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Summary

Mood, arousal, and other internal neural states can drastically alter behavior, even in identical
external circumstances — the proverbial glass half full or empty. Neuromodulators are critical in
controlling these internal neural states, and aberrations in neuromodulatory processes are linked
to various neuropsychiatric disorders. To study how neuromodulators influence neural behavior,
we modeled neuromodulation as a multiplicative factor acting on synaptic transmission between
neurons in a recurrent neural network. We found this simple mechanism could vastly increase
the computational capability and flexibility of a neural network by enabling overlapping storage
of synaptic memories able to drive diverse, even diametrically opposed, behaviors. We analyzed
how local or cell-type specific neuromodulation changes network activity to support such behaviors
and reproduced experimental findings of Drosophila starvation behavior. We revealed that circuits
have idiosyncratic, non-linear dose-response properties that can be different for chemical versus
electrical modulation. Our findings help explain how neuromodulation “unlocks” specific behaviors
with important implications for neuropsychiatric therapeutics.

Introduction

Humans and animals exhibit a diversity of behaviors depending on neurological state. A bear in the
wild spots an interesting mushroom (Figure 1A). Whether the bear devours or skeptically retreats
depends on his level of hunger. A well-fed bear will forgo the risk of a poison mushroom, but a
starved bear will not think twice about a fortunate mushroom meal. Most behaviors operate under
a similar system, where emotion, arousal, and other internal neural states strongly influence deci-
sions and behavior. Several recent works have sought to understand mechanisms underlying such
neural states [Inagaki et al., 2012, Burgos-Robles et al., 2017, Patriarchi et al., 2018], universally
revealing an integral role of neuromodulatory molecules. Yet how neuromodulators directly alter
local and global network dynamics to select behaviors remains unclear.

Neuromodulators, which include serotonin, dopamine, acetylcholine, norepinephrine, melatonin,
adenosine, and many neuropeptides, are linked to a variety of neurological states including emo-
tional states, arousal states, cognitive states, and diverse behavioral states (e.g. hunger or motor
protocols) [McCormick et al., 2020, Bacqué-Cazenave et al., 2020]. They are also linked to nearly
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all psychiatric illnesses, with most treatment options designed to target neuromodulatory pathways
[Avery and Krichmar, 2017, Katz and Edwards, 1999]. Neuromodulators act on brain circuitry by
altering network properties that influence the manner of synaptic transmission whether by alter-
ing local synaptic strengths, neural excitability, or plasticity. Most neuromodulators induce their
influence indirectly by binding to GPCRs on target cells and triggering a downstream signaling
cascade, while a minority act directly on ion channels [Nadim and Bucher, 2012].

Pioneering work on neuromodulation showed that circuit dynamics can change with particular
synapse-specific neuromodulation. Studies on the lobster pyloric network [Marder, 2012, Marder
and Eisen, 1984, Johnson et al., 1995] and other systems [Katz et al., 1994, Jing et al., 2009] re-
vealed that fine-tuned neuromodulation of individual neurons could lead to new patterns of activity
underlying shifts in global network output and behavior. While specific tuning of neuromodulatory
effects at each synapse could theoretically lead to entirely new network configurations with little
resemblance to the non-neuromodulated network (save only that neurons retain connectivity pat-
terns), neuromodulators acting on a particular receptor type often have a similar directional effect
on synaptic properties. We considered whether the simpler case of neuromodulators acting nearly
uniformly as synaptic weight amplifiers or dampeners within a local region of a neural circuit, could
support different behaviors.

Different aspects of how neuromodulators may influence neural computations have been modeled
including reduced models of neuromodulatory influence on Bayesian probability estimations [Yu and
Dayan, 2005], neural network models of activation function modulation [Stroud et al., 2018, Ve-
coven et al., 2020], neuromodulatory network masking of effector networks [Beaulieu et al., 2020],
and neuromodulator-specific biologically-guided circuit dynamics [Hasselmo et al., 1995]. Each of
these models has provided insight into components of neuromodulatory function, yet how neuro-
modulation’s central role in modulating synaptic weights is utilized to control circuit dynamics and
behavior remains unknown.

We adopted a complementary modeling approach, approximating neuromodulators as amplifiers/
dampeners of effective synaptic weight, a well-established mechanism by which neuromodulators
exert influence on neural circuits [Marder, 2012, Nadim and Bucher, 2012, Katz et al., 1994, John-
son et al., 1995]. In the first part of this paper, we explore the effect of this mechanism in a neural
network, demonstrating its flexibility and robustness in supporting multiple behaviors. We show
how neuromodulation establishes overlapping synaptic memories within a neural network that en-
able new behaviors even in response to identical stimuli and detail the conditions that support this
phenomenon.

In the second part, we describe the mechanisms by which uniform scaling of synaptic weights shifts
network behavior. We find our model reproduces and provides a mechanistic explanation for ex-
perimental findings on neuromodulation-dependent starvation behavior in Drosophila. We discover
that individual neural circuits exhibit idiosyncratic, nonlinear transition dynamics between neuro-
modulated dynamical states. We investigate the characteristics of this “circuit-based sensitivity” in
response to both chemical and electrical modulation and compare their relationship. These analyses
provide a parsimonious explanation of how neuromodulators unlock state-dependent behaviors and
suggest a powerful, previously unreported mechanism of therapeutic susceptibility and resistance
with important implications for development of future therapeutics.
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Results

Neuromodulation supports multiple weight regimes within the same synaptic con-
nections. A predominant effect of many neuromodulators is alteration of synaptic transmission.
Though neuromodulation in the brain is multi-faceted and nuanced depending on receptor and
target cell types [Bacqué-Cazenave et al., 2020], we sought to understand how neuromodulatory
effects on synaptic weights can alter circuit behavior, an important functional role of neuromodu-
lators [Marder, 2012, Nadim and Bucher, 2012]. To do this, we adopted a simplified approximation
of the aggregate effect on synaptic transmission as a uniform amplification or dampening shift in
synaptic weights of all neuromodulation-targeted neurons. We first assessed if this simple uniform
weight scaling could support divergent behaviors within a single neural network.

To assess if such a neuromodulatory effect could toggle network behaviors, we developed the mod-
ified Go-NoGo task (Figure 1B). For the classic Go-NoGo task, a network is given either a positive
pulse or a null stimulus (+ or () in Figure 1B, respectively) and must generate a +1 or 0 output,
respectively. In the modified Go-NoGo task, a network is trained to perform the classic Go-NoGo
task (Behavior 1) in the absence of the neuromodulator’s effect, and the opposite behavior (Behav-
ior 2: + — 0, ) — -1) given the same stimuli in the presence of the neuromodulator (see Methods).
The modified Go-NoGo task presents a good assessment of the neuromodulated network’s ability to
support different behaviors since a normal network presented with identical stimuli cannot support
opposing behaviors.

We presented the modified Go-NoGo task to a neuromodulated recurrent neural network (RNN)
in which all recurrent neural weights were dampened uniformly by a factor of 1/2 (Figure 1C).
Surprisingly, we found the RNN was able to support the opposing behaviors, and independently
trained models invariably replicated this finding, learning the task within a few thousand trials
of training (Figure 1D). Neuromodulation thus was able to effectively separate synaptic memory
regimes within a single network and access them through uniform scaling of weights to “unlock”
specific behaviors (Figure S1). We found this result held over a wide range of neuromodulatory
factors (Figure S2).

One may imagine that scaling of weights by a uniform factor may translate into a simple scaling of
network activity or activities of individual neurons in the network. We found that global network
activity (Figure 1E) and individual neuron activities (Figure 1F-G) did not follow such a simple
relationship and were unpredictable. Individual neurons showed wide variation in altered activity
patterns both in mean firing rate (Figure 1F) and in time-course activity pattern (Figure 1G) in a
neuromodulation and stimulus dependent manner. Individual neuron activity profiles showed com-
plex transformations under neuromodulation (Figure 1G) reminiscent of altered individual neural
activity patterns reported in lobster stomatogastric ganglion and other lower organisms [Marder,
2012, Johnson et al., 1995, Johnson et al., 2011, Katz et al., 1994].

Neuromodulation of a network subpopulation can toggle global neural network states.
In the brain, neuromodulators are released in specific regions — some tightly localized, others
broadcast widely across brain regions — to influence local and global neural output. We asked if
neuromodulation applied to specific subpopulations in our model could effectively toggle global
network behavior. First, we assessed if neuromodulation of varying neural subpopulation sizes
embedded within a RNN could support the modified Go-NoGo task (Figure 2A). We found that
RNNs with neuromodulated subpopulations across the range of sizes tested from 100% to 10% of
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Figure 1. Neuromodulation weight scaling separates overlapping synaptic memory regimes.
(A), Hunger level dictates a bear’s behavior when encountering a mystery mushroom. (B) Modified Go-
NoGo task. Given a stimulus (either + or §)), in absence of neuromodulatory effect the recurrent neural
network (RNN) should produce outputs from the Behavior 1 repertoire and in presence of neuromodulator,
from Behavior 2. (C) Neuromodulatory effect uniformly scales all recurrent weights in the network, here
with a factor 0.5. (D) Mean output (with shaded standard deviation) to + and @ stimuli of 10 independently
trained RNNs on the modified Go-NoGo with global neuromodulation factor 0.5. (E) Mean whole network
population activity for example RNN over 100 trials after training. Activity under neuromodulation (blue) is
not simple transform of activity without neuromodulation (black). (F) Difference of mean activity with and
without neuromodulation (Aactivity) on + vs §) stimulus trials for individual neurons. Each color represents
an independently trained RNN (10 colors total). Points representing simple scaling of neural activity under
neuromodulation would lie on dotted diagonal line. (G) Five example neurons activity patterns from an
RNN show complex nonlinear transformations under neuromodulation.

neurons could consistently support the opposing behaviors (Figure 2B-C).

Some neuromodulators affect neurons in a cell-type specific manner, for example selectively in-
fluencing activity of excitatory or inhibitory neurons with corresponding receptors [Wester and
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Figure 2. Targeted neuromodulation flexibly supports opposing behaviors. (A) A range of
different sized neural subpopulations embedded within a RNN were neuromodulated. 100% was positive
control demonstrated in Fig. 1; 0% was negative control. (B)—(C), RNNs with embedded neuromodulated
subpopulations across the size spectrum could support the opposing behaviors of the modified Go-NoGo. (B)
Number of training trials to reach stop criteria (see Methods). (C) Test performance (1 is 100% correct; see
Methods). (D) Neuromodulation of exclusively excitatory or inhibitory neurons (blue annuli). (E) Excitatory
or inhibitory neuromodulation supported learning of modified Go-NoGo.

McBain, 2014]. To assess if our model recapitulated this feature, we applied the neuromodulatory
effect on excitatory or inhibitory neurons exclusively (Figure 2D). In both cases the RNN was able
to support the opposing behaviors (Figure 2E).

A collection of neural states can be unlocked with multiple neuromodulators acting on
multiple neural subpopulations. To assess the flexibility of this neuromodulatory mechanism,
we asked whether multiple unique behaviors could be learned and unlocked from a single network
through targeted neuromodulation. Using the modified Go-NoGo task extended to a third possible
behavior (+ — -1, @ — +1; see Methods), we found that both neuromodulation of distinct sub-
populations by the same factor (e.g. factor of 2.5) or distinct neuromodulation levels applied to
the whole network (e.g. factors of 0.5, 1, and 1.5) were able to support multiple behaviors (Figure
3A-B and 3C-D, respectively).

We then extended the modified Go-NoGo task to the maximum number of distinct behaviors given 3
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possible outputs (-1,0,41) for each of two stimuli (+,0) (P#(3,2) = 9 behaviors; “9-behavior modi-
fied Go-NoGo”) and assessed if neuromodulation could support the 9 distinct behaviors (Figure 3E;
see Methods). We found that neuromodulation of 9 non-overlapping subpopulations within a RNN
with a single factor could support all 9 behaviors (Figure 3F). Furthermore, neuromodulation of
overlapping subpopulations to varying amounts could also support the 9-behavior paradigm (Figure
S3). We found that modulation of the entire RNN at different neuromodulation levels could con-
sistently support 3 behaviors — 5/5 correct/total attempted — but failed to learn higher numbers
of behaviors (4-behavior 0/5; 5-behavior 0/5; 9-behavior 0/5). This may relate to the magnitude of
separation between neuromodulation levels, and also suggest a limit to whole RNN neuromodula-
tion. In fact, though there is evidence in the brain of different levels of neuromodulation shifting to
qualitatively distinct neural states, none report more than 3 levels of neuromodulation [Hasselmo
et al., 1995]. Our finding supports this observation, suggesting neuromodulation of distinct sub-
populations is a more robust and flexible mechanism than neuromodulation of one set of neurons
at different neuromodulation strengths.

These results demonstrate neuromodulation’s flexibility and robustness shifting neural states to un-
lock behaviors from a single network. We next sought to understand how simple scaling of weights
could lead to new complex activity dynamics supporting distinct behavior.

Neuromodulation alters individual neural output and global network cluster activity
by shifting relative synaptic weight contributions. To gain insight into how neuromodulation
alters neural dynamics to drive different behaviors, we first considered dynamics of single neurons in
the RNN. As described previously, individual neurons could shift to qualitatively different activity
patterns under neuromodulation (Figure 4A). Given that neural activity in a RNN is a complex
function of all the activities of connected neurons tracing all the way back in time, we focused on
the first time point in a trial. For any trial, at t=0 all activities are randomly initialized from a
normal distribution (see Methods). As a result, at t=1, a neuron reacts only to the weighted inputs
of its incoming connections, uncontaminated by propagating recurrent activity dynamics from past
timepoints. We found that under neuromodulation, incoming weighted activity to a neuron could
shift slightly which could translate into significant shifts in the neuron’s activity if occurring along
the linear regime of its activation function (Figure 4B).

The shift in incoming weighted activity results from incoming excitatory and inhibitory tone. When
the whole RNN was neuromodulated, although the ratio of excitatory to inhibitory weights (E/I
ratio) for a neuron did not change (Figure 4C, top), the net difference between excitatory and
inhibitory tone (E-I difference) was amplified (Figure 4C, bottom). Altering E-I difference in turn
altered the net input current to a neuron causing an activity shift. We found this same effect
occurs globally through the network, scaling the global E-I difference while maintaining a constant
global E/T weight ratio (Figure 4D). The shifts in synaptic currents allow new dynamics that then
recurrently feedback into the network to drive unique activity profiles and end behaviors.

To understand how individual neurons functionally related to different RNN behaviors, we evalu-
ated each neuron’s selectivity to a given neuromodulation context and stimulus (see Methods). In
a whole network-neuromodulated RNN trained on the modified Go-NoGo task, we found neurons
across the range of possible selectivities (Figure 4E, top); some strongly selective for a particu-
lar stimulus-context (Figure 4E, bottom right) and others non-selective (Figure 4E, bottom left).
Importantly, the neuromodulatory effect is applied to every neuron, so selectivity must emerge
through recurrent dynamics within the neuromodulatory regime.
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Figure 3. Multi-neuromodulator RNNs support multiple behaviors. (A) 3-behavior modified Go-
NoGo. Neuromodulation (factor (f,m,)=2.5) of either subpopulations (“subpop”) within a RNN (subpopl,
subpop2) unlock unique behaviors (Behavior 2 (+ stimulus — 0 output, § — -1), Behavior 3 (+ — -1, § —
+1), respectively). (B) Multi-subpop targeted RNN from (A) successfully learns task. Top row: RNN output
to + stimulus when different subpops are neuromodulated; bottom row: same for @) stimulus. (C) Same task
where different levels of neuromodulation (neuromod 1 (fp,,=0.5), neuromod 2 (f,,=1.5)) are applied to
whole RNN. (D) Multi-neuromodulator RNN successfully learns task. (E) 9-behavior modified Go-NoGo task
with unique neuromodulated subpops and example corresponding outputs. (F) RNN successfully learned
task with 9 targeted subpops (each 10% of RNN, non-overlapping; fn.,»=2.5). Application of neuromodulator
to any subpop unlocked a specific behavior set (beh.) from the 9-behavior repertoire (fraction of trials correct
is &1 on diagonal; see Methods). Off-diagonal fraction correct (e.g. row 1, column 3) due to partial output
overlap between behavioral sets (e.g. @) stimulus output for task 1 and 3 as shown in part e).

We further asked how neurons across the selectivity spectrum may coordinate to drive different
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Figure 4. E-I difference scaling drives differential activity patterns. (A) Differential response of
an individual neuron (neuron 1) in a whole-network neuromodulated RNN to same stimulus depending on
neuromodulation presence. (B) At the start of a trial, neuromodulation causes neuron 1 to receive different
synaptic current input, shifting its firing rate. (C) The different synaptic input under neuromodulation oc-
curs due to amplification of the net difference in incoming excitatory and inhibitory weights; E/I balance is
unchanged. (D) E-I difference across the whole network is also amplified; E/I remains unaltered. (E) Though
all neurons in the RNN are influenced by the same neuromodulation, some exhibited activity selective for
particular stimulus-neuromodulation combinations (high si; example neuron bottom right, si=0.89); others
were less selective (low si; example neuron bottom left, si=0.01). (F) Neurons formed 5 clusters—2 predomi-
nantly inhibitory, 3 predominantly excitatory—whose activity coded for different stimulus-neuromodulation
combinations. Each column of the heatmap is the mean firing rate of an individual neuron across conditions
with excitatory/inhibitory identity labeled below. (Nm: neuromodulation present or absent; Stim: stimulus
presented) (G) Amplification of relative weight differences (As of mean weight) between inhibitory clusters
drives cluster activity switches under neuromodulation: increased inhibition of clusters 2 and 4 by cluster 5
and disinhibition of cluster 3. In all panels light blue represents modulator present and grey/white modulator
absent. Error bars are SEM.

output behaviors. To do this we ran k-means clustering using neurons’ average firing rates across
trials and found neurons formed five clusters, whose activity combinations coded unique stimulus-
context pairs. Interestingly, two clusters were predominantly composed of inhibitory neurons and
the other three predominantly excitatory neurons (Figure 4F).

The same principle of amplification of relative E-I difference in inter-cluster synaptic weights helped
explain cluster activity shifts associated with behavioral shifts under neuromodulation. For exam-
ple, in the absence of neuromodulator the null stimulus led to balanced mutual inhibition between
clusters 2 and 5 in the RNN and a resulting output of NoGo. When neuromodulator was applied,
the slightly stronger inhibition from cluster 5 to cluster 2 became amplified, silencing cluster 2
(and 4) and disinhibiting cluster 3, driving output of AntiGo (Figure 4G, S4). To further examine
the functional contribution of each cluster we performed progressive lesion studies which supported
the stimulus-context dependence of each cluster, while demonstrating more complex underlying
inter-cluster dynamics (Figure S4).
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Although selectivity and clustering analysis provided some intuition for this particular RNN, in-
dependently trained RNNs on the same task exhibited unique clustering patterns, and different
network configurations and task paradigms exhibited widely varying selectivity and clustering pat-
terns (Figure S5). This motivated consideration of networks’ population dynamics to understand
more generalized features of the neuromodulatory mechanism.

Distinct global network activity manifolds with non-linear transition dynamics emerge
from neuromodulation. Individual neurons in a network carry information that is often re-
flective of larger scale distributed representations or computations. Consideration of the entire
network’s dynamics can provide a more complete understanding of neural behavior, particularly
when single neuron activities are difficult to interpret [Cunningham and Yu, 2014, McCormick
et al., 2020, Mante et al., 2013]. To understand how neuromodulation led to network behavior
shifts, we analyzed the coordinated activity of all neurons in the RNN in the absence and presence
of neuromodulator. Neural activity trajectories for the same stimulus followed non-overlapping,
stereotyped paths in activity space (Figure 5A). Through amplification of synaptic weights, neu-
romodulation effectively resets all the pins in the pinball machine, altering activity flow patterns
through the RNN. To fully define the neuromodulation-dependent activity subspace, we generated
random stimuli series drawn from a uniform distribution between 0 and 1 at each time point and
fed this into the RNN with and without neuromodulator present. We found that the presence
of neuromodulation defined a manifold non-overlapping with that of the absent neuromodulation
in activity space (Figure 5B). The neuromodulation activity manifold provides access to specific
behaviors while the non-neuromodulation manifold provides access to different behaviors.

Both activity manifolds described above derive from a common underlying neural network. This
suggests that there must be a transition between the manifolds accessible through different amounts
of neuromodulation. To characterize this manifold transition, we first trained a RNN on the mod-
ified Go-NoGo task with a global amplifying neuromodulation factor (fn.,) of 9. We then applied
intermediate levels of neuromodulation to the RNN and observed its activity dynamics and out-
put behavior. We found that intermediate amounts of neuromodulator (fp, € (1:1:9)) led to a
smooth transition from trajectories on the non-neuromodulated manifold to the fully neuromod-
ulated manifold (Figure 5C). Furthermore, output behaviors for intermediate neuromodulatory
levels corresponded to intermediate outputs (Figure 5D). To characterize the transition in output
behavior, we measured the output of the RNN at the midpoint of each trial for each level of neu-
romodulation. We found that increasing neuromodulator levels led to non-linear (exponential or
sigmoidal) progression from non-neuromodulator behavior (Go: +1) to neuromodulatory behavior
(NoGo: 0) (Figure 5E).

We then asked whether neuromodulatory transition dynamics were tightly constrained, defining a
conserved property of neuromodulation, or might be more variable depending on individual network
characteristics. To test this, we independently trained 29 RNNs and characterized their transition
dynamics. All RNNs exhibited similar non-linear transition dynamics best fit by an exponential
or sigmoid function (Figure S6). Surprisingly, both networks’ sensitivities to neuromodulator and
rates of transition varied drastically. To quantify this variability, we defined a “half maximal effec-
tive concentration” (EC50) as the amount of neuromodulator required to generate a half maximal
output (see Methods). We found that the EC50 of individual networks trained with a full neuro-
modulation factor of 9 ranged from 2.1 to 6.5 (3.1x range; Figure 5F, left). Similarly, the rate of
transition (steepness of the transition dynamics sigmoid) varied widely from 0.9 to 26.3 (Figure 5F,
right). This result reveals a previously unknown phenomenon that may underlie drug sensitivity in
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Figure 5. Neuromodulation creates separate activity manifolds with idiosyncratic nonlinear
transition dynamics. (A) Global network activity dynamics after PCA-based dimensionality reduction
for positive stimulus. Activity trajectories are non-overlapping. (B) Shotgun stimulus mapping of activity
space inhabited by network in absence and presence of neuromodulation defines separable activity manifolds
on which individual trajectories occur. (C) For RNN trained with neuromodulatory factor of 9, intermediate
levels of neuromodulation lead to partial transitions toward full neuromodulation activity manifold. (D)
Partial neuromodulation leads to intermediate output behaviors. (E) Transition from none to full neuro-
modulation behavior is non-linear (best-fit exponential & sigmoid shown) and defines network EC50. (F) 29
RNNs independently trained exhibit large variability in transition dynamics with EC50 ranging from 2.1 to
6.5 and sigmoid slope (o_slope) from 0.9 to 26.3. (G) Network EC50 is positively correlated with skewness
of global weight distribution. (H) For + stimulus, excessive neuromodulation pushes network activity into
different space. (I) Over-neuromodulation can drive inappropriate behavior (top) or no change (bottom).
(J) Transition dynamics for overmodulation is best fit by double sigmoid; first fits normal neuromodulation
transition (blue) and second fits abberant neuromodulation transition (orange). For all PCA, top 3 PCs
accounted for 80-92% of activity variance.

the brain—“circuit-based sensitivity”—and may be critical to understanding and optimizing neu-
ropsychiatric therapeutics.
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Given that neuromodulation exerts its effect through amplification of weight differences, we posited
that the global weight distribution of a network may relate to the idiosyncratic network sensitivities.
The correlation between network EC50 and weight distribution skewness was significant (p<0.01)
and exhibited a positive trend (R=0.51; Figure 5G), suggesting networks with more positively
skewed weights (longer tail of strong excitatory weights) were less sensitive to neuromodulator.
Future studies dissecting the underlying synaptic weight mechanism driving neuromodulator sen-
sitivity will be vital to understanding and utilizing this feature clinically.

Excessive neuromodulation can also occur either pathologically or pharmacologically. To assess the
effect of excessive neuromodulation in our model, we trained a RNN on the modified Go-NoGo task
with a global amplifying factor of 3. We then applied neuromodulator factors ranging from 1 (no
neuromodulation) to 3 (full normal neuromodulation) and beyond to 9 (3x over-neuromodulation).
As before, we observed a smooth transition between non-neuromodulated and neuromodulated man-
ifolds (Figure 5H). Interestingly, excessive neuromodulation could rapidly push neural dynamics off
both manifolds into an adjacent activity space. This activity shift translated into inappropriate
behavior (Figure 5I, top). The transition dynamics were defined by a double sigmoid; one sig-
moid described the transition between non-neuromodulated and fully-neuromodulated and another
sigmoid described the transition between fully-neuromodulated and excessively-neuromodulated
conditions (Figure 5J). This activity is suggestive of attractor dynamics where excessive neuro-
modulation can push network activity into learned behaviors inappropriate in the given situation.
This pattern mimics patients with neuromodulatory pathologies or those administered excessive
doses of neuromodulatory drugs who shift into inappropriate behaviors (e.g. hypersexuality with
excessive dopamine-replacement therapy, and in the other direction, tardive dyskinesia for antipsy-
chotic dopaminergic antagonists) [Yamamoto et al., 2014, Quinn et al., 1983, Higley and Picciotto,
2014, Marder et al., 2004].

Neuromodulation-based activity manifolds explain starvation progression of dopamine-
mediated Drosophila sugar sensitivity. We next sought to evaluate our model’s ability to
recapitulate biological in vivo neuromodulation, and help explain experimental observations. We
turned to results from Inagaki et al. 2012 which experimentally showed Drosophila starvation-
related behavioral shifts were under the control of dopamine neuromodulation. Specifically, they
reported that Drosophila sugar sensitivity, measured by proboscis extension reflex (PER) proba-
bility, increased with duration of starvation (fed, 1 day, 2 day starved) and the same relationship
could be observed in fed flies when administered L-dopa in their diet (0, 3, 5 mg/ml) (Figure 6A).

We trained a RNN with a neuromodulated subpopulation (20% subpopulation) to reproduce the
fed sugar sensitivity curve in the absence of neuromodulator (neuromodulator factor (fnm)=1),
and the 2 day starved sensitivity curve in the presence of neuromodulator (f,,,=5). On each trial,
the RNN output a probability of PER after a 500ms presentation of a sugar stimulus ranging from
6.25 to 800 mM. We independently trained 10 RNNs on this task and all reliably learned the sen-
sitivity functions. We then tested the RNNs’ behaviors at an intermediate neuromodulator level
(fnm=3). Despite never being explicitly trained for any behavior at this intermediate neuromodu-
lator level, we found the RNNs produced a shifted sensitivity curve very similar to that exhibited
by 1 day starved flies and the flies fed an intermediate L-dopa concentration of 3 mg/ml (Figure 6B).

The RNNs’ behavior reliably mimicked the intermediate behaviors of flies in vivo because inter-

mediate neuromodulation caused a shift in the RNN’s activity manifold between “fed” and “2
day starved/5 mg/ml L-dopa” manifolds. For example, for 100mM sugar, without neuromodula-
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Figure 6. Neuromodulated RNN reproduces Drosophila sugar sensitivity behavior. (A)
Drosophila sugar sensitivity behaviors from Inagaki et al. 2012 measured as PER behavior vs sugar concen-
tration. Reprinted from Cell 148, Inagaki et al., Visualizing Neuromodulation In Vivo: TANGO-Mapping of
Dopamine Signaling Reveals Appetite Control of Sugar Sensing, 583-595, 2012, with permission from Else-
vier. (B) Neuromodulated RNNs trained on extremes of Drosophila sugar sensitivity (no neuromodulation
factor (fnm=1) for fed and f,,,=5 for 2 days starved) exhibit similar intermediate (f,,,=3; untrained) and
extreme (no neuromodulation (fpm=1) and fp,,,=>5; trained) behaviors (n=10; error bars are SEM; same
statistical test as in Inagaki et al. 2012 for boxplots, see Methods).

tion RNNs produced non-overlapping activity traces to those under full neuromodulation (f,=>5).
Intermediate neuromodulation (f,,=3) produced activity traces between absent and full neuro-
modulation traces (Figure 7A). The same observation held when output behavior was constant:
the activity traces under intermediate neuromodulation producing PER output at 50% probabil-
ity (mean acceptance threshold (MAT) from Inagaki et al. 2012) lay exactly between the traces
for absent and full neuromodulation at MAT (Figure 7B). Viewed across the range of sugar con-
centrations presented, intermediate neuromodulation produced activity that defined a curtain in
activity space that slotted neatly between absent and full neuromodulation activity curtains. Each
neuromodulation level activity curtain led to a curved line attractor, representing end states that
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generated the appropriate output behavior (Figure 7C).
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Figure 7. RNN models of Drosophila exhibit emergent transition behaviors and high variabil-
ity of neuromodulator sensitivity. (A) For 100mM sugar, a RNN with intermediate neuromodulation
(fnm=3; cyan) generates activity between the neuromodulation extremes (none; grey and f,,,,=5; magenta).
(B) Activity trajectory at MAT sugar concentration for intermediate neuromodulation of a RNN lies be-
tween those for neuromodulation extremes. (C) Across sugar concentrations, intermediate neuromodulation
trajectories (cyan) lay between neuromodulation extremes (grey and magenta), forming a 3-layer activity
curtain ending on curved line attractors (dotted lines) defined by trajectory endpoints across the sugar spec-
trum. (D) Independently trained RNNs (n=30) exhibited high variability of PERs at 100mM sugar (0.10
to 0.66) and MATs (48 to 194mM). (E) Normalized MAT change (WAMAT) vs E/I ratio for whole RNN
and subpopulations. %AMAT had significant negative correlation to E/I ratio of the non-neuromodulated
neurons (p<0.05, R=-0.39). (F) %AMAT E/I ratio correlation was driven by recurrent weights within
the non-neuromodulated subpopulation @), rather than recurrent weights within the neuromodulated sub-
population @, weights from neuromodulated to non-neuromodulated subpopulation ), or weights from
non-neuromodulated to neuromodulated subpopulation @ as shown by Pearson correlation p-values (p) and
coefficients (R) (for D,®),@ correlation significance scores shown, scatter plots not shown).

We next asked whether our fly RNN models also exhibit behavioral variability derived from the
“circuit-based sensitivity” we observed previously. To investigate this possibility, we independently
trained 30 RNNs with 20% subpopulation under neuromodulation on the fed and 2-day starved
sugar sensitivity behaviors (fn,=1 and f,,,=5, respectively). We then applied intermediate neu-
romodulation (fp,»=3) to each model and assessed the RNNs’ PER probabilities at 100 mM sugar
and MATSs. We found profoundly idiosyncratic circuit-based sensitivities, with 100 mM sugar PER
probability ranging from 0.10 to 0.66 (6.6x range) and MAT from 48 to 194 mM (4x range) (Figure
7D).

We asked if a RNN’s circuit sensitivity was related to the underlying excitatory-inhibitory weight

distribution. To do this we compared network normalized MAT shifts (%WAMAT; see Methods)
to E/I weight balance across the whole network, within the neuromodulated subpopulation, and
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within the non-neuromodulated subpopulation. While no relationship between %AMAT and whole
network or neuromodulated subpopulation weights was observed, we found a weak relationship to
E/I balance in the non-neuromodulated subpopulation (p=0.034, R=-0.39; Figure 7E). To identify
connectivity driving this effect, we parsed weights according to their source and destination within
the network and found that the recurrent weights of the non-neuromodulated subpopulation were
most strongly related to the network’s circuit sensitivity, with stronger inhibitory tone coinciding
with increased sensitivity (p=0.029, R=-0.40; Figure 7F). Interestingly, this relationship is direc-
tionally consistent with that observed in the fully neuromodulated networks where positive weight
distribution skewness (analogous to larger E/I) correlated with less sensitive networks (higher EC50,
lower %AMAT). Further investigation detailing the driving factors underlying circuit sensitivity
will be crucial. Importantly, our model makes two clear predictions: i) individual flies with similar
fed (and 0 mg/ml L-dopa) and 2 day starved (and 5 mg/ml L-dopa) sugar sensitivity behaviors
exhibit highly variable 1 day starved (and 3 mg/ml L-dopa) sugar sensitivity profiles (i.e. large
1 day (3 mg/ml L-dopa) MAT variability) and ii) this phenomena is due to idiosyncratic circuit-
based sensitivity that is directly related to excitatory-inhibitory weight distributions in the relevant
circuits. The first prediction is immediately testable, the second may require further investigation
and technological innovation.

Electrical modulation shifts neural dynamics between manifolds through independent
mechanism to neuromodulation. In addition to neuromodulation’s effect on synaptic transmis-
sion, other endogenous and exogenous influences can alter circuit dynamics through mechanisms
that may be similar or distinct. For comparison, we considered the effect of electrical modulation,
which influences circuit dynamics by altering current inputs into target neurons. Experimentally
and clinically, electrical modulation is increasingly used in the form of optogenetics [Deisseroth,
2015], deep-brain stimulation (DBS) [Krauss et al., 2021] (Figure 8A), and transcranial magnetic
stimulation [Risio et al., 2020, Gouveia et al., 2019]; the latter two providing much needed alterna-
tives when traditional pharmacologic treatments fail. We used our model to ask whether electrical
modulation alters network activity in an analogous manner to chemical neuromodulation or oper-
ates through an independent mechanism.

To test this we trained a RNN with a neuromodulated subpopulation (50% of neurons) on the
previously described modified Go-NoGo task (output behavior +1 was called “approach”; 0 was
“none”; -1 was “avoid”) (Figure 8A). After successful training, we assessed the RNN’s behavior
when either no electrical stimulation, excitatory stimulation (as constant fixed input current of
+1), or inhibitory stimulation (constant, fixed input current of -1) was given to all neurons in
either the neuromodulation-targeted or an equal size random subpopulation (Figure 8A). While
electrical stimulation to a random subpopulation did not affect the RNN’s performance, stimulation
delivered to the neuromodulated subpopulation could significantly affect behavior in the absence
and presence of neuromodulator (Figure 8B).

To determine if electrical stimulation induced random performance impairments or instead repre-
sented shifts to alternative learned behaviors, we characterized RNN output. Interestingly, elec-
trical stimulation of neuromodulated neurons shifted behaviors directionally toward the opposing
neuromodulation condition behavioral set. For example, inhibitory stimulation in the absence of
neuromodulator decreased “approach” and increased “none” behavior to the positive input stim-
ulus while decreasing “none” and increasing “avoid” behavior to the null stimulus. These shifted
behaviors mirror the RNN’s normal behavior under neuromodulation (Figure 8C, top, rightmost
bar graph compared to Figure 8D, top, left most bar graph). Likewise, the opposite electrical
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Figure 8. Targeted electrical modulation shifts network dynamics through independent mech-
anism. (A) Schematic of DBS and analogous electrical stimulation (e-stim) of a neuromodulation RNN.
(B) Test performance was significantly impaired without neuromodulator effect for inhibitory on-target e-
stim (p=3.91e-11) and with neuromodulator for excitatory and inhibitory on-target e-stim (p=2.20e-08 and
p=2.18e-02, respectively). *:p<0.05, **:p<0.01. (C) Behavioral and activity shifts without neuromodu-
lation. Top: behavioral shifts with on-target e-stim. Bottom: activity dynamics under e-stim. Activity
trajectories without e-stim are in black (neuromodulated trajectories in light blue for reference); e-stim
can shift trajectories off black toward neuromodulated activity space (orange arrow). (D) Same as (C)
with neuromodulation. Top: behavioral shifts. Bottom: Activity trajectories without e-stim are in blue
(non-neuromodulated trajectories in grey for reference); e-stim can shift trajectories off blue toward non-
neuromodulated activity space (green arrow). (E) Output to 4+ stimulus with increasing e-stim. (F) For 30
RNNs: Left: neuromodulation EC50. Right: electrical stimsg. Down arrows in (F),(G) indicate RNNs that
did not achieve stimsg at maximum stimulation. (G) No significant correlation between networks’ EC50
and stimgg. (H) Modulation by neuromodulation and electrical modulation push activity trajectories toward
different manifolds enabling independent transition dynamics. All error bars are SEM.

stimulation (excitatory) induced behavioral shifts in the neuromodulated condition toward non-
neuromodulated behaviors (Figure 8D, top).
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To understand how electrical stimulation was affecting networks’ behaviors, we analyzed network
activity trajectories. We observed that when electrical stimulation did not change behavior, net-
work activity overlapped with the unstimulated RNN’s activity space (Figure 8C, bottom left,
green traces) whereas when stimulation shifted behavior, network activity was pushed toward the
activity manifold defined by the opposing neuromodulation-condition (Figure 8C, bottom right,
orange traces) (Figure 8C-D, bottom). Targeted electrical modulation thus provides an alternative
means to predictably influence circuit dynamics toward neuromodulation conditions. This result
supports the observation that DBS clinically and optogenetics experimentally can manipulate net-
work behavior to achieve similar end results as pharmacological manipulation.

This result from our model presented an opportunity to study a question critical to neuropsychiatric
treatment: are mechanisms of chemical and electrical modulation for a given network correlated;
or in clinically practical terms: if a patient fails multiple drug treatments, are they less likely to
benefit from DBS?

We first trained 30 RNNs and tested the effects of graded electrical stimulation in a condition
that had shown electrical sensitivity (on-target inhibitory stimulation without neuromodulator).
Increasing the level of electrical input led to a graded transition in behavior very similar to the
transition observed with graded administration of neuromodulator (Figure 8E). As before, RNNs
exhibited idiosyncratic circuit-based sensitivity to neuromodulator (Figure 8F, left). To charac-
terize electrical stimulation network sensitivity, we measured the amount of electrical stimulation
that led to 50% of the fully-neuromodulated condition (stimgp) analogous to EC50 for neuromod-
ulator levels. Interestingly, RNNs also exhibited idiosyncratic circuit-based sensitivity to electrical
stimulation, with stimsg ranging from -2.6 input current to not achieving stimgg at the maximum
stimulation we administered of -9 input current (>3.5x range) (Figure 8F, right).

We then asked if there was a relationship between a network’s chemical and electrical circuit-based
sensitivities. There was no significant correlation between EC50 and stimso (Figure 8G). Since some
RNNs did not reach stimsg output at the maximum electrical stimulation given, we also measured
each RNN’s output at maximum stimulation (input=-9) and similarly found no significant corre-
lation to EC50 (Figure S7). The lack of correlation suggests that networks insensitive to chemical
modulation may still be highly sensitive to electrical modulation and vice versa. Consistent with
this, we found that electrical modulation progressively shifted population dynamics along a mani-
fold transition distinct to neuromodulation, suggesting different possible rates of transition (Figure
8H). This may help explain why some patients who fail multiple drug treatments sometimes respond
dramatically to DBS. By utilizing an independent mechanism to drug treatment, DBS exploits a
parallel circuit-sensitivity to achieve therapeutic efficacy.

Discussion

Neuromodulation is pervasive in the brain and drives unique neural function in both health and
disease. Using an RNN model, we showed how neuromodulation’s effect on synaptic weights can
separate distinct synaptic memory regimes within a single RNN, each tuned to unlock unique
outputs and behaviors. We observed emergent neural activity transformations reminiscent of prior
single-neuron neuromodulation work [Marder, 2012, Johnson et al., 1995, Johnson et al., 2011, Katz
et al., 1994] and revealed how robust and flexible this neuromodulatory system is across network
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configurations. We showed how neuromodulation affects the network from individual neurons to
circuit clusters to global network activity dynamics. Through this analysis we discovered a feature
of networks previously unreported to our knowledge: “circuit-based sensitivity,” which helps explain
the clinical observation of high variability in drug and other therapeutic response [Furukawa et al.,
2019] (alongside more standard explanations like enzyme variant-dependent drug metabolism and
clearance rates). Application of our model to in vivo experiments with starved Drosophila recre-
ated experimental findings and provided both explanation for the neural mechanism and concrete
predictions for future experimentation. Finally, we used our model to investigate electrical modu-
lation of circuits and relate chemical and electrical modulation properties. Together these results
elucidate a fundamental mechanism of neuromodulation in the brain, provide concrete predictions,
and define a previously unknown feature of circuits that may be critical to therapeutic success.

Neuromodulators in the brain also affect neural excitability, plasticity, and indirectly downstream
circuit activity [Newman et al., 2012, Nadim and Bucher, 2012, Marder, 2012, Weele et al., 2018].
Other models have focused on other aspects of neuromodulation [Newman et al., 2012, Yu and
Dayan, 2005, Stroud et al., 2018, Beaulieu et al., 2020]. Our model of synaptic weight scaling
shares some similarities to previous models, particularly of neuromodulatory effects on intrinsic
excitability [Stroud et al., 2018]. Both formulations lead to increased network flexibility and versa-
tility, yet they operate through different mechanisms (see Supplemental Appendix A). Extending
our model to incorporate other functions of biological neuromodulation (e.g. intrinsic excitability)
and understanding their relationships will help bridge the divide to the full complexity of obser-
vations in the brain and to other models of neuromodulation that are highly tailored to specific
functional profiles in specific brain areas of specific neuromodulators [Newman et al., 2012, Yu and
Dayan, 2005].

Our formulation of the neuromodulatory effect on synaptic weights is a simplification. Elaborating
our model to support differential weight modulation (e.g. via neuromodulator receptor subtypes on
specific cell-types) [Harris-Warrick and Johnson, 2010, Bacqué-Cazenave et al., 2020], neuromod-
ulator multiplexing [Wester and McBain, 2014, Li et al., 2018], and metamodulation [Nadim and
Bucher, 2012, Ribeiro and Sebastiao, 2010, Katz and Edwards, 1999] will likely lead to even more
sophisticated network behavior. Our model also uses arbitrary neuromodulation levels, whereas
the brain likely uses specific levels for optimal functionality. Future investigation into which levels
are optimal and methods of learning these will be important.

The “circuit-based sensitivity” we observed is related to the well-known variability of independently
trained neural networks [Mehrer et al., 2020]. Our neuromodulation model allows study for the first
time of the unique transition dynamics that emerge from neuromodulated networks and motivates
several avenues of future research. Identification of the circuit parameters that control the transition
dynamics will be critical for understanding and use in therapeutic optimization. The idiosyncratic
nature of circuit-based sensitivity aligns exactly with current efforts in precision medicine calling
for the need to consider each patient as an idiosyncratic individual — here we provide hard evidence
for this claim and its particular importance in neuropsychiatric treatment [Provenza et al., 2019].
Fully understanding the relationship between chemical and electrical modulation and sensitivity
is also crucial. Although our simplified model suggests how the modes of modulation influence
dynamics (see Supplemental Appendix B), further analytical and experimental investigation into
their relationship as network dynamics evolve over time is necessary.

In our analysis of electrical-like stimulation of RNNs we used a constant stimulation form (constant,
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fixed stimulation of neuromodulated subpopulation) that we observed could shift network behav-
ior. To fully characterize how networks respond to electrical stimulation, further exploration with
different target regions and varied wave forms is warranted. Such experimentation in clinical use
has led to major advancements in efficacy of DBS [Krauss et al., 2021] and TMS [Risio et al., 2020].
Future work utilizing wave forms and target areas mimicking and extending from clinically-used
parameters will help fully characterize the effects of electrical stimulation on neural networks.

Finally, our work provides interesting directions for machine learning (ML). By separating synaptic
memory regimes in a single network, we demonstrate how a network can have drastically increased
capacity, supporting a library of unique behaviors for overlapping external situations. Furthermore,
each behavior can be rapidly accessed through targeted application of the relevant neuromodulatory
factor. High capacity, compact networks with high-speed access to different output modes presents
a promising component for future ML algorithm development. The separation of memory regimes
also effectively splits a single RNN into multiple computers, possibly achieving super-Turing ca-
pability [Cabessa and Siegelmann, 2014]. Future theoretical assessment of neuromodulated RNNs’
capacity will establish if this simple mechanism is sufficient to exceed the Turing limit.
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Methods

Modified Go-NoGo tasks. The classic Go-NoGo task has two possible stimuli (positive pulse
referred to as positive stimulus or +; no pulse, also referred to as null stimulus or (). The agent is
trained to give a positive output (41, “Go”) for the positive stimulus and zero output (0, “NoGo”)
for the null stimulus. In the modified Go-NoGo task we added a second possible behavioral set:
NoGo for the positive stimulus and negative output (-1, “AntiGo”) for the null stimulus. The
network was trained on the classic Go-NoGo behavior in the absence of neuromodulator and on
the new NoGo-AntiGo behavior in the presence of neuromodulator. The 3 behavior and 9 behavior
variants of the modified Go-NoGo task followed a similar paradigm with additional added behav-
iors. In the 3 behavior version, a third behavior of positive stimulus — AntiGo, null stimulus —
Go was added. In the 9 behavior version all possible stimulus — output response pairs were added.
As such, Behavior 1 was + — AntiGo, ) — AntiGo; Behavior 2 was + — NoGo, () — AntiGo;
Behavior 3 was + — Go, ) — AntiGo; ...; Behavior 9 was + — Go, # Go. In our simulations
each trial lasted 200 timesteps of 5ms each for a total represented duration of 1 second.

Neuromodulatory neural network model. For our simulations we used a continuous rate
recurrent neural network (RNN) model with biologically plausible parameters similar to RNNs in
prior works [Kim and Sejnowski, 2020, Trujillo et al., 2020]. Consistent with biological neural
networks, we implemented Dale’s Law such that each neuron was either excitatory or inhibitory.
For all our simulations we used a RNN with N = 200 neuron units, 80% excitatory and 20%
inhibitory. In the RNN each neuron can be connected to any other neuron with probability peon
(Pecon was initialized at 0.8 in our simulations), and each neuron receives weighted input from
connected neurons to produce a firing rate governed by the neural dynamical equation
dx

T —x+Wr+ Wiu+ N(0,0.1) (1)
where 7 € RV is the synaptic decay time constant for the N neurons in the network, € R**V
is the synaptic current variable for the N neurons, W € RV*¥ is the matrix of synaptic weights
between all N neurons, » € R™ is the output firing rates of the N neurons in the network,
Win € RN are weights associated with external input u, and N(0,0.1) is added noise drawn from
a normal distribution with mean 0 and variance 0.1. The output firing rate for the neurons is given
by an elementwise nonlinear transfer function transformation of the synaptic current variable. In
our network we used the standard logistic sigmoid function as implemented by prior models [Kim
et al., 2019, Kim and Sejnowski, 2020]:

1

— _ 2
" 14e® 2)
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The synaptic connectivity matrix W was randomly initialized from a normal distribution with
zero mean and standard deviation g/v/N - peon, Where g is the gain. We set g = 1.5 as previous
studies have shown that networks operating in a high gain regime (g > 1.5) support rich dynamics
analogous to those of biological networks [Kim and Sejnowski, 2020, Kim et al., 2019, Laje and
Buonomano, 2013]. The synaptic decay time constants were randomly initialized to a value in the
biologically plausible range of 20-100 ms. As in Kim et al. 2019, we used the first-order Euler
approximation method to discretize equation (1) for the simulations; for neuron i:

At At
zip=(1— —)zit—1 + 7(2 Wiirjig—1 + Wiyiug—1) + N(0,0.1) (3)
T T ;

Output was generated by taking all recurrent network neurons’ activities and passing them through
a weighted output unit

Onetwork = WoutT + bout

where Wy € RN*! are the neural output weights and b, is the output unit’s bias term. RNNs
were trained by backpropagation through time using AdamOptimizer with a least square error
objective function.

To apply an amplifying or dampening neuromodulatory effect, target neurons’ weights were scaled
by the neuromodulatory factor. For whole network neuromodulation this effect was applied to all
neurons in the RNN; for subpopulation neuromodulation the effect was applied only to the selected
subpopulation of neurons.

For the modified Go-NoGo task, RNNs were trained until one of two possible stop criteria was
met: 1) average trial least square error over the last 50 trials was under a threshold of 1, or 2)
10,000 training trials was reached. Performance on the task was then assessed by evaluating the
percentage of test trials that matched the following performance criteria: for Go trials, output was
required to reach 1.0 £+ 0.2 by timestep 120 (full trial was 200 timesteps); for NoGo trails, output
was required to be 0.0 + 0.2 and for AntiGo trails —1.0 + 0.2 at timestep 120.

Neuromodulation of multiple subpopulations and multiple levels. For neuromodulation of
non-overlapping subpopulations, same-sized groups of neurons were choosen randomly without any
overlap and neuromodulator applied to each for a given behavior. For overlapping subpopulations,
groups of neurons were chosen randomly allowing overlap (Figure S3).

Neuromodulation at different levels (“multi-factor networks”) was done by applying different neu-
romodulation factors (fnm). For the 9-behavior modified Go-NoGo this was done using factors
€ [1:1:9], ie., for Behavior 1 no factor was applied (fn, = 1), for Behavior 2 f,,, = 2, for
Behavior 3 fnm = 3, et cetera.

To test networks across the range of subpopulation sizes with single or multiple neuromodulator
factors on n-behavior modified Go-NoGo tasks, stop criteria were adjusted to account for the in-
creased behaviors: 1) average trial least square error over last n*25 trials was under threshold of
1, or 2) 15,000 training trials was reached. Performance on the tasks was assessed as before. For
overlapping subpopulations, overlap was quantified in two ways. For each network, the number of
neurons neuromodulated in 2 or more subpopulations was measured (Figure S3D). Overlap was
also quantified by measuring the average number of neuromodulated subpopulations a neuron in
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the network was a member of (Figure S3E).

Functional clustering and selectivity index. In order to examine whether trained models
contained functionally specialized neurons, we grouped neuron activities by combination of sub-
task (which maps one-to-one with neuromodulatory state) and stimulus given (“stimulus-subtask
combinations”). We averaged activity of each neuron over time and trials within each group. This
resulted in a matrix of time-trial averaged neuron activities with a number of rows equal to the
stimulus-subtask combinations, and number of columns equal to the number of neurons. Using k-
means, we clustered neurons with similar activity levels across stimulus-subtask combinations. We
computed a silhouette score to find the optimal number of clusters, which for the RNN in Figure 4,
was 6. The silhouette score computed for 5 and 6 clusters differed only by 0.7% and the additional
cluster was very small and similar to an existing cluster, so we conducted further analysis with 5
clusters for simplicity.

To measure the selectivity of individual neurons for particular stimulus-subtask combinations, we
calculated a “selectivity index” (si) for each neuron j:

Fmaz _ fsecond,max
s ) J
Slj = ~Mazx
r

J

where 7; is the average firing rate of neuron j over the trial duration, 7"** indicates the maximum

7; across all the stimulus-subtask combinations and fjew”d*m“ indicates the second highest 7; over

all the stimulus-subtask combinations. The selectivity index thus captures a normalized approxi-
mation of how uniquely active a neuron was for a given stimulus-subtask combination.

Network population dynamics. To represent whole network population activity dynamics we
sought a low dimensional representation of whole population activity. We used principal com-
ponent analysis (PCA) since the leading components capture the largest projections of activity
variability, which we hypothesized would effectively separate our neuromodulatory conditions if
large differences occurred [Cunningham and Yu, 2014]. We found this was the case. We found
qualitatively similar results using multidimensional scaling which finds projections designed to best
preserve distances in high-dimensional activity space. For our figures we display the first 3 PCs, as
these captured a large amount of the activity variance (80-92% explained across the analyses) and
effectively represent the activity dynamic differences in the analyses.

EC50. The EC50 of a network was defined as the level of neuromodulation that led to half the
output of full neuromodulation. For the results reported, we used EC50 calculated for the positive
stimulus. For this stimulus in the modified Go-NoGo task, a non-neuromodulated network outputs
+1 and a fully neuromodulated network outputs 0 (measurements for output level were taken at
0.5 s through the trial); the EC50 for the network in this case is the amount of neuromodulator
required to output 0.5. The EC50 was calculated by fitting a sigmoid curve to the progression of
output (from +1 to 0 in this case) with increasing neuromodulation level (Figure 5E)

1

where fnm,, is the neuromodulation level. EC50 neuromodulation level was calculated by finding
the intersection of the sigmoid and the half-maximal output; for half-maximal output of 0.5, EC50
= —b/a. Sigmoid curves were fit using a least squares fit.
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Drosophila sugar sensitivity task. We implemented a computational version of Inagaki et al.
2012 to train our network models. During training, models were presented with a constant sugar
concentration (external input proportional to sugar concentration) for 100 timesteps (equivalent to
500 ms) and trained to output a probability of PER. For fed and 2-day starved training we used a
piece-wise linear approximation estimated from Inagaki et al. 2012. To compare boxplots of MAT,
one-way ANOVA followed by ¢-test with Bonferroni correction was used as in Inagaki et al. 2012.

MAT. Analogous to the analysis done for flies in Inagaki et al. 2012, for each RNN a sigmoid was
fit

1
Tsugar

1 + e~ @log23rxr

PER =

where a is the slope of the sigmoid. When PER = 0.5 then 444 = M AT'. Sigmoid curves were
fit using a least squares fit.

For intermediate neuromodulatory level ( f,,,=3) MAT variability analysis, a normalized change in
MAT (%AMAT) was calculated:

MATfnm:5 - MATfnmzl

DAMAT =

where M ATy, —, is the RNN’s MAT with neuromodulation factor x. %AMAT gives a network
normalized metric for how much the intermediate neuromodulation (fy,,=3) moved the fly from
no neuromodulation (fp,=1) to full neuromodulation (f,=>5) sensitivity.

Electrical modulation. We administered electrical modulation as an external current applied
for the duration of the trial. “On-target” modulation was applied to the neuromodulated neuron
population and “random” modulation was applied to a randomly selected group of neurons of equal
size; these could include both neuromodulated or non-neuromodulated neurons. All neurons (both
excitatory and inhibitory) within the selected subpopulation were given identical external current
stimulation. For fixed electrical modulation simulations, a current of magnitude 1 was applied (+1
for excitatory stimulation; -1 for inhibitory).

For graded electrical modulation, networks that did not achieve stimsg at maximum stimulation (-9
units) were assigned a surrogate stimsg value of -10 to calculate correlation to EC50. To account
for possible missed correlation due to this substitution, correlation of EC50 to output at maximum
stimulation (-9) was also calculated (Figure S7).

Data and code availability

The code and RNN models in this work will be made available at https://github. com/tsudacode/
neuromodRNN
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Supplemental Information

Supplementary Figures

Network configuration solves T1
unscaled and T2 when scaled by f

Weight space

f (W)T

f,(w)

Figure S1. Relationship between neuromodulated weight configurations. For the contradictory
end behaviors in response to shared stimuli, as in the modified Go-NoGo task, a single network without
neuromodulation cannot simultaneously learn both tasks as depicted in this schematic by the lack of overlap
between weight space that solves task 1 (T1) and task 2 (T2). By scaling weights in the network by a factor
f, neuromodulation allows overlap between the f-T1 and T2 spaces. The network solves task 1 when weights
are unscaled (T1), and task 2 when weights are scaled (f-T1 N T2).
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Figure S2. Neuromodulation weight scaling mechanism works over a range of factors. (A) A
range of neuromodulation factors were tested on the modified Go-NoGo task. Factors were applied to weights
initialized as described in Methods. (B) All amplifying factors tested supported task learning in a similar
number of training trials. Dampening factors that were either too small (e.g. 1.11) or too large (e.g. 100)
led to longer training. (C) All amplifying factors tested perfect task performance. Dampening factors that
were either too small or too large led to impaired performance, though better than without neuromodulation
(factor=1). Extreme strong dampening effectively silences all transmission between neurons, impairing
information flow in the network. Too little scaling (e.g. 1.11 factor dampening) did not create enough
separation to distinguish the behaviors.
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Figure S3. Spectrum of neuromodulation subpopulation size and factor. (A) Different conforma-
tions of neuromodulation of a single network support multi-behavior task (9-behavior modified Go-NoGo).
Neuromodulation with a single factor (e.g. fnm = 2.5) of non-overlapping and overlapping subpopulations
across the spectrum of sizes could learn the full 9-behavior task, with larger overlapping subpopulations less
consistently learning the full task (“correct/total” refers to independent networks that achieved successful
training loss criteria over total attempted). Neuromodulation of the full network with different factors (fy., €
[1:1:9]) consistently supported the 3 behavior task (5/5 correct/total), but not >3 behavior tasks (4-behavior
0/5; 5-behavior 0/5; 9-behavior 0/5 correct/total). Subpopulation neuromodulation with different factors
(fam € [1:1:9]) could also learn the 9-behavior task with overlapping and non-overlapping subpopulations,
similarly exhibiting less consistent learning with larger overlapping subpopulations. (B) Single factor net-
works test performance on 9-behavior task across networks that achieved training loss criteria. (C) Same as
(B) but for multi-factor networks. (D) Fraction of neurons neuromodulated for >2 conditions across range
of neuromodulated subpopulation sizes. (E) Mean number of conditions a neuron was neuromodulated for
across range of subpopulation sizes. For (D)—(E), 5 replicates per condition. All error bars are SEM.
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Figure S4. Inter-cluster weights and functional clustering for network in Fig. 4. (A) Weight
distribution from each cluster (pre-synaptic) to other clusters (post-synaptic). Clusters 2 and 5 were predom-
inantly composed of inhibitory neurons resulting in inhibitory tone on downstream clusters, while clusters
1, 3, and 4 were predominantly excitatory. (B) Augmentation (perturbation=1.1x) and impairment (i.e.,
synaptic lesions; perturbation € [0.80,0.50,0.10,0.01,0.00]x) of specific clusters led to impairment of per-
formance. For most clusters, increased degree of synaptic impairment led to decreased performance, with
higher sensitivity for stimulus-context associated clusters (Fig. 4f; e.g. cluster 4 for + stim, neuromodulation
off). In some stimulus-contexts, strong impairment or full lesion of clusters led to recovery of performance
(perturbation < 0.10 for clusters 2 and 5 with null stimulus without neuromodulation or positive stimulus
with neuromodulation) suggestive of a counter-intuitive switch in underlying cluster dynamics.
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Figure S5. Independent networks have unique clustering patterns & different network con-
figurations exhibit less selective neurons and complex, overlapping clustering profiles. (A)
Neural selectivity profiles for 3 networks trained independently on the same condition (100% modulated,
2-behavior). All histograms exhibit high selectivity peak. (B) Each network from (A) exhibits a unique
neural activity clustering pattern including number of clusters and excitatory-inhibitory composition of clus-
ters (see Fig. 4f for run 1 cluster heatmap). (C) Selectivity index histograms for example networks with
different configurations and tasks. Compared to a network in which all neurons were neuromodulated trained
on the 2-behavior modified Go-NoGo, network configurations with smaller neuromodulated subpopulations
and more behaviors exhibited less selective neurons and more non-selective neurons. (D) A network with
10% neuromodulated subpopulation trained on the 2-behavior modified Go-NoGo formed 2 activity clusters,
showing high overlap across stimulus-context conditions. (E) The stimulus-context clustering profile for a
network with 10% neuromodulated subpopulations (non-overlapping) trained on the 9-behavior modified
Go-NoGo task. Cluster profiles are complex and highly overlapping. (D)—(E) cluster heatmaps and neuron
type labels are same as (B).
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Figure S6. Variability in network neuromodulatory transitions. Left: Output to positive stimulus at
time point 0.5s of 29 networks at varying levels of neuromodulation. Each network was independently trained
with amplifying neuromodulation factor 9 on the modified Go-NoGo task and then tested at intermediate
neuromdulation levels. Right: Sigmoid fits to raw data with EC50 of each curve indicated by dotted vertical
line. EC50s ranged from 2.1 to 6.5. Slope of sigmoids (o _slope) ranged from 0.9 to 26.3.
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Figure S7. Neuromodulation EC50 versus maximum response to electrical modulation. Some
networks did not reach an output level equivalent to half the response of maximal neuromodulation (EC50)
even at the highest level of electrical modulation of -9 units. To assess all networks electrical modulation

sensitivity in comparison to neuromodulation sensitivity, network output at maximum electrical stimulation
is compared to EC50. Like EC50 vs stimsg, there is no significant correlation (p=0.10).
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Supplemental Appendix

A. Relationship to isolated gain modulation
Gain modulation changes the slope of the unit activation function (the neuron’s “intrinsic excitabil-
ity”) by changing a gain parameter g:

r= f(z;9)
where 7 is the firing rate and x is the synaptic current variable. For the sigmoid activation function
this corresponds to:

B 1

T +e 97

To see the effective change on the activation function of amplifying or dampening the weights we
can compare the effect of gain modulation to weight modulation on the equation that governs
neural dynamics:

T = —T; + Z Wjirji + Wyiu + N(O, 01)
J

If we assume no input and no noise, we get a simplified equation describing neuron dynamics:

TE; = —x; + Z Wiirji
J
Gain modulation g gives:
Ti’i = —x; + Z Wjirji(g)
J

while weight modulation with a neuromodulation factor m gives

Tj?i = —X; + Zm . Wjﬂ“ﬂ(l)

J

To compare each type of modulation, we can consider the modified terms:

1 .
1-r(g) = i (gain effect)
1
m-r(l) = +—5—— (weight effect)
m T m e
1

1 —x—1

- e—z—Inm

These effects are equivalent When

ln(l—m efxflnm>

g=——" (1)

So generally gain modulation, g, is only equivalent to a weight modulation by m if the gain term
is precisely the time varying function of = defined by equation (1). Furthermore, for some values
of m, there is no equivalent g for certain values of z. E.g. for m = 2, g is defined by equation (1)
only for < 0. For arbitrary values of x with fixed, constant g and m:

rji(g) # m - 7ji(1)

except when ¢ = m = 1, i.e., when there is no modulation. Thus, weight neuromodulation and
gain modulation operate through different effects.
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B. Chemical and electrical modulation

Chemical (neuromodulation) and electrical modulation in our network operate in directionally
similar manner with qualitatively different effects. This can be seen by inspecting the equation
governing each neuron i’s synaptic current variable and thereby the network’s activity dynamics:

T = —; + Z WjiTji + Wyiw + N(O, 0.1)
J

For any given neuron we can break up the terms by whether an input neuron is in the neuromod-
ulated subpopulation or not:

TL; = —T; + Z Witk + Z qurqz- + Wi + N(O, 0.1)
k q

where k is the index for non-neuromodulated neurons and ¢ is the index for neuromodulated
neurons.
Neuromodulation in our model acts by scaling the target neurons outgoing weights by a factor f:

TL; = —T; + Z Witk + f - Z Wyirgi + Wyin + N(0,0.1)
k q

Electrical stimulation acts by adding exogenous synaptic current to target neurons. For a given
neuron i in the non-neuromodulated subpopulation, electrical stimulation of the neuromodulated
subpopulation is felt through altered incoming firing rates:

TT; = —T; + Z Wiirk: + Z qurqi,Estim + Wyiu + N(Ov 01)
k q

and a neuron i in the neuromodulated subpopulation is additionally affected through direct stim-
ulation:

TL; = —x; + Z Wiirki + Z Wit qi, Estim + Wit + ugstim + N(0,0.1)
% q

Thus we can see that both chemical and electrical stimulation act through the same term in the
equation that governs neural synaptic currents yet in different manners. Neuromodulation directly
scales presynaptic weighted inputs from neuromoduated neurons, whereas electrical stimulation
acts by altering the firing rate of presynaptic neuromoduated neurons with an additional direct
influence on the synaptic current if the neuron of interest is in the electrically stimulation subpop-
ulation.

The similarities of these forms of modulation (acting through the same terms of the synaptic
current equation) indicates why they can have similar affects on network output in some circum-
stances. Nevertheless, the differences in how they affect the synaptic current equation are propa-
gated through the recurrent connections of the network at each time step which drives the distinct
dynamical changes seen under chemical versus electrical modulation.
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