
1     Cook et al. 
 

1 Email: jcook@usgs.gov   
 

28 May 2021 1 
Jonathan D. Cook 2 
U.S. Geological Survey Patuxent Wildlife Research Center 3 
12100 Beech Forest Rd 4 
Laurel, MD 20708 USA 5 
jcook@usgs.gov 6 
 7 
RH: Cook et al. • Decision analysis guides disease risk assessments 8 
 9 
Evaluating the risk of SARS-CoV-2 transmission to bats using a decision analytical 10 
framework 11 
 12 
JONATHAN D. COOK1, U.S. Geological Survey, Eastern Ecological Science Center at the 13 
Patuxent Research Refuge, Laurel, MD 20708, USA 14 

 15 
EVAN H. CAMPBELL GRANT, U.S. Geological Survey, Eastern Ecological Science Center at 16 
the S.O. Conte Research Laboratory, Turners Falls, MA 01376, USA 17 

 18 
JEREMY T. H. COLEMAN, U.S. Fish and Wildlife Service, Hadley, MA 01035, USA 19 
 20 
JONATHAN M. SLEEMAN, U.S. Geological Survey, National Wildlife Health Center, 21 
Madison, WI 53711, USA 22 

 23 
MICHAEL C. RUNGE, U.S. Geological Survey, Eastern Ecological Science Center at the 24 
Patuxent Research Refuge, Laurel, MD 20708, USA 25 
 26 
ABSTRACT Preventing wildlife disease outbreaks is a priority issue for natural resource 27 

agencies, and management decisions can be urgent, especially in epidemic circumstances. With 28 

the emergence of SARS-CoV-2, wildlife agencies were concerned whether the activities they 29 

authorize might increase the risk of viral transmission from humans to North American bats but 30 

had a limited amount of time in which to make decisions. We provide a description of how 31 

decision analysis provides a powerful framework to analyze and re-analyze complex natural 32 

resource management problems as knowledge evolves. Coupled with expert judgment and 33 

avenues for the rapid release of information, risk assessment can provide timely scientific 34 

information for evolving decisions. In April 2020, the first rapid risk assessment was conducted 35 

to evaluate the risk of transmission of SARS-CoV-2 from humans to North American bats. 36 
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Based on the best available information, and relying heavily on formal expert judgment, the risk 37 

assessment found a small possibility of transmission during summer work activities. Following 38 

that assessment, additional knowledge and data emerged, such as bat viral challenge studies, that 39 

further elucidated the risks of human-to-bat transmission and culminated in a second risk 40 

assessment in the fall of 2020. We update the first SARS-CoV-2 risk assessment with new 41 

estimates of little brown bat (Myotis lucifugus) susceptibility and new management alternatives, 42 

using findings from the prior two risk assessments and other empirical studies. We highlight the 43 

strengths of decision analysis and expert judgment not only to frame decisions and produce 44 

useful science in a timely manner, but also to serve as a framework to reassess risk as 45 

understanding improves. For SARS-CoV-2 risk, new knowledge led to an 88% decrease in the 46 

median number of bats estimated to be infected per 1000 encountered when compared to earlier 47 

results. The use of facemasks during, or a negative COVID-19 test prior to, bat encounters 48 

further reduced those risks. Using a combination of decision analysis, expert judgment, rapid risk 49 

assessment, and efficient modes of information distribution, we provide timely science support to 50 

decision makers for summer bat work in North America. 51 

KEY WORDS: bats, expert judgment, SARS-CoV-2, structured decision making, risk analysis, 52 

zoonosis 53 

The emergence of severe acute syndrome coronavirus 2 (“SARS-CoV-2”) occurred in the fall of 54 

2019 and quickly presented immediate and apparent health risks to humans worldwide. By 55 

March 2021, the novel pathogen and associated coronavirus disease (“COVID-19”) had resulted 56 

in over 34 million documented human disease cases and over 800,000 deaths globally (Dong and 57 

Du 2020; Johns Hopkins COVID-19 Dashboard). While the human health risks of COVID-19 58 

are clear, empirical information on the risk to wildlife is less available, and thus there remains 59 
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concern among North American natural resource managers for the potential that SARS-CoV-2 60 

could be transmitted to wildlife from infected humans. Bats are a group of primary focus 61 

following the detection of a closely related betacoronavirus in a horseshoe bat  (Rhinolophus 62 

affinis) in eastern Asia (Olival et al. 2020); however, empirical study to directly assess the threat 63 

that SARS-CoV-2 presents to bats remains limited. Thus, there is an ongoing need for formal 64 

risk assessments that can best integrate existing knowledge and guide pressing management 65 

decisions regarding activities that require human-bat interaction. 66 

 67 

When first confronted with the potential for SARS-CoV-2 exposure and infection in North 68 

American bats, natural resource managers had a limited suite of options to reduce the associated 69 

risk, including: proceeding as usual with minimal restrictions; placing a moratorium on all work 70 

under their authority that may elevate risk; or adopting mitigation actions thought to reduce risks. 71 

However, justification for selecting any one of these actions was a challenge because of the 72 

many uncertainties that obscured identification of an optimal approach. A few of the most 73 

pressing uncertainties surrounded bat species susceptibility, dominant transmission pathways, 74 

and estimation of the relative exposure and transmission risk that different human-bat 75 

interactions presented. Decisions had to be made without waiting for research that could reduce 76 

these uncertainties. To help managers make urgent decisions with limited information and under 77 

uncertainty, a series of rapid risk assessments were performed in 2020 using a decision-making 78 

approach that helped to: (1) identify agency objectives; (2) guide the development of quantitative 79 

models that were explicitly linked to agency objectives; (3) maximize the utility of available data 80 

and knowledge; and, (4) assess management alternatives under dynamic and frequently changing 81 

conditions.  82 
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 83 

In April 2020, a first assessment was completed that estimated the risk of SARS-CoV-2 84 

transmission to North American bats during summer activities. The assessment was guided by a 85 

structured decision-making approach using an interagency team to evaluate the best course of 86 

action for management agencies based on the identified objectives, uncertainties, and a risk 87 

model that explicitly linked objectives and possible mitigation actions (Runge et al. 2020). The 88 

focal species for that assessment was the little brown bat (Myotis lucifugus) and risks associated 89 

with conducting research, survey, monitoring, and management (RSM), wildlife rehabilitation 90 

(WR), and wildlife control (WC) activities during the North American spring and summer 91 

seasons were assessed. The primary RSM activities of concern were those that put scientists in 92 

close proximity to bats as part of efforts to study and mitigate the effects of white-nose syndrome 93 

(“WNS”; e.g., Hoyt et al. 2019), a fungal disease that has caused declines of over 90% in 94 

affected little brown bat populations (Cheng et al. 2021); activities from other workers included 95 

removal and exclusion of bats from human dwellings (WC) and the care of injured bats (WR). 96 

Much of the information used for the assessment was derived from a formal process of expert 97 

judgment, as empirical data about the human and wildlife potential of SARS-CoV-2 were largely 98 

unknown at the time.  99 

 100 

The first assessment by Runge et al. (2020) estimated that the risk of SARS-CoV-2 transmission 101 

from humans to bats was non-negligible and that the risk could be reduced if well-fitted N95 102 

respirators (a type of mechanical filter capable of removing viral particles from exhaled breath of 103 

infectious individuals) and other protective clothing were used during all human-bat interactions. 104 

In the analysis, critical uncertainties remained–most notably a high level of uncertainty about the 105 
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probability of bat susceptibility. The authors noted that the existence of a decision framework 106 

complete with objectives, a quantitative risk model, and management alternatives (e.g., 107 

mandating use of N95 respirators, prohibiting certain permitted activities) could be used to 108 

rapidly update decisions as more empirical information was gained. 109 

 110 

In the fall of 2020, another assessment was conducted that evaluated the risk of human-to-bat 111 

transmission of SARS-CoV-2 during winter research activities. Winter activities primarily occur 112 

in enclosed spaces, such as hibernacula and winter roosts, that were thought to increase the 113 

potential risk of exposure of the bats to aerosolized virus emitted by scientists (Cook et al. 2021). 114 

Thus, included in that assessment were new data on the effectiveness of facemasks to reduce 115 

viral emission of infectious humans, and new knowledge regarding the susceptibility of bat 116 

species to SARS-CoV-2. Importantly, by the time of the second assessment, two bat challenge 117 

studies had been conducted in laboratory settings; one found no viable infection in big brown 118 

bats (Epstesicus fuscus), and another found that fruit bats (Rousettus aegyptiacus) were 119 

somewhat susceptible (Hall et al. 2020, Schlottau et al. 2020). Additionally, studies on species-120 

specific angiotensin-converting enzyme 2(“ACE2”) sequences, an indicator of viral binding 121 

potential, shed further light on potential bat susceptibility (e.g., Damas et al. 2020). In aggregate, 122 

experts estimated a much lower, and less uncertain, probability of infection for several bat 123 

species, including the little brown bat (Cook et al. 2021). New information about the importance 124 

of aerosols for human disease transmission and the effectiveness of other personal protective 125 

equipment (PPE) and COVID-19 testing for preventing exposure was incorporated into a risk 126 

model for winter bat work.  127 

 128 
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As we transition into another summer season (2021), the empirical data on bat susceptibility, 129 

human viral shedding dynamics, and the potential effectiveness of facemasks and COVID-19 130 

testing to reduce bat exposure have provided sufficient justification to revisit the initial decision 131 

analysis and summer risk assessment. In this paper, our objective was to provide updated risk 132 

estimates for summertime RSM, WC, and WR activities. We first confirm that the structural 133 

elements of the decision framing from Runge et al. (2020) remain relevant to agencies 134 

considering summer bat work. We then update probability of susceptibility estimates for the little 135 

brown bat based on Cook et al. (2021) and re-evaluate the risk of SARS-CoV-2 human-to-bat 136 

transmission during summertime RSM, WC, and WR activities. We evaluate the effectiveness of 137 

COVID-19 testing, in addition to several new types of enhanced PPE, for their ability to prevent 138 

exposure and mitigate risk. We highlight the strengths of decision analysis to organize, evaluate, 139 

and improve time-sensitive decisions using expert knowledge, strategic decision framing, and 140 

frequent updating. We also provide a brief synopsis of a few institutional hurdles that challenged 141 

the delivery of our risk assessments to decision-makers and provide some potential options to 142 

improve the speed of decision-relevant science in future studies. 143 

METHODS 144 

Decision Framing and General Approach 145 

The initial decision framing for SARS-CoV-2 transmission risk from humans to bats formed the 146 

basis for the results presented in Runge et al. (2020) and Cook et al. (2021). A diverse group of 147 

state and federal decision makers were involved in the framing, and as a result, it captured many 148 

of the objectives and management alternatives that agency decision makers were considering at 149 

the time. The framing of a decision may change over time and can lead to different structuring of 150 

the problem and resulting models. Therefore, to update the summer risk assessment we first 151 
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revisited the original decision framing for spring and summer work with the original guidance 152 

committee from Runge et al. (2020). During our meeting, agency participants indicated that the 153 

decision context and all objectives remained the same. Of particular relevance to this assessment 154 

were objectives related to: 155 

 156 

(1) minimizing the morbidity and mortality of wild North American bats resulting from 157 

infection with SARS-CoV-2 or from management actions meant to mitigate transmission, 158 

(2) minimizing the risk of SARS-CoV-2 becoming endemic in any North American bat 159 

population through sustained bat-to-bat transmission, 160 

(3) maintaining or maximizing the ability of WC and WR to carry out their functions for the 161 

benefit of humans and wildlife, and 162 

(4) maximizing the opportunities for scientific research on bats and within bat habitats. 163 

 164 

For a complete summary of objectives, including the full text of the select objectives presented 165 

here, see Runge et al. (2020).  166 

 167 

Based on the agreement in objectives between the first summer assessment and this study, the 168 

existing infection risk models developed by Runge et al. (2020) remained useful for estimating 169 

risk, but needed to be updated to include new and relevant information. Conceptually, new 170 

information from empirical study and experts can reduce critical uncertainties and can be 171 

incorporated into the existing Runge et al. (2020) framework as indicated in Figure 1 by the gray, 172 

dashed arrows. In the following sections, we describe the three infection risk models for RSM, 173 

WR, and WC activity types from the previous assessment and then revise them to include new 174 
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information (blue highlighted steps of Figure 1: “New Information (monitoring, research)” and 175 

“Update Predictive Models (Learn)”). We then provide updated estimates on bat risk and 176 

mitigation in the results that can help to evaluate the consequences of SARS-CoV-2 risk 177 

management strategies (Figure 1: “Evaluate Consequences”). 178 

 179 

<Insert figure 1 here> 180 

 181 

RSM Infection Risk Model 182 

The RSM infection risk model was calculated from three encounter types: workers handling bats, 183 

workers in proximity to bats in a shared enclosed space, and workers in close proximity to bats 184 

but not in a shared enclosed space. The expected number of infected bats resulting from research, 185 

survey, or monitoring activities is the sum of the expected number of bats infected through each 186 

of the three encounter types:  187 

 188 
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 190 
where  191 

�.���  is the number of infected bats through each of three encounter pathways (H = 192 
handling of bats; E = exposed in a shared enclosed space; P = 193 
encountered not in an enclosed space) 194 

�����  is the probability that someone conducting RSM work is actively shedding 195 
SARS-CoV-2 virus on any given day of the 2021 active season; 196 

���
���  is the total number of bats handled during the 2021 active season; 197 

������ is the total number of bats exposed in a shared enclosed space, but not 198 
handled, during the 2021 active season; 199 

������  is the total number of bats encountered, but not in an enclosed space or 200 
handled, over the course of the 2021 active season; 201 

��
��� is the probability that a bat handled by a RSM scientist who was actively 202 

shedding virus would be exposed to the virus (an “exposure 203 
probability”) in the absence of any new restrictions, regulations, or 204 
protocols, taking into account the handling time typical of RSM 205 
activities; 206 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446020doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446020


9     Cook et al. 
 

1 Email: jcook@usgs.gov   
 

��
��� is the probability that a bat in an enclosed space within a 6-foot proximity 207 

of (but not handled by) a RSM scientist who was actively shedding 208 
virus would be exposed to the virus (an “exposure probability”) in the 209 
absence of any new restrictions, regulations, or protocols;  210 

�	
��� is the probability that a bat not in an enclosed space within a 6-foot 211 

proximity of (and not handled by) a RSM scientist who was actively 212 
shedding virus would be exposed to the virus (an “exposure 213 
probability”) in the absence of any new restrictions, regulations, or 214 
protocols; and 215 

���  is the species-specific probability that a bat exposed to a sufficient viral 216 
dose of SARS-CoV-2 would become infected by the virus (the 217 
“probability of susceptibility”). 218 

 219 
Wildlife Rehabilitators Infection Risk Model 220 

The WR infection risk model was calculated from two encounter types: bat handling, and 221 

workers in proximity to bats but not in a shared enclosed space. The expected number of infected 222 

bats arising from wildlife rehabilitation over the summer season is the sum of the expected 223 

number of bats infected through each of the two encounter types: 224 

 225 
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 227 
where  228 

�.
�  is the number of infected bats through each of three encounter pathways (H = 229 
handling of bats; P = encountered not in an enclosed space) 230 

�
�
�  is the probability that someone conducting rehabilitation work is actively 231 

shedding SARS-CoV-2 virus on any given day of the 2021 active 232 
season; 233 

���

�  is the total number of bats handled during the 2021 active season; 234 

���
� is the total number of bats exposed, not in an enclosed space or handled, 235 
by wildlife rehabilitators during the 2021 active season; 236 

��
� is the probability that a bat handled by a WR who was actively shedding 237 
virus would be exposed to the virus (an “exposure probability”) in the 238 
absence of any new restrictions, regulations, or protocols, taking into 239 
account the handling time typical of rehab activities; 240 

�	
� is the probability that a bat not in an enclosed space within a 6-foot 241 
proximity of (and not handled by) a WR who was actively shedding 242 
virus would be exposed to the virus (an “exposure probability”) in the 243 
absence of any new restrictions, regulations, or protocols; and 244 

���  is the species-specific probability that a bat exposed to a sufficient viral 245 
dose of SARS-CoV-2 would become infected by the virus (the 246 
“probability of susceptibility”). 247 
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 248 
Wildlife Control Operators Infection Risk Model 249 

The WC infection risk model is calculated from two encounter types: bat handling, and workers 250 

in proximity to bats but not in a shared enclosed space. The expected number of infected bats 251 

arising from wildlife control operations over the summer season is the sum of the expected 252 

number of bats infected through each of the two encounter types: 253 

 254 
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where  256 
�
�
�  is the probability that someone conducting WC work is actively shedding 257 

SARS-CoV-2 virus on any given day of the 2021 active season; 258 
���

�  is the total number of bats handled during the 2021 active season; 259 

���
� is the total number of bats exposed, but not handled, by WC during the 260 
2021 active season; 261 

��

� is the probability that a bat handled by a WC who was actively shedding 262 

virus would be exposed to the virus (an “exposure probability”) in the 263 
absence of any new restrictions, regulations, or protocols, taking into 264 
account the handling time typical of WC activities; 265 

�	

� is the probability that a bat not in an enclosed space within a 6-foot 266 

proximity of (and not handled by) a WC who was actively shedding 267 
virus would be exposed to the virus (an “exposure probability”) in the 268 
absence of any new restrictions, regulations, or protocols; and 269 

���  is the species-specific probability that a bat exposed to a sufficient viral 270 
dose of SARS-CoV-2 would become infected by the virus (the 271 
“probability of susceptibility”). 272 

 273 
Probability that a crew member is positive and shedding virus 274 

We calculated the probability that a crew member is positive and shedding virus as a function of 275 

the prevalence of COVID-19 in the surrounding community (�), and the sensitivity (��) and 276 

specificity (��) of COVID-19 testing. Sensitivity is the probability that an individual who has 277 

COVID-19 tests positive, whereas specificity is the probability that a healthy individual without 278 

COVID-19 tests negative. We selected a sensitivity value of 0.70, and specificity of 0.95 279 

(Arevalo-Rodriguez et al. 2020; Watson et al. 2020); however, we recognize that these values 280 

vary according to the type of test administered. For our risk assessment, we are primarily 281 
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interested in the probability that a crew member receives a negative test result but is truly 282 

infected with SARS-CoV-2. This probability can be calculated using Bayes’ Theorem as:  283 

 284 

 �� 
  
��������

�����������������
 .  285 

 286 

If a crew member does not take a test, the probability that a crew member is positive and 287 

shedding virus can be estimated by the local prevalence, �, or by some other method that 288 

accounts for the crew member’s risk behavior (e.g., https://www.microcovid.org/).  289 

Bat Encounter Types and Exposure Probabilities 290 

To calculate the number of bats handled (H), encountered in an enclosed space (E), or in 291 

proximity to workers in an unenclosed space (P), we multiplied the total number of bats 292 

encountered in a typical season of work by the percentage of each bat encounter type (Table 1). 293 

We used the same encounter estimates reported in Runge et al. (2020), based on reporting data 294 

from Colorado Department of Wildlife, Connecticut Department of Energy and Environmental 295 

Protection, Kentucky Department of Fish and Wildlife Resources, New York State Department 296 

of Environmental Conservation, Oregon Department of Fish and Wildlife, Virginia Department 297 

of Game and Inland Fisheries, Wisconsin Department of Natural Resources, USDA Forest 298 

Service, National Park Service, U.S. Geological Survey, and the white-nose syndrome national 299 

surveillance program. For RSM activities, most bat interactions involve handling (45.8%), 300 

followed by activities in proximity to bats (42.7%), and sharing an enclosed space with bats 301 

(11.5%). For WR, all documented human bat interactions result from handling (100%). For WC, 302 

most human-bat interactions occur when a practitioner comes within 6-feet of a bat (77.1%) but 303 

does not handle the bat; the other 22.9% of interactions involve bat handling (Table 1). 304 
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 305 

<Insert table 1 here> 306 

 307 

For each human-bat activity and encounter type, Runge et al. (2020) used formal expert 308 

judgment protocols, notably the IDEA(“Investigate, Discuss, Estimate, Aggregate”) protocol 309 

(Hanea et al. 2017) and the four-point elicitation method (Speirs-Bridge et al. 2010), to estimate 310 

unique probabilities of exposure and an associated measure of uncertainty (i.e., β parameters in 311 

infection risk model equations). The four-point elicitation method provided a point estimate and 312 

a measure of within-expert uncertainty by eliciting each expert’s lowest, highest, and best 313 

estimates of model parameters as well as an estimate of confidence that their reported values 314 

included the true value. The expert panel included a total of 13 individuals with diverse 315 

professional experience and expert specializations in wildlife epidemiology, virology, bat 316 

physiology, and bat ecology (Runge et al. 2020). Two rounds of elicitation were held, and group 317 

meetings in between rounds were used to clarify questions and responses, with the aim of 318 

reducing sources of expert bias. To estimate an aggregate expert distribution from individual 319 

responses, the parameters that best fit probability distributions to the elicited quantiles from each 320 

expert independently were identified. Then parameters for an aggregate distribution were 321 

estimated by averaging the independent probability density functions (PDFs) across all experts 322 

and finding parameters for a fitted aggregate distribution that minimized the Kullback-Leibler 323 

distance (Kullback and Leibler 1951) between the average PDF and the fitted PDF. 324 

 325 

For RSM activities, experts estimated a median of 49.7 bats (80% confidence interval: 15.3, 326 

84.3) exposed out of 100 encountered during handling, a median of 19.4 bats (80% CI: 2.2., 327 

72.4) exposed out of 100 encountered when in enclosed space within 6 feet of a SARS-CoV-2 328 
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positive scientist,  and a median of 6.4 bats (80% CI: 0.6, 43.8) exposed out of 100 within 6 feet 329 

of a SARS-CoV-2 positive scientist in an unenclosed space. For WR activities, experts estimated 330 

a median of 70.4 bats (80% CI: 24.4, 94.6) exposed out of 100 during handling and a median of 331 

24.3 bats (80% CI: 2.8, 78.4) exposed out of 100 when within 6 feet of a SARS-CoV-2 positive 332 

wildlife rehabilitator. For WC activities, experts estimated a median of 27.7 bats (80% CI: 3.7, 333 

79.2) exposed out of 100 during handling and 9.6 bats (80% CI: 1.0, 53.9) exposed out of 100 334 

when within 6 feet of a SARS-CoV-2 positive wildlife control operator. 335 

 336 

In addition to COVID-19 testing for risk mitigation, agencies can issue guidelines for properly 337 

fitted PPE use during human-bat interactions. In Runge et al. (2020), the effectiveness of N95 338 

respirators for mitigating the risk of SARS-CoV-2 exposure during RSM, WR, and WC activities 339 

was evaluated. Following that publication, additional information identified aerosolized virus as 340 

the primary pathway of human-to-human disease exposure (Meyerowitz et al. 2020); thus, we 341 

can evaluate the ability of other face coverings to reduce viral exposure of bats if we can assume 342 

that exposure probabilities from Runge et al. (2020) are reduced by reported filtration 343 

efficiencies of other PPE types. Common PPE types include: N95 respirators (percent filtration 344 

efficiency (FE) mean ± SD: 99.4 ± 0.2; 3M model 1870), surgical masks (FE: 89.5 ± 2.7), cloth 345 

masks (FE: 50.9 ± 16.8), and face shields (FE: 23 ± 3.3) (Davies et al. 2013, Lindsley et al. 2014, 346 

Long et al. 2020). 347 

Probability of Susceptibility 348 

We used probability of bat susceptibility (���� estimates that were derived from expert judgment 349 

using the same structured protocols described above. In the Cook et al. (2021) application, the 350 

expert panel included a diverse group of 12 professionals, 4 of whom participated in the Runge 351 
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et al. (2020) study. Similar to the Runge et al. (2020) study, two rounds of elicitation were held, 352 

and the probability of susceptibility for little brown bats was estimated using fitted aggregate 353 

group distributions based on the 12 expert responses. 354 

 355 

The probability-of-susceptibility estimates, probability of infectious crew members, and 356 

effectiveness of PPE were then used to estimate the number of little brown bats that could be 357 

infected out of 1000 encountered during RSM, WC, and WR activities. For all comparisons, 358 

unless otherwise specified, we assumed that the local COVID-19 prevalence was 0.05. Each 359 

infection risk model was simulated 100,000 times to explore uncertainty in the parameters. All 360 

analyses were performed in Program R (R Core Team, 2018). All data used in these analyses 361 

were provided as electronic records and no vertebrate species were contacted or handled as a 362 

direct result of this study. 363 

RESULTS 364 

Probability of Susceptibility 365 

Conditional on a sufficient dose of SARS-CoV-2 for individual bat infection, the expert panel 366 

from Runge et al. (2020) estimated that the median probability of susceptibility for little brown 367 

bat was 0.44 (80% PI:0.08 – 0.88). Following the accumulation of new information, a follow-up 368 

expert elicitation estimated that the median probability of susceptibility was 89% lower and had 369 

less uncertainty (Cook et al. 2021; Figure 2, median probability of susceptibility: 0.05; 80% 370 

PI:0.003 – 0.37). The updated estimate was informed, in part, by new information, including 371 

human and bat angiotensin-converting enzyme 2 (ACE2) receptor homology (an enzyme that is 372 

important to SARS-CoV-2 binding in the host) (Damas et al. 2020), and the availability of lab-373 

based challenge studies (Hall et al. 2020).  374 
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 375 

<Insert figure 2 here> 376 

 377 

Baseline risk 378 

We reanalyzed the infection risk models described in Runge et al. (2020) using updated 379 

estimates of the probability of susceptibility for little brown bats reported in Cook et al. (2021). 380 

We found an 87 – 88% decrease in the median number of bats estimated to be infected per 1000 381 

encountered when compared against the earlier results. For RSM activities, the median number 382 

of bats infected per 1000 was estimated to be 6.96 in the Runge et al. (2020) assessment (Figure 383 

3; 80% CI: 1.85 – 19.41). Using updated probability of susceptibility estimates, we found that 384 

the median number of bats estimated to be infected by SARS-CoV-2 was less than one 385 

individual per 1000, which is 88% lower than the initial estimate (Figure 3; median: 0.83, 80% 386 

CI: 0.07 – 7.82). For WR encounters, the median number of bats infected per 1000 was reduced 387 

from 13.03 (Figure 3; 80% CI: 3.54 – 36.14) to 1.56 – a similar 88% decrease in the median 388 

value (Figure 3; 80% CI: 0.12 – 14.71). For WC encounters, the median number of bats infected 389 

per 1000 was reduced from 3.72 (Figure 3; 80% CI: 0.84 – 14.43) to 0.47 – an 87% decrease in 390 

the median value (Figure 3; 80% CI: 0.03 – 4.79). 391 

 392 

<Insert figure 3 here> 393 

 394 

We also analyzed the baseline bat infection risk across three different levels of COVID-19 395 

prevalence (Figure S.1). For RSM activities, the median number of bats infected per 1000 396 

encountered fell from a median of 0.83 (80% CI: 0.07 – 7.82) when COVID-19 prevalence was 397 

0.05, to a median of 0.15 (80% CI: 0.01 – 1.29) and 0.015 (80% CI: 0.001 – 0.129) when 398 
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COVID-19 prevalence was 0.01 and 0.001, respectively. For WR activities, the median number 399 

of bats infected per 1000 fell from a median of 1.56 (80% CI: 0.12 – 14.71) when COVID-19 400 

prevalence was 0.05, to a median of 0.27 (80% CI: 0.02 – 2.34) and 0.027 (80% CI: 0.002 – 401 

0.23) when COVID-19 prevalence was 0.01 and 0.001, respectively. For WC activities, the 402 

median number of bats infected per 1000 fell from a median of 0.47 (80% CI: 0.03 – 4.79) when 403 

COVID-19 prevalence was 0.05, to a median of 0.08 (80% CI: 0.005 – 0.76) and 0.008 (80% CI: 404 

0.0005 – 0.08) when COVID-19 prevalence was 0.01 and 0.001, respectively. 405 

Risk mitigation 406 

We used the updated parameter estimates to evaluate the effectiveness of PPE and pre-survey 407 

COVID-19 testing of personnel for reducing baseline estimates of bat infections per 1000 408 

encountered (Figures 4 and 5). We found that N95 respirators reduced the median estimates of 409 

infection by 95 – 96% for all three encounter types (i.e., RSM, WR, and WC work), when 410 

compared against median values with updated parameter estimates and without enhanced 411 

personal protective equipment (Figure 4A – C; overall reduction of 99% from Runge et al. 412 

2020). For surgical masks, we found an 89% reduction in the median estimate of infection for all 413 

three encounter types (i.e., RSM, WR, and WC work; Figure 4A – C), when compared against 414 

median values with updated parameter estimates and without enhanced personal protective 415 

equipment. For cloth masks, we found a reduced median estimate of infection of 54 – 55% for all 416 

three encounter types (Figure 4A – C), when compared against median values with updated 417 

parameter estimates and without enhanced personal protective equipment. Finally, for face 418 

shields, we found a reduced median estimate of infection of 22 – 24% for all three encounter 419 

types (Figure 4A – C), when compared against median values with updated parameter estimates 420 

and without enhanced personal protective equipment.  421 
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 422 

<Insert figure 4 here> 423 

 424 

For COVID-19 testing, we found that the median estimate of the number of SARS-CoV-2 425 

infected bats decreased by 65 – 67% across all three encounter types, as a result of a negative test 426 

of field crew 3 days prior to bat handling (overall reduction of 88 – 89% from the Runge et al. 427 

2020 assessment; Figure 5).  428 

 429 

<Insert figure 5 here> 430 

 431 

DISCUSSION 432 

The existing decision framework developed in Runge et al. (2020) allowed for a rapid re-433 

evaluation of human-to-bat SARS-CoV-2 transmission risk during summer fieldwork based on 434 

new knowledge included in Cook et al. (2021), expert judgment, and other empirical studies. We 435 

found that new knowledge substantially reduced uncertainty, lowered risk estimates, and 436 

provided additional management alternatives that may be important to preventing SARS-CoV-2 437 

infection in bats during RSM, WC, and WR activities. More broadly, we found that decision 438 

analysis coupled with expert judgment provided substantial benefits across all three studies (i.e., 439 

Runge et al. 2020, Cook et al. 2021, this study) and we expect that these benefits transcend 440 

SARS-CoV-2 to other wildlife disease systems. In particular, decision analysis helped to identify 441 

the fundamental management objectives, specify the possible alternatives, direct the 442 

development of quantitative infection risk models, and ultimately, create a risk assessment 443 

framework that remained useful over time and as our knowledge of the novel pathogen system 444 

improved. Formal expert judgment allowed us to estimate parameters with the available 445 
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information in a timely manner, without having to initiate and wait for the results of new 446 

empirical studies. 447 

 448 

We found that the median numbers of little brown bats potentially infected during summer RSM, 449 

WC, and WR activities were reduced substantially from those reported in the initial risk 450 

assessment by Runge et al. (2020), in part because an expanded range of management 451 

alternatives were available to further reduce these risks. By expanding the range of management 452 

alternatives for preventing transmission, we provide decision makers with additional options 453 

(and estimates of their effect on the number of infected bats) that may allow for some research 454 

and management activities to resume. For example, if the baseline risk of an activity exceeds an 455 

agency’s tolerance for risk, they may choose to require the use of facemasks or COVID-19 456 

testing prior to human-bat encounters. However, COVID-19 testing may be difficult to 457 

implement in certain situations, especially for WC and WR activities that often arise 458 

spontaneously rather than from advanced planning. As an alternative, other forms of mitigation 459 

may be called for, and our assessment provides measures of risk across a range of potentially 460 

suitable mitigation measures.  It is also important to note that risk tolerance may differ among 461 

agencies, and thus the response to the same risk may differ markedly in the decisions made (Sells 462 

et al. 2016). 463 

 464 

Across the three risk assessments (Runge et al. 2020, Cook et al. 2021, this study), expert 465 

judgment was critical to our ability to rapidly estimate risks associated with SARS-CoV-2. At 466 

the time of Runge et al. (2020) and Cook et al. (2021), there were no data from empirical studies 467 

available to directly inform little brown bat SARS-CoV-2 susceptibility. Instead, structured 468 
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protocols were implemented that derived unknown parameter estimates using leading experts in 469 

relevant fields of study. Expert judgment has gained credibility across a diversity of decision-470 

making applications because it provides a viable alternative when empirical data are not yet 471 

available for generating unknown parameter estimates (Tyshenko et al. 2016; Bianchini et al. 472 

2020), quantifying uncertainty (McBride et al. 2012; Conroy and Peterson 2013), and controlling 473 

for sources of bias (McBride et al. 2012). We found expert elicitation to be particularly powerful 474 

for our assessments because it allowed us to rapidly integrate the best available science and 475 

knowledge and provide guidance to managers dealing with uncertain but immediate risks to 476 

North American bats.  477 

 478 

While decision framing, expert judgment, and the development of a quantitative infection risk 479 

model assisted in the production of decision-relevant science, the timely release of our results to 480 

support decision-making remained a challenge. Across the first two studies, the production of 481 

science happened over the course of several weeks, including several rounds of agency 482 

consultation and the development of quantitative infection risk models. For information sharing, 483 

we were able to provide the results to decision makers in a timely fashion through briefings after 484 

we had peer review and agency clearance, but before the results were published. The agencies, 485 

however, were also interested in timely publication, so they could cite the research when 486 

communicating their decisions to the public. In total, the documentation, external peer-review, 487 

and publication process added an additional 5.5 weeks for Runge et al. (2020) and 11.5 weeks 488 

for Cook et al. (2021). While these timelines are typical and generally necessary for rigorous 489 

peer review, shorter timelines for studies evaluating emergent wildlife disease risks could be 490 

helpful because the decisions they are intended to inform may be necessary before completion of 491 
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a  standard peer-review and publication process. While it is not our intention to criticize any 492 

journal, reviewers, or peer-review process, we recognize that the production of decision-relevant 493 

science using decision analysis, quantitative modeling, and undergoing a full peer-review 494 

process may benefit from shorter timelines to provide information needed for urgent agency 495 

decisions .  496 

 497 

There are likely many options to improve the timely delivery of science to support urgent 498 

wildlife disease management decisions moving forward, and we provide a few suggestions that 499 

may be useful. First, it may be useful for journals to consider creating alternate production tracks 500 

that can expedite the review and publication process and provide timely results at the speed of 501 

agency decisions. Alternative options for distribution, such as preprint servers (like bioRxiv and 502 

medRxiv) have already become critical avenues for timely release of information during the 503 

COVID-19 pandemic; however, these avenues do not address the critical role that peer-review 504 

plays in the production of reliable science. Second, for agencies that frequently make urgent 505 

decisions and that currently rely only on published results to communicate scientific support for 506 

those decisions to the public, it may be beneficial to consider using external science review 507 

boards that can provide objective evaluations of unpublished findings for formal consideration in 508 

time-sensitive decision-making. Lastly, dedicated risk assessment teams that produce rapid 509 

qualitative assessments of wildlife disease risks within hours or days of an identified novel 510 

hazard would be helpful. While other, more qualitative, assessments may be based on 511 

preliminary results and limited knowledge that is subject to considerable change, they can be 512 

effective as a bridge to more rigorous assessments that include agency consultation, quantitative 513 

modeling, and the evaluation of management alternatives. Nevertheless, we hope that our risk 514 
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assessments may serve as a model to assess threats that SARS-CoV-2 continues to present to 515 

wildlife, and that a larger discussion be stimulated to identify the best approaches to deliver 516 

decision-relevant science for emerging wildlife diseases on timescales that matter. 517 

 518 

Moving forward, it will be possible to update future SARS-CoV-2 risk assessments as 519 

knowledge of the critical uncertainties improves. Currently there are several variants of the 520 

SARS-CoV-2 pathogen circulating in the human population that have the potential to alter the 521 

transmissibility of the virus for humans and may affect the susceptibility of wildlife species to 522 

the virus. There are widespread vaccination efforts occurring that will also reduce the localized 523 

risk that workers are infectious at the time of bat encounters. At the local level, vaccinations are 524 

likely to decrease the prevalence of COVID-19, ultimately reducing SARS-CoV-2 transmission 525 

risk to bats (Figure S.1). At the individual level, COVID-19 vaccines are effective at preventing 526 

human infection (median: 66.3% [95% confidence interval (CI): 59.9%–71.8%] effective for 527 

preventing symptomatic, lab confirmed cases 14 days post-immunization for Johnson & Johnson 528 

vaccine [Oliver et al. 2021], and median: 90% [95% CI: 68%–97%] effective for preventing all 529 

cases regardless of symptoms 14 days post-immunization for Pfizer mRNA vaccine [Thompson 530 

et al. 2021]); however, there remain unknowns surrounding the period of immunity and its 531 

efficacy against newly emerging viral strains. More information should be available in coming 532 

months on the duration of protection from vaccine and the potential for individuals with 533 

“breakthrough” infections to shed virus. As our knowledge continues to improve surrounding 534 

SARS-CoV-2 and the risks it presents to bats, these factors, as well as other relevant information, 535 

could be included in future assessments to ensure that agencies have the best available 536 

information for making decisions. 537 
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Table 1. Fraction of bats encountered through each of three encounter types for each of three 660 
activities. The three encounter types are: handling; encounter within 6 feet in an enclosed space; 661 
and proximity within 6 feet in an unenclosed space. The data were gathered from the following 662 
agencies: Colorado Department of Wildlife, Connecticut Department of Energy and 663 
Environmental Protection, Kentucky Department of Fish and Wildlife Resources, New York 664 
State Department of Environmental Conservation, Oregon Department of Fish and Wildlife, 665 
Virginia Department of Game and Inland Fisheries, Wisconsin Department of Natural 666 
Resources, Forest Service, National Park Service, U.S. Geological Survey, and the White-Nose 667 
surveillance program (Runge et al. 2020). 668 
 669 
 Research, survey, monitoring 

and management 
Wildlife 
rehabilitation 

Wildlife Control 

 Handling Enclosed Proximity Handling Proximity Handling Proximity 
Total bats 8642 2172 8056 1459 0 447 1502 
Encounter 
perc. (%) 

45.8 11.5 42.7 100 0 22.9 77.1 
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 700 
 701 
 702 
Figure 1. Steps of decision analysis, including the option to revisit consequences based on newly 703 
generated knowledge or data. In April 2020, Runge et al. (2020) worked with state and federal 704 
decision makers to frame the decision and produce risk estimates that were useful to guide 705 
management actions (Runge et al. 2020). Based on new knowledge and data that evaluated 706 
critical uncertainties from Runge et al. (2020) (gray dashed arrows and central gray outlined 707 
polygon), we revisited several steps (boxes outlined in blue) to rapidly re-evaluate the risk of 708 
SARS-CoV-2 transmission during summer RSM, WC, and WR activities. Frequently updating 709 
risk assessments using the best available science may help decision makers implement actions 710 
that best achieve management objectives (gray filled oval). Adapted from Runge (2011). 711 
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 721 
Figure 2. Comparison of probability of susceptibility estimates for little brown bat from Runge 722 
et al. (2020) (blue line) and from Cook et al. (2021) (black line).Experts estimated that the 723 
median probability of susceptibility was 89% lower based on updated knowledge gathered from 724 
bat challenge studies, ACE2 homology between humans and bats, and other sources (Cook et al. 725 
2021).  726 
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 747 
 748 
 749 
 750 
 751 
 752 
 753 
 754 
 755 

 756 
Figure 3. Number of bats per 1,000 exposed to and infected by SARS-CoV-2 by the three 757 
transmission pathways. RSM=research, survey, monitoring, and management activities; WR= 758 
wildlife rehabilitation; WC= wildlife control operations. Boxplot whiskers represent 99% 759 
prediction interval. For comparisons, we used the same assumed ratio of encounter modes 760 
(handling, enclosure, and proximity) and probability of worker shedding SARS-CoV-2 (median: 761 
0.057; 80% interval: 0.022-0.112) from Runge et al. (2020). (A) Results reproduced based on 762 
expert-elicited data on probability of bat susceptibility from Runge et al. (2020) assessment. (B) 763 
Results based on parameter values from December 2020 assessment. 764 
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 778 
Figure 4. Number of bats per 1,000 exposed to and infected by SARS-CoV-2 by the three 779 
transmission pathways. RSM=research, survey, monitoring, and management activities; WR= 780 
wildlife rehabilitation; WC= wildlife control operations. Boxplot whiskers represent 99% 781 
prediction interval. We used the same assumed ratio of encounter modes (handling, enclosure, 782 
and proximity) from Runge et al. (2020). Results based on expert elicited data on probability of 783 
bat susceptibility from the Cook et al. (2021) assessment. (A) Effectiveness of PPE compared 784 
against baseline estimates for RSM activities. (B) Effectiveness of PPE compared against 785 
baseline estimates for WR activities. (C) Effectiveness of PPE compared against baseline 786 
estimates for WC activities. 787 
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 791 
 792 
Figure 5. Number of bats per 1,000 exposed to and infected by SARS-CoV-2 by the three 793 
transmission pathways with and without pre-survey COVID-19 testing. RSM=research, survey, 794 
monitoring, and management activities; WR= wildlife rehabilitation; WC= wildlife control 795 
operations. Boxplot whiskers represent 99% prediction interval. We used the same assumed ratio 796 
of encounter modes (handling, enclosure, and proximity) from Runge et al. (2020). Results based 797 
on expert elicited data on probability of bat susceptibility from Cook et al. (2021) assessment. 798 
 799 
 800 
 801 
 802 
 803 
 804 
 805 
 806 
 807 
 808 
 809 
 810 
 811 
 812 
 813 
 814 
 815 
 816 
 817 
 818 
 819 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted May 28, 2021. ; https://doi.org/10.1101/2021.05.28.446020doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.28.446020


32     Cook et al. 
 

1 Email: jcook@usgs.gov   
 

Supplementary Figure 820 
 821 

 822 
Figure S.1. Comparison of the number of bats per 1,000 exposed to and infected by SARS-CoV-823 
2 by the three transmission pathways and across 3 community prevalence levels: 0.05, 0.01, and 824 
0.001. RSM, research, survey, monitoring, and management activities; WR, wildlife 825 
rehabilitation; WC, wildlife control operations. Boxplot whiskers represent 99% prediction 826 
intervals. We used the same assumed ratio of encounter modes (handling, enclosure, and 827 
proximity) from Runge et al. (2020). Results based on expert elicited data on probability of bat 828 
susceptibility from Cook et al. (2021) assessment. (A) Number of bats infected at county-level 829 
COVID-19 prevalence of 0.05. (B) Number of bats infected at county-level COVID-19 830 
prevalence of 0.01. (C) Number of bats infected at county-level COVID-19 prevalence of 0.001. 831 
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