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22 Abstract

23 Antibiotic treatment in early life influences gastrointestinal (GI) microbial 

24 composition and function. In humans, the resultant intestinal dysbiosis is associated 

25 with an increased risk for certain diseases later in life. The objective of this study was 

26 to determine the temporal effects of antibiotic treatment on the GI microbiome of 

27 young cats. Fecal samples were collected from cats randomly allocated to receive 

28 either amoxicillin/clavulanic acid (20 mg/kg q12h) for 20 days (AMC group; 15 cats) 

29 or doxycycline (10 mg/kg q24h) for 28 days (DOX group;15 cats) as part of the 

30 standard treatment of upper respiratory tract infection. In addition, feces were 

31 collected from healthy control cats (CON group;15 cats). All cats were approximately 

32 two months of age at enrolment. Samples were collected on days 0 (baseline), 20 or 

33 28 (AMC and DOX, respectively; last day of treatment), 60, 120, and 300. DNA was 

34 extracted and sequencing of the 16S rRNA gene and qPCR assays were performed. 

35 Fecal microbial composition was different on the last day of treatment for AMC cats, 

36 and 1 month after the end of antibiotic treatment for DOX cats, compared to CON 

37 cats. Species richness was significantly greater in DOX cats compared to CON cats on 

38 the last day of treatment. Abundance of Enterobacteriales was increased, and that of 

39 Erysipelotrichi was decreased in cats of the AMC group on the last day of treatment 

40 compared to CON cats. The abundance of the phylum Proteobacteria was increased in 

41 cats of the DOX group on days 60 and 120 compared to cats of the CON group. Only 

42 minor differences in abundances between the treatment groups and the control group 

43 were present on day 300. Both antibiotics appear to delay the developmental 

44 progression of the microbiome, and this effect is more profound during treatment with 

45 amoxicillin/clavulanic acid and one month after treatment with doxycycline. Future 
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46 studies are required to determine if these changes influence microbiome function and 

47 whether they have possible effects on disease susceptibility in cats.

48

49 Introduction

50 Antibiotic discovery represents one of the most important achievements in the 

51 history of medicine [1]. However, overuse of antibiotics compromises their health 

52 benefits because of the development and dissemination of antibiotic resistant genes. 

53 The development of multidrug resistant bacteria is associated with higher morbidity, 

54 mortality, and hospitalization costs [2]. Another reason to set boundaries on the 

55 extended use of antibiotics is their impact on the gastrointestinal (GI) microbiome [3]. 

56 The extent that the microbiome is affected by antibiotics has become apparent after 

57 the application of “omics” approaches in research that allow the assessment of whole 

58 microbial communities and their functions [4]. 

59 The GI microbiome is a community of microorganisms and has been called “a 

60 hidden organ” [5]. This community of microorganisms is responsible for maintaining 

61 colonization resistance and produces substances with an impact on the host’s 

62 metabolism, immune system development and response, and appears to participate in 

63 the communication among different organs as well as in the manifestation and 

64 progression of diseases [6-14].

65 The term GI dysbiosis is used to describe the compositional and functional 

66 alterations of the GI microbiome in response to exogenous factors and/or the health 

67 status of the host [15]. Antibiotic-induced dysbiosis is characterized by a decrease in 

68 bacteria beneficial for the host (“health-associated bacteria”), allowing overgrowth of 
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69 potentially pathogenic bacteria, and a shift in microbially derived metabolic products 

70 [15, 16]. Antibiotic-induced microbial shifts can persist long term, and the 

71 abundances of some bacterial taxa might never return to their initial state. Other 

72 members of the microbiome, including the mycobiome and the virome are also 

73 affected by antibiotics, highlighting a global imbalance among members of 

74 microorganisms not directly inhibited by antibiotics [17]. Antibiotic-induced 

75 dysbiosis depends on the spectrum of antibacterial activity, type, duration, dosage, 

76 and route of administration in addition to individual host characteristics [18, 19]. 

77 The GI microbiome appears to be more susceptible to antibiotics when 

78 administered early in life. During that period, maturation of the immune system takes 

79 place concurrently with microbiome maturation. Antibiotics result in exposure of the 

80 host to a reduced number of microbes in the gut, as well as altered microbial signals 

81 by the host’s immune system [20]. In addition, antibiotics administered early in life 

82 appear to delay the developmental progression of the microbiome into an adult-like 

83 state [21, 22]. Previous studies have shown that children exposed to antibiotics were 

84 more likely to develop inflammatory bowel disease [23, 24], obesity [25, 26], or 

85 asthma [27, 28] during childhood. Currently, limited data is available for cats. In one-

86 study, all cats previously treated with amoxicillin/clavulanic acid and pradofloxacin 

87 developed diarrhea after experimental infection with enteropathogenic E.coli in 

88 contrast to non-treated cats, none of which developed clinical signs [29]. This study 

89 highlights that similarly to humans, antibiotic-induced dysbiosis likely reduces 

90 colonization resistance in cats.

91 Previous molecular studies investigating the effects of antibiotics on the feline 

92 GI microbiome have enrolled healthy laboratory born and bred domestic shorthair 

93 cats. In these studies, cats were adults, but belonged to various age groups and were 
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94 fed the same diet for the duration of each study [30-32]. In humans, antibiotics with 

95 an anaerobic spectrum of activity seem to have a more profound and prolonged effect 

96 on the gut microbiome, given that 95% of the GI bacteria are anaerobic [33]. 

97 Administration of clindamycin affected the feline microbiome and metabolome long-

98 term, with changes persisting for at least 2 years after withdrawal of the antibiotic 

99 [31]. Amoxicillin-clavulanic acid is effective mainly against gram positive 

100 microorganisms and microbial shifts were still detected 7 days after its withdrawal 

101 [30]. No studies to date have investigated the effect of doxycycline and antibiotic 

102 treatment in general on the gastrointestinal microbiome of young cats until they reach 

103 maturity.

104 The aim of this study was to describe and compare the fecal microbiome of 

105 cats receiving amoxicillin/clavulanic acid or doxycycline and control cats not 

106 receiving antibiotics and follow them up over a period of 10 months. A second goal 

107 was to describe the normal age-related changes of the feline microbiome changes 

108 during development. 

109

110 Materials and methods

111 Cats 

112 The protocol was reviewed and approved by the Animal Ethics Committee of 

113 the University of Thessaly, Greece (AUP number: 54/13.2.2018). A total of 72 eight-

114 week-old rescue domestic shorthair (DSH) cats were enrolled in the study. Forty-four 

115 out of 72 cats were diagnosed with upper respiratory tract disease (URTD) before 

116 inclusion into the study. Diagnosis was based on a typical clinical presentation, 
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117 including conjunctivitis, blepharospasm, ocular and/or nasal discharge, nasal 

118 congestion, sneezing, and/or coughing. The cats were treated with antibiotics (see 

119 Treatment) as part of the standard treatment for this condition. In addition, 26 

120 clinically healthy cats or cats with very mild URTD that did not require antibiotic 

121 treatment were enrolled as controls.

122 Cats were either housed in foster homes or in individual cages at the Clinic of 

123 Medicine at the Faculty of Veterinary Science of the University of Thessaly. All cats 

124 were eventually adopted into private homes by the end of the study and owners signed 

125 an informed owner consent form. Upon initial enrollment, cats were kept under 

126 observation for a few days in case they developed clinical signs of GI disease. A 

127 physical examination was performed and antiparasitic treatment (Broadline, 

128 Boehringer Ingelheim) was administered to each cat before inclusion into the study. 

129 Data including sex, body weight, body condition score (BCS), presence of diarrhea 

130 and vomiting, temperature, and heart rate were recorded. Evaluation of BCS and fecal 

131 score (FS) was based on previously published scoring systems [34, 35]. Concurrent 

132 health conditions were recorded, and cats were excluded if these were severe enough 

133 to require hospitalization. All cats were on the same diet (GEMON Cat Breeder 

134 Kitten) for the duration of the study, to ensure that differences attributed to diet did 

135 not affect the results. No more than two related cats were included in the same group 

136 to ensure that relatedness did not impact the results. All cats were vaccinated 

137 according to recent vaccination guidelines [36].

138 Treatments 

139 Cats with URTD were randomly allocated to receive either 

140 amoxicillin/clavulanate at 20 mg/kg q 12 h for 20 days (n=23, AMC group) or 
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141 doxycycline at 10 mg/kg q 24 h for 28 days (n=21, DOX group). These antibiotics 

142 were chosen because they constitute recognized first line treatments for URTD in cats 

143 [37]. In addition, 26 clinically healthy cats were enrolled as controls and did not 

144 receive any antibiotics during the study period (n=26, CON group). 

145 Sample collection and follow-up period 

146 Fecal samples were collected from each cat on days: 0 (all groups; one day 

147 after initial presentation and antiparasitic treatment), 20 (AMC group; last day of 

148 antibiotic treatment for AMC group), 28 (DOX and CON groups, last day of 

149 antibiotic treatment for DOX group), 60 (all groups), 120 (all groups), and 300 (all 

150 groups). Naturally voided fecal samples were collected from the litter box and placed 

151 into Eppendorf tubes. For cats that were adopted, owners were instructed to collect 

152 fecal samples from the litter box, freeze them over night and either bring them to the 

153 clinic or ship them packed with icepacks by overnight courier. Upon receipt, samples 

154 were immediately stored at -80oC pending analysis. On each sampling day, cats 

155 underwent a physical examination and the same data as for initial presentation were 

156 collected for all cats at all sampling times. 

157 DNA extraction

158 Genomic DNA was extracted from 100 mg of each fecal sample using a 

159 MoBio PowerSoil® DNA isolation kit (Mo Bio Laboratories, USA) according to the 

160 manufacturer’s instructions. 

161 16S rRNA sequencing

162 Illumina sequencing of the bacterial 16S rRNA genes was performed using 

163 primers 515F (5’-GTGYCAGCMGCCGCGGTAA) [38] to 806RB (5’-
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164 GGACTACNVGGGTWTCTAAT) [39] at the MR DNA laboratory (Shallowater, 

165 TX). 

166 Sequences were processed and analyzed using a Quantitative Insights Into 

167 Microbial Ecology 2 (QIIME 2) [40] v 2018.6 pipeline. Briefly, the sequences were 

168 demultiplexed and the ASV table was created using DADA2 [41]. Prior to 

169 downstream analysis, sequences assigned as chloroplast, mitochondria, and low 

170 abundance ASVs, containing less than 0.01% of the total reads in the dataset were 

171 removed. All samples were rarefied to even sequencing depth, based on the lowest 

172 read depth of samples, to 8,275 sequences per sample. The raw sequences were 

173 uploaded to NCBI Sequence Read Archive under project number SRP16253.

174 Alpha diversity was measured with the Chao1 (richness), Shannon diversity 

175 (evenness) and observed ASVs (richness) metrics within QIIME2. Beta diversity was 

176 evaluated with the weighted and unweighted phylogeny-based UniFrac [42] distance 

177 metric and visualized using Principal Coordinate Analysis (PCoA) plots, generated 

178 within QIIME2. 

179 Quantitative PCR (qPCR)

180 Quantitative PCRs were performed for selected bacterial groups that are 

181 commonly altered in canine and feline gastrointestinal disorders: total bacteria, 

182 Faecalibacterium spp., Turicibacter spp., Streptococcus spp., Escherichia coli, 

183 Blautia spp., Fusobacterium spp., Clostridium hiranonis, Bifidobacterium spp., and 

184 Bacteroides spp. The qPCR cycling, the oligonucleotide sequences of primers and 

185 probes, and respective annealing temperatures for selected bacterial groups have been 

186 described previously [43, 44].
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187 Statistical analysis

188 Statistical analyses were performed using statistical software packages (SPSS 

189 version 23.0; and Prism version 9.0, GraphPad Software). For clinical data, a 

190 Kolmogorov-Smirnov test was used to assess the normality assumption. Clinical data 

191 did not pass normality testing, and therefore Kruskal-Wallis tests were used for 

192 among group comparisons while Friedman tests were used for within group 

193 comparisons. Pairwise comparisons were performed using Dunn’s post hoc tests to 

194 determine which group categories were significantly different from each other as well 

195 as which time points were significantly different. 

196 To determine differences in microbiome composition among and within the 

197 study groups, the analysis of similarities (ANOSIM) was performed using the 

198 statistical software package PRIMER 7 (PRIMER-E Ltd., Lutton, UK) based on the 

199 unweighted and weighted UniFrac distance matrices. Differences in alpha diversity 

200 indices and differences in the abundances of bacterial taxa among and within groups 

201 were determined using a linear mixed model. Data were rank transformed prior to 

202 statistical analyses due to violation of the normality assumptions. Microbial 

203 compositions were initially screened for differences among groups with p values 

204 adjusted for multiple hypothesis testing using the Benjamini and Hochberg False 

205 discovery rate (FDR) and overall significance set at p < 0.05. For comparisons that 

206 were significant after FDR adjustment, a linear mixed model was fit including time, 

207 group, and the interaction between time and group as fixed effects and cat as a 

208 random effect. Multiple pairwise post hoc comparisons were adjusted using 

209 Bonferroni correction. 

210

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


10

211 Results

212 Clinical data

213 Twenty-seven cats were excluded from the study because of owner non-

214 compliance (7/72), death (9/72; 1 due to car accident, 1 due to fall from a balcony, 1 

215 due to feline infectious peritonitis, 1 due to heart failure, while 5 had unknown cause 

216 of death), they required a second course of antibiotics (5/72), use of antifungal 

217 treatment (3/72), or escape from home (3/72). Fifteen cats in each treatment group (45 

218 cats total) completed the study. These included 25 males and 20 females. 

219 Metagenomic analysis and clinical data assessment were only performed for the cats 

220 that completed the study. 

221 On day 0, cats of the AMC group had significantly lower body weights (BW) 

222 (median 0.61 kg, range 0.37-0.95 kg) compared to CON cats (median 0.74 kg, range 

223 0.52-1.4 kg) (p =0.026; Table 1). No other BW or BCS differences were identified 

224 among groups. On day 0, cats belonging to the DOX group had a significantly higher 

225 fecal score (FS) (median 4/7, range 2/7-7/7), i.e., had more commonly abnormal fecal 

226 consistency, compared to CON cats (median 2/7, range 1/7-6/7) (p=0.045). On days 

227 20/28 and 60, AMC cats had a significantly higher FS (day 20, median 4/7, range 1/7-

228 6/7; day 60, median 3/7, range 1/7-6/7) compared to CON cats (days 28 and 60, 

229 median 2/7, range 1/7-3/7) (p <0.05). Clinical data and p values from the remaining 

230 timepoints are listed in Table 1. 

231 Table 1: Clinical characteristics of cats included in the study. 

Body weight (kg)
AMC DOX CON

Median Range Median Range Median Range P value

Day 0 0.61 0.37-0.95 0.68 0.39-1.20 0.74 0.52-1.40 0.026
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Day 20/28 1.00 0.80-1.56 1.18 0.87-1.73 1.26 0.77-1.60 0.217
Day 60 1.70 1.36-1.80 1.70 1.25-2.00 1.92 1.15-2.50 0.120
Day 120 2.50 1.98-3.79 2.62 1.99-3.05 2.80 1.69-3.80 0.746
Day 300 4.10 2.70-5.75 4.19 3.33-5.80 4.00 2.30-6.00 0.797

Body condition score (1 to 9)
AMC DOX CON

Median Range Median Range Median Range P value

Day 0 4 2-6 4 3-5 4 3-5 0.107
Day 20/28 4 4-5 4 4-5 4 4-5 0.717

Day 60 4 4-6 4 4-5 4 3-5 0.651
Day 120 4 4-6 4 4-6 4 4-6 0.935
Day 300 4 3-7 5 4-6 5 3-6 0.281

Fecal score (1 to 7)
AMC DOX CON

Median Range Median Range Median Range P value

Day 0 3 2-6 4 2-7 2 1-6 0.045
Day 20/28 4 1-6 3 2-5 2 1-3 <0.001

Day 60 3 1-6 3 1-5 2 1-3 0.035
Day 120 2 1-5 2 1-5 2 1-4 0.221
Day 300 2 1-5 2 1-3 2 1-3 0.195

232 AMC, cats treated with amoxicillin/clavulanic acid for 20 days; DOX, cats treated 

233 with doxycycline for 28 days; CON, healthy cats that did not receive antibiotics. 

234 Bolded p-values indicate a statistically significant difference between groups.

235 1. Effect of aging on the microbiome of untreated cats

236 1.A) Sequence analysis - alpha and beta diversity

237 High interindividual variations in bacterial abundances were observed in all 

238 groups on day 0 and within the CON group significant changes occurred over time. 

239 These changes were attributed to the process of microbial maturation, therefore results 

240 from this group are discussed separately. In total, the sequence analysis of the 225 

241 fecal samples yielded 1,861,875 quality sequences. There were no differences in any 

242 of the species richness and evenness indices over time in control cats (Table 2). 

243 However, the phylogenetic community structure clustered significantly different over 

244 time (p < 0.05) and was increasingly more distinct as cats were getting older based on 
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245 the increasing ANOSIM effect size of unweighted and weighted UniFrac distances 

246 (Fig 1). 

247 Table 2: Alpha diversity metrics (mean ± standard deviation) of control cats. 

248 There were no significant changes in indices of diversity over time

Metric Day 0 Day 28 Day 60 Day 120 Day 300 P value

Observed 
ASVs

100.2 
± 33.2

99.9 
± 21.2

108.2 
± 22.9

108.5 
± 19.5

112.5 
± 19.8 0.462

Chao1 100.4
± 33.2 

100.8 
± 21.8

109.2 
± 23

109.1 
± 19.7

113.2 
± 20.4 0.510

Shannon 
index 6.1 ±  0.4 6.2 ± 0.3 6.3 ± 0.3 6.2 ± 0.3 6.3 ± 0.3 0.593

249

250 Fig 1. Principal Coordinate Analysis of unweighted UniFrac distances of 16S 

251 rRNA genes representing the differences in microbial community composition 

252 within the control group on day 0 (red circles), day 28 (blue circles), 60 (yellow 

253 circles), 120 (green circles), and 300 (purple circles).

254

255 1.B) Sequence analysis – abundance of individual bacterial taxa

256 At 2 months of age (day 0) the most prevalent phylum (regardless of the 

257 group) was Firmicutes (63.5%), followed by Actinobacteria (13.9%), Bacteroidetes 

258 (11.6%), Proteobacteria (6.0%), and Fusobacteria (4.9%). The abundance of 

259 Proteobacteria was significantly reduced to less than 1% (p = 0.009) by 4 months of 

260 age in the control cats (Fig 2). Table S1 contains summary statistics for all taxonomic 

261 classifications (i.e., phylum, class, order, family, genus, and species).

262 Clostridia, Clostridiales, and Lachnospiraceae, were the most prevalent class, 

263 order, and family, respectively, present in fecal samples from control cats during their 

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


13

264 first year of age. In addition, Blautia spp., Collinsella spp., Lactobacillus spp., 

265 Bifidobacterium spp., Bacteroides spp., and unclassified Lachnospiraceae constituted 

266 the predominant genera.

267 The majority of differences in the abundances of bacteria within the control 

268 cats occurred between 2 and 6 months of age. The abundance of 

269 Gammaproteobacteria significantly decreased from 5.5% at 2 months to 3.2% at 3 

270 months of age (p = 0.007) and that of Enterobacteriales from 3.7% to less than 0.5% 

271 (p = 0.009) during the same period. The abundance of Erysipelotrichi increased from 

272 1.9% at 2 months to 5% at 3 months of age (p = 0.030) (Fig 2). The abundance of 

273 Bacilli reduced from 16.4% at 3 months to 3.7% at 4 months of age (p = 0.018). The 

274 only changes observed after 6 months of age included an increase in the abundance of 

275 Aeromonadales (p = 0.002) (Fig 2). 

276

277 Fig 2. Bacterial groups that significantly changed over time within the control 

278 group based on sequence analysis. Means and standard deviations are displayed.

279

280 1.C) Quantitative polymerase chain reaction (qPCR) for selected 

281 bacterial groups

282 In the CON group, E.coli decreased (p < 0.001), and Faecalibacterium spp. 

283 increased (p = 0.032) from 2 to 3 months of age (Fig 3). Table S2 contains a summary 

284 of all bacterial taxa analyzed by qPCR.

285

286 Fig 3. Bacterial groups that significantly changed over time within the control 

287 group based on qPCR analysis. Means and standard deviations are displayed.
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288

289 2. Effect of antibiotics on the GI microbiome 

290 The effect of antibiotics on the GI microbiota was assessed based on 

291 comparisons among groups on the same timepoints. Because the GI microbiome 

292 normally changes over time as it evolves towards maturity, overtime comparisons 

293 withing the same group were considered to not accurately reflect the effects of 

294 antibiotics.

295 A high interindividual variation of bacterial abundances was observed in all 

296 groups on day 0. The alpha diversity indices (Table S3), the ANOSIM of unweighted 

297 and weighted UniFrac distances (Table S4, Fig S1), and bacterial abundances (Table 

298 S1) did not differ significantly among groups on day 0. 

299 2.1.Amoxicillin/clavulanic acid group 

300 2.1.A) Sequence analysis - alpha and beta diversity 

301 The AMC group showed reduced evenness on the last day of treatment (day 20) 

302 compared to DOX and CON groups; this decrease approached but did not reach 

303 statistical significance (Shannon index, p = 0.061) (Table S3, Fig 4). A statistically 

304 significant difference in microbial community composition on the last day of 

305 treatment (day 20) was observed for AMC cats, compared to both DOX (ANOSIM R 

306 = 0.109, p = 0.011) and CON (ANOSIM R = 0.188, p = 0.001) cats based on 

307 unweighted analysis (Table S4, Fig 5). On days 60 and 300, there was a less distinct 

308 clustering of the microbiome in AMC cats compared to CON cats (based on 

309 decreasing ANOSIM effect size) as demonstrated by unweighted (ANOSIM day 60 R 

310 = 0.056, p = 0.075, ANOSIM day 300 R = 0.077, p = 0.058) and weighted distances 
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311 (ANOSIM day 300 R = 0.057, p = 0.074), but this difference did not reach statistical 

312 significance (Fig S1).

313 Fig 4. Alpha diversity differences between cats treated with 

314 amoxicillin/clavulanic acid (black), cats treated with doxycycline (blue), and 

315 healthy control cats (red). Means and standard deviations within each group are 

316 displayed.

317 Fig 5. Principal Coordinate analysis (PCoA) plot of unweighted Unifrac distance 

318 in cats treated with amoxicillin clavulanic acid (red = AMC), cats treated with 

319 doxycycline (yellow = DOX), and control cats (blue = CON) on day 20/28. 

320

321 2.1.B) Sequence analysis - abundance of individual bacterial taxa 

322 Amoxicillin/clavulanic acid had a significant impact on the GI microbiome. In 

323 fact, the normal age-related changes of the microbiome observed in CON cats were 

324 not observed in this group. Erysipelotrichi (p = 0.008), Catenibacterium spp. (p = 

325 0.045), and unclassified Lachnospiraceae (p = 0.002) were detected in significantly 

326 lower abundances, whereas Enterobacteriales (p=0.010) was found in significantly 

327 higher abundances in feces from AMC cats compared to CON cats on the last day of 

328 treatment (day 20/28) (Figs 6 and 7). Three (day 120) and 9 months (day 300) after 

329 amoxicillin/clavulanic acid discontinuation, AMC cats harbored significantly higher 

330 abundances of unclassified Collinsella spp. compared to CON cats (Fig 7). 

331 Most of the differences in bacterial abundances between AMC and CON 

332 groups were found during treatment, (from 2 to 3 months of age), while after that 

333 period only minor changes were observed. In AMC cats, Gammaproteobacteria 
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334 abundances remained the same during treatment (i.e., from 2 to 3 months) 

335 representing approximately 9% of total sequences, while in CON cats they decreased 

336 during the same period, representing 3% of total sequences (p = 0.009). At 1 month 

337 after antibiotic withdrawal (4 months of age), Gammaproteobacteria decreased to 

338 <1% in AMC cats (p = 0.030), reaching similar levels to those in CON cats at this age 

339 (Fig 7). Erysipelotrichi abundances represented 2.5% of the total sequences in AMC 

340 cats before treatment, and decreased to less than 2% after treatment, while in CON 

341 cats, Erysipelotrichi abundances increased at this age. On day 60, both groups 

342 harbored similar abundances of this bacterium (Fig 6). 

343

344 Fig 6. Bacterial groups that showed a significantly decreased abundance after 

345 antibiotic treatment (AMC and DOX group) compared to the control group 

346 (CON group). Means and standard deviations within each group are displayed. 

347 Fig 7. Bacterial groups that showed a significantly increased abundance after 

348 antibiotic treatment (AMC and DOX groups) compared to the control group 

349 (CON group). Means and standard deviations within each group are displayed.

350

351 2.1.C) qPCR for selected bacterial groups

352 On the last day of treatment, lower total bacterial counts (p = 0.003) and higher 

353 abundances of E. coli (p = 0.002) were detected in the feces of AMC cats compared to 

354 CON cats (Fig 8). 

355 Bacterial abundances in the AMC group demonstrated a different pattern 

356 compared to the CON group. In the AMC group, E. coli abundances did not change 
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357 between 2 to 3 months of age (i.e., during treatment), and then significantly decreased 

358 at 4 months of age (p = 0.012) (Fig 8). 

359 Fig 8. Fecal abundances of selected bacterial taxa among cats treated with 

360 amoxicillin/clavulanic acid (AMC), cats treated with doxycycline (DOX), and 

361 healthy cats (CON) analyzed with qPCR. Means and standard deviations within 

362 each group are displayed.

363

364 2.2. Doxycycline group

365 2.2.A) Sequence analysis – alpha and beta diversity

366 DOX cats had a significantly higher species richness (observed ASVs, p = 

367 0.025; Chao1, p = 0.029) (Table S3, Fig 4) on the last day of treatment and a different 

368 clustering of the microbiome 1 month after treatment (day 60) compared to CON cats 

369 (ANOSIM R = 0.100, p = 0.021) (Table S4, Fig 9).

370

371 Fig 9. Principal Coordinate analysis (PCoA) plot of weighted Unifrac distances 

372 in cats treated with amoxicillin/clavulanic acid (red = AMC), cats treated with 

373 doxycycline (yellow = DOX), and control cats (blue = CON) on day 60. 

374

375 2.2.B) Sequence analysis – abundance of individual bacterial taxa 

376 Doxycycline caused pronounced changes in the abundances of bacterial 

377 communities, but its effects appeared 1 month after its discontinuation. 

378 Catenibacterim spp., and unclassified Lachnospiraceae spp. (both p = 0.039) were 

379 detected at significantly lower abundances whereas Proteobacteria (p = 0.001) and 
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380 Enterobacteriales (p = 0.018) at significantly higher abundances in the feces of DOX 

381 cats compared to CON cats on day 60 (Figs 6,7). The increase in the abundance of 

382 Proteobacteria persisted for 3 months after antibiotic withdrawal (p = 0.026). In 

383 addition, at 3 and 9 months after antibiotic withdrawal, the abundance of unclassified 

384 Collinsella spp. was significantly higher in cats of the DOX group compared to cats 

385 of the CON group (p = 0.025) (Fig 7). Unclassified Bulleidia spp. were detected at 

386 higher abundances (p = 0.023) in DOX cats 9 months after its discontinuation (Fig 6). 

387 Fig 10 shows a percentage plot of bacterial abundances at a class level among groups.   

388 Fig 10. Relative abundance of bacterial taxa at a class level among groups.

389

390 2.2.C) qPCR for selected bacterial groups 

391 On day 60, higher E. coli abundances (p = 0.035) were found in DOX cats 

392 compared to CON cats (Fig 8).  

393

394 Discussion

395 Our goals were to describe the effects of treatment with amoxicillin/clavulanic 

396 acid or doxycycline on the GI microbiome of young cats and the microbial recovery 

397 after antibiotic exposure early in life. Our study showed substantial changes in the GI 

398 microbiome from 2 months until one year of age in cats, with antibiotics having a 

399 differential impact on the developing GI microbiome. Amoxicillin/clavulanic acid 

400 caused pronounced effects during treatment while the effects of doxycycline appeared 

401 1 month after its withdrawal. Both antibiotics mainly affected members of Firmicutes 

402 and Proteobacteria and resulted in a delay in the developmental progression of the 

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


19

403 microbiome compared to the pattern of microbial changes observed over time in cats 

404 not treated with antibiotics. 

405 Importantly, a high interindividual variation in bacterial abundances was 

406 observed in cats at 2 months of age (before exposure to antibiotics). In humans and 

407 dogs, during the phase of microbiota maturation, high-interindividual differences in 

408 bacterial abundances occur [45-47], therefore the large variation observed in our study 

409 likely represents an immature microbiome in cats at 2 months of age. In addition, the 

410 largest shifts in the GI microbiota in the control cats occurred during the age of 2 to 6-

411 months suggesting that the normal GI microbiome evolves in kittens and reaches 

412 maturity around the age of 6 months. Although conflicting evidence exists about 

413 whether the microbiome reaches an adult-like state at the end of the weaning period in 

414 dogs and cats [8, 48, 49], in a previous canine study, 2-month-old puppies still 

415 harbored a significantly different microbiome compared to adult dogs [45]. 

416 In adult humans, the abundances of approximately 70% of the GI bacterial 

417 members is relatively stable for at least 12 months [8]. Therefore, in contrast to adult 

418 cats, the duration of antibiotic effects on the developing GI microbiome could only be 

419 investigated by evaluating a control group to adjust for age-related changes. The fact 

420 that there was a large variation in microbial community composition at baseline 

421 among cats likely led to unique responses to antibiotics. The microbiome is 

422 considered as unique as an individual’s fingerprint [50], and during the maturation 

423 period, unpredictable shifts could occur that have not been adequately described in 

424 cats. Despite the high variability, the core bacterial taxa in cats of our study were 

425 Firmicutes and Actinobacteria from 2 months until 1 year of age. This is in agreement 

426 with previous studies investigating the effects of dietary nutrient composition [48, 51, 

427 52], sex, and sexual status [49] on the fecal microbiome of young cats.  
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428 Current knowledge suggests that the first microbes colonizing the GI tract are 

429 mainly facultative anaerobic bacteria that reduce oxygen concentrations in the gut and 

430 allow for successful colonization of the obligative anaerobic bacteria [53]. The 

431 phylum Proteobacteria, which is comprised by facultative and obligative anaerobic 

432 bacteria, is among the first colonizers of the GI tract in humans [53, 54]. At the 

433 weaning period and after the introduction of a solid diet (i.e., around 5-6 months of 

434 age), the abundance of Proteobacteria gradually decreases [55]. Our finding of an age-

435 dependent decrease in bacterial taxa belonging to Proteobacteria (i.e., 

436 Enterobacteriales, Escherichia coli) observed between 2 to 4 months of age in control 

437 cats in this study is in agreement with these data in humans. In addition, a concurrent 

438 increase in the abundance of taxa belonging to Firmicutes (i.e., Erysipelotrichales) 

439 occurred in the same group during the same period, which has also been reported by 

440 another study in cats of a similar age and reflects the introduction of dietary 

441 macronutrients that are utilized by these bacteria [51].

442 Amoxicillin is a semisynthetic penicillin that is active against some non-beta-

443 lactamase producing gram-positive bacteria and few gram-negative bacteria. The 

444 addition of a beta lactamase inhibitor, such as clavulanic acid, increases the spectrum 

445 of activity of amoxicillin [56]. Doxycycline belongs to tetracyclines, a class of 

446 bacteriostatic antibiotics with broad spectrum activity against bacteria, rickettsiae, and 

447 protozoal organisms. Tetracyclines are also known for their anti-inflammatory 

448 properties, which seem to contribute to their therapeutic efficacy [57]. These 

449 antibiotics constitute two of the most commonly prescribed antibiotics in young cats. 

450 Treatment with amoxicillin/clavulanic acid led to a trend in reduced species 

451 richness and evenness, although this varied among cats and it did not reach statistical 

452 significance. Similarly, in one study in adult laboratory cats, amoxicillin/clavulanic 
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453 acid for 7 days reduced the number of different species observed and this effect 

454 persisted for 7 days after discontinuation of the antibiotic [30]. In our study, species 

455 richness indices were indistinguishable from untreated cats by 1 month after 

456 discontinuation of amoxicillin/clavulanic acid.

457 Doxycycline had a different effect on the GI microbiome. Increased 

458 abundance of different species were observed by the end of treatment. Antibiotics, 

459 including doxycycline and amoxicillin most commonly either decrease [58-62], or do 

460 not have any effect on species richness [63]. Only few studies have reported an 

461 increase in species richness indices [64, 65]. In our study, doxycycline had no effect 

462 on bacterial abundances and community composition on the last day of the treatment 

463 period (day 28). Alternatively, the lack of an effect of doxycycline on bacterial genera 

464 that would be expected to decrease as shown in control cats, could be responsible for 

465 the observed increased species richness in doxycycline-treated cats. The bloom of 

466 these genera might be attributed either to resistance to tetracyclines or to the 

467 concurrent decrease of some bacteria that produce antimicrobial peptides thus 

468 allowing members of these genera to remain at increased levels [66]. 

469 Microbial community composition was distinct in cats treated with 

470 amoxicillin/clavulanic acid and indistinguishable in cats treated with doxycycline 

471 compared to control cats on the last day of treatment. Interestingly, the effect of 

472 doxycycline was not evident until 1 month after its discontinuation of the drug. 

473 Similar results have been described in a single study in mice, where the most 

474 profound changes in microbial community composition started 1 month after 

475 doxycycline discontinuation [67]. In addition, in our study, a trend for significant 

476 differences in microbial community composition were observed in 

477 amoxicillin/clavulanic acid-treated cats 3 and 9 months after antibiotic withdrawal. 
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478 Contradictory findings exist in the literature with humans, laboratory animals and in 

479 vitro studies reporting high interindividual effects [68], no effects [69, 70], only short-

480 term effects [62, 65], or both short- and long-term effects on microbial composition 

481 [60, 71, 72] after administration of amoxicillin with or without clavulanic acid. In a 

482 study in rats, a 7-day course of amoxicillin during the weaning period caused transient 

483 alterations in microbial composition that resolved by 20 days after its discontinuation 

484 [61]. In another study in infants, a 5- to 8-day course of amoxicillin caused long-term 

485 changes in microbial composition that persisted for 6 months after treatment 

486 withdrawal [72]. 

487 While the total abundance of the phylum Firmicutes was not significantly 

488 altered, certain bacterial members of this phylum showed significant shifts in response 

489 to antibiotics. Amoxicillin/clavulanic acid and doxycycline administration caused a 

490 transient decrease of the abundance of the order Erysipelotrichales and its sub-groups 

491 Erysipelotrichaceae and Catenibacterium spp. The family Erysipelotrichaceae 

492 contains bile salt hydrolase (BSH) genes, and this enzyme is responsible for the 

493 deconjugation of primary bile acids [73, 74]. Thus, the decrease observed could 

494 potentially lead to increased concentrations of deconjugated primary bile acids in the 

495 gut. In addition to potential bile acid dysmetabolism in cats treated with antibiotics, 

496 one of the main converters of primary bile acids into secondary bile acids in dogs and 

497 cats is Clostridium hiranonis, which showed a decreased abundance in response to 

498 both antibiotics in our study, although this change did not reach statistical significance 

499 for either treatment [75]. Families belonging to Clostridiales were affected by 

500 antibiotics with a significant decrease in unclassified Lachnospiraceae. The family 

501 Lachnospiraceae was the predominant family present at all time points in all groups. 

502 Members of this family ferment carbohydrates leading to the production of butyrate 

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


23

503 [76]. Butyrate is one of the main short chain fatty acids (SCFAs) in the gut and has 

504 anti-inflammatory properties, is a major energy source for colonocytes, and its 

505 absence causes autophagy of epithelial intestinal cells in germ-free mice [77, 78]. As 

506 a result, SCFAs might be another main metabolic class influenced by antibiotic 

507 treatment. A more comprehensive picture of the antibiotic effects on the GI 

508 microbiome could therefore be obtained by applying other “omics” approaches 

509 including metabolomic analysis leading to a better understanding of the metabolic 

510 pathways affected by antibiotics. 

511 Among Actinobacteria, the abundance of unclassified Collinsella spp. was 

512 higher in both antibiotic-treated groups than in controls at 3 months after 

513 discontinuation of treatment. This effect persisted in the amoxicillin-clavulanic acid 

514 group for 9 months. Early colonization with Collinsella spp. within the first 6 months 

515 of life is associated with increased adiposity in humans, [55] and also increased 

516 Collinsella spp. abundances have been reported in cats with diarrhea [79, 80]. 

517 Based both on sequencing and qPCR analysis, bacterial taxa belonging to 

518 Proteobacteria (Gammaproteobacteria, order Enterobacteriales, family 

519 Enterobacteriaceae, Escherichia coli) were found at significantly higher abundances 

520 on the last day of treatment (20 days) for amoxicillin/clavulanic acid and at 3 months 

521 after discontinuation of doxycycline before decreasing to similar abundances to that 

522 of control cats. The family Enterobacteriaceae is the most common microbial member 

523 that increases in abundance after antibiotic treatment in humans regardless of the 

524 antibiotic class [81]. In dogs, metronidazole [82] and amoxicillin [83], but not tylosin 

525 [84, 85], are reported to increase the abundance of Enterobacteriaceae. In cats, this 

526 effect has been observed for amoxicillin [30] and clindamycin [31, 32] with the latter 

527 leading to a 2-months persistent increase in Enterobacteriaceae [32]. The phylum 
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528 Proteobacteria encompasses some of the most well-known pathogens [54] and 

529 members of this phylum are commonly increased in dogs [86-91] and cats with GI 

530 disease [79, 80, 92-94], as well as during consumption of high-protein, canned and 

531 raw diets [48, 51, 52, 95]. Both antibiotic treated groups had higher fecal scores 

532 during treatment compared to healthy cats, therefore episodes of diarrhea may be 

533 associated with increased abundances of Proteobacteria members. 

534 Previous studies in humans have shown that antibiotics delay the 

535 developmental progression of the microbiome into an adult-like state [21, 22]. In 

536 agreement with these findings and compared to untreated cats of our study, a delay in 

537 maturation was observed in both antibiotic-treated groups. This delay was 

538 characterized by reduced abundances of taxa belonging to Firmicutes and increased 

539 abundances of taxa belonging to Proteobacteria. The most profound delay occurred 

540 between 2 to 3 months of age in the amoxicillin/clavulanic acid-treated cats and 

541 between 3 to 6 months of age in the doxycycline-treated cats. 

542 Our study had some limitations. All cats were stray at study initiation; thus, 

543 their exact date of birth was unknown and slight differences in the enrollment age 

544 might have influenced the microbiota composition. Some cats were malnourished, and 

545 malnourishment has been associated with a persistently immature microbiome in 

546 children [96]. In addition, some cats were found at a very young age and required 

547 formula feeding, which in children is also reported to impact microbiome colonization 

548 compared to breastfeeding [97]. The maternal diet of cats also has an impact on the 

549 microbiome of the offspring until its 17th week of age [98] and in our study the 

550 maternal dietary status was unknown. Although the above factors have been 

551 investigated in humans, no studies regarding their impact on the feline microbiota 
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552 exist. Finally, cats treated with doxycycline had a significantly higher fecal scores at 

553 baseline, which might also have influenced the abundance of some bacterial taxa. 

554 Conclusion

555 Overall, our results indicate that the GI microbiome of cats changes after 2 

556 months of age and reaches an adult-like state around 6 months of age.  

557 Amoxicillin/clavulanic acid and doxycycline treatment early in life significantly 

558 affected the developing microbiome richness and composition in cats. The abundance 

559 of members of Firmicutes decreased and that of members of Proteobacteria increased 

560 after 20 days of amoxicillin/clavulanic acid treatment and 1 month after a 28-day 

561 course of doxycycline. Only minor changes were observed 9 months after 

562 amoxicillin/clavulanic acid or doxycycline discontinuation with an increase in the 

563 abundance of unclassified Collinsella spp. and unclassified Bulleidia spp., 

564 respectively. Our results suggest that doxycycline had a delayed impact whereas 

565 amoxicillin/clavulanic acid had a more immediate impact on bacterial community 

566 composition and only minor changes persisted 9 months after discontinuation of 

567 either antibiotic. Future studies utilizing additional approaches to gain a better 

568 understanding of the microbial functional changes caused by antibiotics would be 

569 useful.            
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913 Supporting information 

914 S1 Fig. Beta diversity indices among groups. A) Principal Coordinate 

915 Analysis of unweighted UniFrac distances of 16S rRNA genes representing the 

916 difference in microbial communities among cats treated with amoxicillin clavulanic 

917 acid (blue circles), cats treated with doxycycline (yellow circles), and healthy control 

918 cats (red circles) on days 20/28 (last day of treatment), 60, 120, and 300. B) Principal 

919 Coordinate Analysis of weighted UniFrac distances of 16S rRNA genes representing 

920 the difference in microbial communities among cats treated with amoxicillin 

921 clavulanic acid (blue circles), cats treated with doxycycline (yellow circles), and 

922 healthy control cats (red circles) on days 20/28 (last day of treatment), 60, 120, and 

923 300.

924 S1 Table. Summary statistics of sequencing data describing the mean 

925 percent and standard deviation of sequences belonging to antibiotic-treated 

926 (AMC and DOX groups) and healthy (CON group) cats.

927 S2 Table. Summary statistics of qPCR data describing the mean log 

928 abundance and standard deviation of bacterial groups belonging to antibiotic-

929 treated (AMC and DOX groups) and healthy (CON group) cats. 

930 S3 Table. Alpha diversity metrics (mean ± standard deviation). CON, 

931 healthy cats that did not receive antibiotics; AMC, cats treated with 

932 amoxicillin/clavulanic acid for 20 days; DOX, cats treated with doxycycline for 

933 28 days.

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


34

934 S4 Table: Beta diversity differences. CON, healthy cats that did not 

935 receive antibiotics; AMC, cats treated with amoxicillin/clavulanic acid for 20 

936 days; DOX, cats treated with doxycycline for 28 days.

937

USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115


USC 105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 

The copyright holder for this preprintthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446115doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446115

