

Loss of immunity (s, i)→ (s+ 1, i) µr, ( r = N − s− i)

2

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446666doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446666
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Diagram of an SIRS model structure.

2.2 Structure of the study

We consider the following two scenarios regarding the variability between model parameters of the sub-
populations in which an epidemic occurs.

Scenario 1: The sub-populations all have identical parameters.

Scenario 2: There exists significant variability between the sub-population specific parameters.

In any given sub-population, the epidemic may fade-out or not. If all the sub-populations had identical
model parameters (under Scenario 1 above), we can conclude that epidemic fade-outs (or non-fade-outs)
in the sub-populations occur due to stochastic fluctuations only. However, if the sub-populations fall into
Scenario 2, we cannot make such direct conclusions as variations in the occurrence of epidemic-fade-out could
be a result of the differences in parameters as well as stochastic effects.

In Section 3, we will first discuss how parameter estimation for stochastic models can be carried out using
hierarchical Bayesian estimation techniques. Then we will construct two synthetic datasets reflecting the
two scenarios above and carry out parameter estimation and explore how we can effectively categorise the
populations based on the level of variability in the model parameters.

The second part of this study is devoted to identifying the estimated parametric effects on the probability
of epidemic fade-out. We explore how to incorporate the information obtained from the inference to draw
informed conclusions about the probability of epidemic fade-out in the two populations.

Using an additional synthetic dataset, we will compare the estimates obtained with and without a
hierarchical modelling framework and illustrate that making use of a hierarchical modelling framework yields
accurate results as a reference to the true parameters and probability of epidemic fade-out.

3 Materials and Methods

3.1 A Bayesian hierarchical modelling approach

For k = 1, . . . ,K sub-populations, let Xk(t) = ((Sk(t), Ik(t))) be a continuous-time Markov chain with
transition rates given in Table 1 and X(t) = (X1(t), . . . ,XK(t)). We consider a hierarchical modelling
approach to estimate the parameters of the K sub-populations where each sub-population has the same
SIRS model structure with model parameters drawn from a common distribution. Some examples on the
usage of hierarchical models and their applications are Gelman, Hill, and Yajima (2012); Kwok and Lewis
(2011).

We will consider a hierarchical Bayesian modelling framework with three levels. Level I represents prevalence
data at each sub-population . For sub-population k with parameters θk (k = 1, 2, . . . ,K), our data consists
of the vector yk = (Ik(1), Ik(2) . . . , Ik(Tk)) at Tk discrete time points and y = (y1,y2, . . . ,yK). Level II
represents the structural relationship between the sub-populations in terms of a conditional prior, p(θk|ψ), that
further depend on the hyper-parameters ψ. In level II, we assume that the sup-population specific parameters
are a random sample from the conditional prior distribution. Prior distributions of the hyper-parameters,
that is, hyper-prior distributions p(ψ), are presented in Level III (Gelman et al., 2013).
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The joint posterior distribution for a population consisting of K sub-populations is,

p(θ1,θ2, . . . ,θK ,ψ|y) = p(y|θ1,θ2, ...,θK ,ψ)p(θ1,θ2, ...,θK ,ψ)
p(y) =

[∏K
k=1 p(yk|θk)p(θk|ψ)

]
p(ψ)

p(y)

∝

[
K∏
k=1

p(yk|θk)p(θk|ψ)
]
p(ψ). (1)

Estimating this posterior is often difficult in the sense that for most models, including epidemic models, a
closed-form expression for the posterior distribution does not exist. Therefore, we resort to methods that
enable us to sample from the marginal posterior. Since the likelihood of these stochastic epidemic models
is also intractable, we further resort to Approximate Bayesian Computation (ABC) methods that avoid
calculating the likelihood when sampling from the posterior (Sisson, Fan, & Beaumont, 2018).

3.2 Parameter estimation using ABC methods

In this subsection, we consider applying a basic ABC algorithm for the kth sub-population independently
and in the next subsection, we examine how to extend these methods to all the K sub-populations within a
hierarchical setting using conventional methods as well as using a novel computationally efficient method.

The simplest form of an ABC algorithm to obtain a sample from the posterior p(yk|θk) is as follows: first,
sample a parameter set θk

(j) (j = 1, 2, . . . N) from the prior distribution p(θk). Next, generate a dataset x(j)
k

from the model described by f(.|θ(j)
k ). Third, use x(j)

k to construct generated summary statistics η(k)(x
(j)
k )

and use yk to construct observed summary statistics η(k)(yk). Finally, using a distance ρ(k)(., .), retain θ
(j)
k

if ρ(k){η(x(j)
k ), η(yk)} ≤ ε, for some small tolerance value ε > 0 (Marin, Pudlo, Robert, & Ryder, 2012).

We use the observed number of infectious individuals recorded at discrete times as the observed summary
statistics (examples: McKinley, Cook, and Deardon (2009); Minter and Retkute (2019)). We use the
Doob-Gillespie algorithm (Doob, 1945; Gillespie, 1977) to generate data. We take the number of infectious
individuals retained at discrete times 1, 2, . . . , Tk from a generated sample for the kth sub-population as
the generated summary statistic η(k)(xk) = xk = (xk(1), xk(2), . . . , xk(Tk)). We further take the square
root of the Euclidean distance, [

∑Tk

i=1 (xk(i)− yk(i))2]1/2, as the distance metric, ρ(k)(xk,yk), for the kth
sub-population.

3.3 A novel method to estimate parameters of a hierarchical model

We first focus on applying a hierarchical modelling framework within a conventional ABC algorithm.
First, a vector of hyper-parameters, ψ′ are sampled from the hyper-prior distribution, p(ψ). Next, vectors
of sub-population specific parameters, θ′

k, are sampled from the conditional prior p(θk|ψ′). The ABC
acceptance-rejection criteria must be applied to all K vectors of sub-population specific parameters in unison
to either accept or reject ψ′ and θ′

k. Each iteration would be computationally expensive and inefficient in
the sense that as the number of sub-populations become larger, the whole set of parameters (θ′1,θ

′
2, ...,θ

′
K)

would be rejected if any one θ(j)
k does not fulfil the chosen ABC criteria. A similar observation had been

made by Bazin, Dawson, and Beaumont (2010).

Therefore, we propose an efficient two-step method to estimate the parameters of a hierarchical model.
While addressing the drawbacks of the previous methods, this method is also easy to computationally
implement and the overall performance can be accelerated by parallel computing techniques.

The first step of this method consists of estimating the hyper-parameters. The second step estimates the
sub-population specific parameters given the estimated hyper-parameters. This approach is similar to the
two-step algorithm introduced by Bazin et al. (2010). Bazin et al. (2010) used symmetric summary statistics
(a function of all sub-populations together) to infer the hyper-parameters in the first step and unit-specific
summary statistics (for a sub-population ) to infer sub-population specific parameters. This method requires
finding two types of distinct summary statistics —at the hyper parametric and sub-population specific
parameter level. This stringent requisite can be problematic when observed data are already in a lower
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dimension (such as the prevalent data we study) or when the summary statistics that are either sufficient or
approximately sufficient are very limited. To address this issue, we introduce a two-step method that make
use of sub-population specific summary statistics, η(k)(.), in both steps. The two steps of our methodology
are,

Step 1: Estimating hyper-parameters

(a) Choose a “reasonable prior” for the distributions of the sub-population specific parameters θk.
For each sub-population k, use this prior and an ABC-based algorithm independently to get N1
samples from the marginal posterior of θk (see Supplementary materiel S1 for further details).

(b) With an approximate estimator for the likelihood at the hyper-parametric level (i.,e, p̂(y|ψ))
use the KN1 posterior samples generated in Step 1(a) to replace the likelihood function of an
MCMC (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) algorithm to obtain a
sample of size N2 from the posteriors of the hyper-parameters, ψ (use the procedure described
in Supplementary Material S1.1).

Step 2: Estimating sub-population specific parameters

(a) Use the basic ABC algorithm to obtain samples of size KN2 from the sub-population specific
posteriors, θk given the hyper-parameters. In this step, sampling must be done from the
conditional prior, p(θk|ψ).

This method is efficient. In Step 1 (a) the sub-population -wise ABC-based algorithms can be run in
parallel. Some examples of ABC-based algorithms in the literature include the algorithms by Beaumont,
Cornuet, Marin, and Robert (2009); Sisson, Fan, and Tanaka (2007); Toni, Welch, Strelkowa, Ipsen, and
Stumpf (2009). An ABC algorithm itself is inherently parallelizable and therefore, further computational
efficiency can be achieved when sub-populations are treated independently at this step. There are also
software packages readily available that can easily undertake this step. Part (b) of Step 1 is similar to
particle-marginal methods (Andrieu, Doucet, & Holenstein, 2010) where the likelihood is replaced with a
Monte Carlo estimate. Step 2 begins with samples from the marginal posteriors of the hyper-parameters.
Again, given the hyper-parameters, samples from the posteriors of the sub-populations can be obtained by
using a basic ABC algorithm independently (and hence can be done in parallel). Theory and the related
algorithms of the two-step method are explained in detail in Supplementary Material S1.

3.4 Synthetic data generation

We constructed data for two distinct populations, A and B. Each consisted of 15 sub-populations of 1000
individuals. We simulated distinct SIRS epidemic dynamics using parameters selected as we describe below.
For all the sub-populations, we consider observations of prevalence made at regularly spaced discrete time
intervals over a 30-day time-period without any observational noise.

We generated synthetic data for all the sub-populations of Population A by simulating the stochastic SIRS
model with identical parameters (βk, γ, µ) = (2, 1, 0.06) (for k = 1, 2, . . . , 15), starting with one infectious
individual. We generated sample paths for all the sub-population up-to 30 days and we retained the number
of infectious individuals on each day. If the number of infectious individuals of the sample path became zero
before an initial outbreak took place, the sample path was removed and new sample paths were repeatedly
generated until an initial outbreak was present (see Supplementary Material S3.1 to see the criterion we used
to decide if an initial outbreak was present in the synthetic data).

In generating a synthetic dataset for Population B, we kept the values of γ and µ constant at 1 and 0.6
respectively, but we sampled the values of βk (for k = 1, 2, . . . , 15) independently from a normal distribution
with mean 2 and standard deviation 0.5, truncated to the interval (1, 10). The true mean and the standard
deviation of this truncated normal distribution are 2.0276 and 0.4708 respectively. Given the model parameters
for each sub-population, we carried out a synthetic data generation process similar to that of Population A.

Figures 2 and 3 show the synthetic datasets for the two populations. Table 2 shows the summary statistics
of the sub-population specific parameters from which the data were generated in Population B.
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Figure 2: Synthetic dataset of Population A.
Each panel shows the time-series data for a sub-population.

Figure 3: Synthetic dataset of Population B.
Each panel shows the time-series data for a sub-population.

Table 2: Summary statistics of the βk (for k = 1, 2, . . . , 15) values of the 15 sub-populations in Population B.
Mean Median Standard deviation Minimum Maximum
2.1805 2.2423 0.4821 1.2126 2.8778
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3.5 Further assumptions and modelling framework for parameter estimation for the two
populations

To identify the presence and the magnitude of variability between the model parameters of the sub-
populations in a population, the parameters of each of the sub-populations must be estimated. We started by
assuming that both Populations A and B consisted of variable model parameters in the sub-populations and
applied the two-step Bayesian hierarchical methodology described above. Our aim was to decide if there is
enough evidence to support that variability in model parameters is present in the populations based on the
two datasets.

We modelled each sub-population using the SIRS model described in Section 2.1. We fixed the recovery
rate, γ, and the waning immunity rate, µ at their true values (1 and 0.06 respectively) across all the
sub-populations in both populations and took the transmission rates βk across the sub-populations as
unknowns. Within a Bayesian hierarchical modelling structure, for the sub-population k, the observed
infectious individuals consisted of the vector yk = (Ik(1), Ik(2), . . . , Ik(30)) for all k = 1, . . . , 15 given
SIRS model parameters (βk, γ, µ). The conditional prior of βk was taken as a T N (ψβ , σ2

β , 0.001, 10). Here,
T N (ψβ , σ2

β , 1, 10) is a truncated normal distribution with mean ψβ , variance σ2
β , truncated to the (0.001, 10)

interval. The hyper-prior distribution of ψβ was uniform(0.001, 10) and the hyper-prior distribution of σβ
was uniform(0, 2.5).

To apply the two-step method to estimate the parameters, first, we used the ABC-SMC algorithm by Toni et
al. (2009) in all the sub-populations independently. We took the prior distribution for all the sub-populations
as a uniform distribution on (0.001, 10).

Within the ABC-SMC algorithm framework, we needed to choose a set of pre-defined tolerance values
through a pre-defined number of generations. Across seven generations of the algorithm, the changing
tolerance values that we used were (350, 300, 270, 250, 200, 170, 150). For sub-population 7 of dataset 2, we
used (350, 300, 270, 250, 200, 150, 90) to avoid the particle system getting stuck on a local mode. Further
details of this can be found in Supplementary Material S2. Furthermore, to implement the ABC-SMC
algorithm by Toni et al. (2009), a kernel density, often known as a perturbation kernel, is also needed. A
detailed explanation on choosing an appropriate perturbation kernel can be found in texts such as Filippi,
Barnes, Cornebise, and Stumpf (2013). We used a normal distribution with an estimated variance calculated
from the particles of the previous generation. For each sub-population, we obtained 5000 samples from
the marginal posterior of βk. Next, these samples were fed into the MCMC algorithm (see Supplementary
Material S1) to obtain 10000 samples from the marginal posteriors of ψβ and σβ . After applying the MCMC
step, as initial burn-in, we discarded the first 5000 iterations and we checked the convergence of the MCMC
chains before obtaining the final samples of size 5000 each. Additional details, graphs, and diagnostics related
to this MCMC step can be found in the Supplementary Material S2.

The second step was implemented using the ABC algorithm in Supplementary Material S1 with a tolerance
value 150. For sub-population 7 of dataset 2, it was 90. We obtained 5000 samples from the posteriors
of sub-population specific βks for each sub-population under a hierarchical model. A visual comparison
between the marginal posteriors obtained under a hierarchical and non-hierarchical model (where each
sub-population is treated independently) can be found in the Supplementary Material S2. We implemented
all the calculations in MATLAB (versions 2020a and 2020b) primarily using the Parallel Computing Toolbox
across 32 virtual machines in the Nectar Research Cloud. All the codes that were used are publicly available.
See Supplementary Material S5 for details.

4 Results

4.1 Parameter estimation

Figure 4 illustrates the marginal posterior distributions of ψβ and σβ. Table 3 shows the point estimates
for the posterior medians, the Highest Posterior Density (HPD) intervals and the width of the HPD intervals
of the two populations. The HPD intervals were calculated using the Chen-Shao algorithm (Chen, Shao,
& Ibrahim, 2012).These results validate that the first step of our two-step methodology to estimate the
hyper-parameters is effective in the sense that the posterior medians are in close proximity with the true
parameter values.
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While both point estimates of ψβ of the two populations are close to their true parameter values, the
variance of the posterior distribution of Population A is smaller than that of Population B. The resulting HPD
interval of population A is narrower. The marginal posteriors of standard deviation σβ for both populations
demonstrates that there is strong evidence that the variance of Population A is very small (almost negligible)
in comparison to Population B, whose posterior median is equal to 0.4971. While the HPD interval for
population A is (0.0002, 0.1823), for Population B, it is (0.2768, 0.7694).

Figure 4: (a): Marginal posterior of ψβ for Populations A (left panel) and B (right panel).
(b): Marginal posterior of σβ for Populations A (left panel) and B (right panel).

Table 3: Highest Posterior Density (HPD) intervals of the hyper-parameters
Posterior median Posterior mode 95% HPDI Width of the HPDI

ψβ Population A 1.9701 1.9494 (1.8655, 2.0868) 0.2213
Population B 2.1047 2.0511 (1.8486, 2.4053) 0.5567

σβ Population A 0.0639 0.800 (0.0002, 0.1823) 0.1821
Population B 0.4971 0.2912 ( 0.2768, 0.7694) 0.4926

Figure 5 illustrates the sub-population specific posteriors for βks for the two populations under the hierarchical
modelling framework. The posteriors of all the sub-populations in Populations A are visually similar, and the
medians and 95% HPD intervals (see Supplementary Material S2) of the posterior are similar. The posteriors
for the sub-population specific βks of Population B are different in shape, and the posterior medians and 95%
HPD intervals (see Supplementary Material S2) show marked variation.
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Figure 5: Marginal posteriors of βk (for k = 1, 2, . . . , 15) for Populations A and B.

We have demonstrated that under a hierarchical modelling framework, we can accurately estimate parameters
using ABC methods using our two-step algorithmic set-up. The presence of variability between model
parameters can be identified by visual diagnostics of the marginal posterior distributions of the ψβ , σβ
(hyper-parametric level) as well from the sub-population specific posteriors of βk. Further evidence of the
presence of variability between model parameters can be clarified using the Region of Practical Equivalence
(ROPE) (Kruschke, 2013) criterion (refer to Supplementary Material S2).

4.2 Estimating the probability of epidemic fade-out

In order to identify the affects of estimated model parameters on the probability of epidemic fade-out
at both the population and sub-population level, we calculated the probability of epidemic fade-out with
estimated transmission rates, recovery rate of 1, and waning immunity rate of 0.06 using the algorithms
implemented by Ballard et al. (2016). Refer to the Supplementary Material S3 for further details about this
implementation.

We considered an SIRS model with unknown transmission rate ψβ , recovery rate γ = 1 and waning
immunity rate µ = 0.06 for a sub-population of size 1000, and with initially one infectious individual. Then
the epidemic fade-out probabilities were calculated under each sampled value of the posterior of ψβ . Refer
to Figure 6 and Table 4 for the change of fade-out probability with respect to ψβ and the distributions of
the fade-out probabilities for Populations A and B. For Population A, the median probability of epidemic
fade-out is 0.5197 and that of Population B is 0.48098. The variability of epidemic fade-out probabilities in
Population A is smaller than that of Population B.
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Figure 6: Change of probability of epidemic fade-out with respect to ψβ in grey are shown in panels (a) and
(b). Green solid areas are the 95% HPD intervals of the posterior of ψβ under each population. The dark
blue dashed lines are the posterior medians.
The distribution of the estimated fade-out probabilities using the estimated marginal posteriors of ψβ of
the two populations are given in light blue in (c) and (d) panels. The dark blue dashed lines are median
probabilities of epidemic fade-out.

Table 4: Epidemic fade-out probabilities under ψβ
Population A 95% HPD lower level Posterior median 95% HPD upper level

ψβ 1.8655 1.9701 2.0868
Fade-out
probability 0.5505 0.51797 0.4866

Population B 95% HPD lower level Posterior median 95% HPD upper level
ψβ 1.8486 2.1047 2.4053

Fade-out
probability 0.5521 0.48098 0.4053

The distributions of the estimated epidemic fade-out probabilities of the sub-populations of Populations
A and B are illustrated in Figure 7. While the distributions of Population A looked similar and had a
median value close to 0.52, the distributions of Population B were different and their medians had significant
variability. In Population B, the distributions of the fade-out probabilities of sub-populations 1, 7, 13, and 15
are skewed distributed with a median fade-out probability around 0.6. The posterior medians of βk of these
sub-populations were close to 1.5 where the probability of epidemic fade-out is at its peak when the recovery
rate and waning immunity rate are 1 and 0.06 respectively. Furthermore, given the estimated posterior
samples from the marginals of βk, the ranges that covered the epidemic fade-out probabilities of all these
sub-populations were distinctly different (see Supplementary Material S3). While sub-populations 1, 7, 13

10

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446666doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446666
http://creativecommons.org/licenses/by-nd/4.0/


and 15 had a considerably high probability of epidemic fade-out, sub-populations 3, 5 and 9 had a rather
small median epidemic fade-out probabilities (see Supplementary Material S3).

Figure 7: The distributions of the probability of epidemic fade-out of the sub-populations of Populations A
and B.

4.3 Suitability of using a hierarchical modelling framework for multiple outbreak data

We observed that while the time series data of sub-population 7 was visually different from the other
sub-populations, its true parameter value, β7, was also significantly different and yet, our estimation framework
yielded accurate results. Motivated by this observation, we were interested in examining the impact of using
a hierarchical modelling framework under extreme data conditions. Therefore, we implemented the following
simulation experiment.

We generated synthetic data for another (i.e, 16th) sub-population for Population B using the same synthetic
data generation process we described in subsection 3.4. We sampled an extreme value for transmission rate,
β16 = 3.2516 and generated a sample path with a higher peak than the others (i.e., visually different than
others). The true extinction probability for this sub-population is 0.2218. We then carried out parameter
estimation for all the sub-populations independently without implementing a hierarchical structure (using
the ABC-SMC algorithm by Toni et al. (2009)) and adding a hierarchical modelling framework using our
two-step methodology with the additional modelling conditions described in the subsection 3.5. We further
estimated the probabilities of epidemic fade-out using the same methodology we described in subsection 4.2
using the β16 that were estimated both independently and under a hierarchical modelling framework. See
Figure 8 for the results obtained from this experiment.

11

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 2, 2021. ; https://doi.org/10.1101/2021.06.01.446666doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.01.446666
http://creativecommons.org/licenses/by-nd/4.0/


We noticed that even when data and the true parameters can be as extreme as in sub-population 16, using
a hierarchical modelling framework can yield more accurate estimates. Our results showed that estimates
for the parameter, β16, and the epidemic fade-out probability improved when estimation was done with a
hierarchical modelling framework.

Figure 8: (a): Time series data of sub-population 16 (in black). Time series data of other sub-populations
in Population B are presented in grey.
(b): Comparison of the marginal posterior of β16 with (in purple) and without (in green) a hierarchical
modelling framework. Posterior median under a hierarchical modelling framework is closer to β16.
(c): Comparison of the epidemic fade-out probabilities estimated with (in blue) and without (in pink) a
hierarchical model.Median extinction probability estimated under a hierarchical model is closer to the true
extinction probability.
(d): Change of probability of epidemic fade-out with β (in grey).
The 95% HPD interval for β16, (3.0260, 4.5087), without the hierarchical model is shown in green and that of
the hierarchical model, (2.7291, 3.8911), is shown in purple. The brown dashed line is the true β16 value,
3.2516. The orange dashed line is the true epidemic fade-out probability, 0.2218, of the 16th sub-population

5 Discussion

We have shown that parameter estimation carried out with a Bayesian perspective using our new two-step
methodology, coupled with ABC methods, is a suitable and efficient approach to estimate parameters of
hierarchical epidemic models.

We have shown that hierarchical modelling is a powerful approach and we can accurately estimate not
only the sub-population specific parameters but also learn about the common distribution that the model
parameters of the sub-populations are sampled from.

By estimating the parameters of the two synthetic datasets using Bayesian hierarchical methods, we have
demonstrated that we can identify the presence of variability between model parameters of the sub-populations.
If we infer that a population consisted of sub-populations with identical model parameters, we can reasonably
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attribute the different observed sample paths to be a result of stochastic variations. On the other hand, if we
infer that a population consisted of variable model parameters, different sample paths of the sub-populations
can be better explained by models with sub-population specific parameters as well as stochastic effects.

As a result of using hierarchical parameter estimation techniques, we can study epidemic fade-out probabil-
ities under two levels. One is to make inferences on each sub-population’s probability of epidemic fade-out
and conclude if epidemic fade-outs were observed, whether it was due to stochastic fluctuations only or
else, events attributed by the estimated model parameters. The next level is making use of the inference
made at the population level. Based on the inference made on the hyper-parameters, it is possible to predict
the probability of epidemic fade-out when an epidemic breaks out in another sub-population of the general
population.

Finally, when outbreak data are present in multiple sub-populations, we have illustrated that the use of a
hierarchical modelling approach to estimate parameters can produce more accurate results in comparison to
estimating the parameters independently. We further showed that estimated epidemic fade-out probabilities
are also accurate when the estimation was approached via hierarchical modelling methods.

We have considered that data were perfectly observed, However, this is not realistic. Generally, data are
often distorted by factors such as under/ over-reporting, misdiagnosis, equipment error. Epidemic fade-outs
may not be completely observed as well. Therefore, it would be ideal to apply our methods to other simulation
experiments or real data under different settings. External intervention measures may also be present while
data are being observed and thereupon, it is noteworthy to study data under such circumstances. We also
have considered that the transmission rate of a sub-population is the only unknown parameter. This is
not true in practice. For example, by considering both the recovery rate and the waning immunity rate as
unknown factors, we would have to consider a higher dimensional statistical analysis that would be suitable
for not only an SIRS model with three unknown model parameters but also for similar complex epidemic
models.

Thus far, we have applied this framework using SIRS models, with an emphasis on the epidemic fade-out
that can be observed in multiple sub-populations. This framework is applicable and generalisable to other
biological processes in which average dynamics display damped oscillatory behaviour with a deep initial
trough. For instance, some malaria-infected individuals go through recrudescence of the infection while others
do not (examples: Cao et al. (2019); Collins et al. (2018)), in ecology where some species become extinct and
others do not, and in bacterial populations where heterogeneous conditions may or may not cause extinction.
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