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Abstract 

The 3-dimensional fold of an RNA molecule is largely determined by patterns of intramolecular 

hydrogen bonds between bases. Predicting the hydrogen bonding network from the sequence, 

also referred to as RNA secondary structure prediction or RNA folding, is a nondeterministic 

polynomial-time (NP)-complete computational problem. The structure of the molecule is 

strongly predictive of its functions and biochemical properties, and therefore the ability to 

accurately predict the structure is a crucial tool for biochemists. Many methods have been 

proposed to efficiently sample possible secondary structure patterns. Classic approaches employ 

dynamic programming, and recent studies have explored approaches inspired by evolutionary 

algorithms. This work demonstrates leveraging quantum computing hardware to predict the 

secondary structure of RNA. A Hamiltonian written in the form of a Binary Quadratic Model 

(BQM) is derived to drive the system toward maximizing the number of base pairs while 

simultaneously maximizing the average length of the stems. An Adiabatic Quantum Computer 

(AQC) is compared to a Replica Exchange Monte Carlo (REMC) algorithm programmed with 

the same objective function, with the AQC being shown to be highly competitive at rapidly 

identifying low energy solutions. The method proposed in this study was compared to three 

algorithms from literature and was found to have the highest success rate. 
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Introduction 

RNA molecules fold into complex secondary structures, which determine many aspects 

of RNA function as well as molecular properties such as thermal stability and compactness. 

Thus, RNA folding has an impact on protein translation, transcriptional regulation, and other 

processes vital to cellular functions (1–3). Secondary structure is also key to the function of 

synthetic RNAs which are used in a variety of applications ranging from protein design and 

genome editing to mRNA vaccine development (for example, (4–6)). 

Methods for RNA structure determination are therefore of great interest and importance 

for basic research, applied biotechnology, and rational drug discovery. Experimental approaches 

developed for this purpose are extremely time consuming and expensive, and therefore their use 

is limited in practice. Computational methods are an attractive alternative as they aim to predict 

the folded structure of an RNA molecule based solely on sequence information, which can be 

readily obtained from high-throughput sequencing experiments. There are varied approaches to 

computational RNA structure prediction, ranging from physics-based methods that assign 

thermodynamic scores to a pre-defined set of structural features (7–9), to deep learning models 

trained on large RNA databases (10–13).  

Similar to proteins, secondary structure of RNA molecules is largely determined by the 

sequence. Unlike proteins, where the folding is a global process largely driven by hydrophobic 

forces, single-stranded RNA molecules undergo a hierarchical folding process that is dominated 

by the formation of hydrogen bonds between nucleotides. Compared to protein folding, the 

formation of RNA tertiary structure is relatively slow. The RNA folding process involves the 

formation of strong restrictive local geometries which usually results in well-defined, thermally 

stable structures with little flexibility compared to protein structures (14).  
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The standard RNA hydrogen bonding pairs, (GC and AU) are known as the Watson-

Crick base-pairs. Another common type of interaction that can form, known as the Wobble 

interaction, is between G and U. A variety of local structures, such as internal loops, hairpin 

loops, stacks, bulged loops and multi-loops, can be formed by Hoogsteen- or CH-edges and 

Sugar-edges. Such edges have the ability to accommodate types of interactions other than 

Watson-Crick type edges, including the formation of base triplets (base-pairs between three 

bases) that can modulate the stability of helices all the way to quaternary structures. A set of 

consecutive base pairs is often referred to as a stem. RNA structures also undergo formation of 

long-range interactions such as pseudoknots, which occur when base pairs cross without 

overlapping. 

RNA structure prediction is a computationally expensive task, particularly when the 

solution space includes pseudoknots. Folding algorithms that do not account for pseudoknots 

tend to scale polynomially, with the most efficient method having sub-cubic scaling (15). There 

also exist approximate methods that have been shown to have linear scaling (16). A widely used 

minimum free energy (MFE) approach to RNA secondary structure with pseudoknots is an NP-

complete computational problem (17). For an RNA strand with N stems, there are a total of 2N 

possible combinations of stems that could define the folded structure. For example, the SARS-

CoV2 spike glycoprotein segment of the Pfizer-BioNTech COVID-19 vaccine (18) contains 

approximately 486,000 possible stems, so the total combinatorial space contains 2486,000 (~ 

10146,440) possible solutions.  For reference, the number of atoms in the universe is approximately 

1080, inferred from the cosmological parameters presented in the Planck Collaboration (19). 

Although many of the possible combinatorial solutions likely contain overlapping stems, the 

majority of the potential stems cannot be excluded from the set a priori. Therefore, the total 
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number of evaluations required to exhaustively sample the solution space grows exponentially 

with the number of stems. Since the solution space cannot be exhaustively sampled for many 

biologically relevant RNA sequences, either an alternative approach is required to identify an 

approximate solution, or pseudoknots must be disregarded. Classic approaches to sampling RNA 

secondary structure configurations utilize dynamic programming (9,20,21), while more recent 

methods have employed simulated annealing and Monte Carlo methods (22–24). In this study, 

we investigate the viability of utilizing quantum computers (QCs) to efficiently identify high-

quality solutions to RNA secondary structure prediction. 

To date state-of-the-art quantum devices are able to outperform classical computers in a 

narrow range of tasks (25,26), however, there have not yet been any concrete demonstrations of 

quantum advantage for commercial applications primarily due to the fact that QCs are limited in 

size and capabilities (27). It is speculated that the pharmaceutical, chemical, and life sciences 

industries will be the first fields to benefit from quantum computing technology (28,29). While 

applications utilizing quantum mechanical calculations, such as quantum chemistry, have clear 

maps to QCs (see, for example, (30–33)) at present these problems require too many qubits for 

current hardware to solve industrially relevant problems (29,34). To date there are primarily two 

models of QCs: the gate-based and the Adiabatic Quantum Computer (AQC). Gate-based 

quantum devices have a broad application range and are the most commonly used for quantum 

chemistry and quantum machine learning calculations. An alternative design, pioneered by the 

company D-Wave, is the AQC. Compared to the multitude of applications of gate-based QCs, 

AQCs have a much narrower range and only focus on optimizing solutions to problems by 

minimizing a problem Hamiltonian. To date, AQCs containing thousands of qubits have been 

built, and these devices are capable of solving sufficiently large discrete combinatorial 
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optimization problems to permit testing against real world industrial use-cases. Rather than being 

programmed by sequences of quantum operators, AQCs are designed to anneal quadratic 

Hamiltonians in the form of Equation (1). 
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Here, qi, qj, and qk represent the values of the qubits which can either be {0, 1} or {-1, 1} for 

binary or spin representations, respectively, hi are the one-body terms, and Jjk are the two-body 

interactions. For the Ising model of a ferromagnet, h represents the magnetic dipole moments of 

the atomic spins and J represents the energy of the interactions between the spins. 

The D-Wave AQC used in this study is an analog device containing approximately 5,000 

qubits. The device is programmed by setting values of local magnetic fields and coupling 

strengths, and the annealing process works by adiabatically lowering the strength of a transverse 

magnetic field. This design is similar to simulated annealing of an Ising Hamiltonian, with the 

key difference being that the annealing process avoids getting trapped in local minima via 

quantum tunneling instead of thermal fluctuations, and the probability of hopping out of a local 

minimum is determined by the width of the barrier rather than the height (35). AQCs therefore 

provide a compelling strategy for solving combinatorial optimization problems that can be 

broken down into one- and two-body interactions, and these types of problems could offer 

quantum advantage for practical use-cases in the near term (36). For example, a recent study 

explored the potential for leveraging AQCs and gate-based devices for codon optimization, a 

crucial process in reagent generation and mRNA vaccine development (37). 
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 In this study we show that the RNA secondary structure prediction problem can be 

mathematically formulated as a BQM and thus be addressed using quantum computing 

technology. This representation requires translating the objective function utilized in classical 

approaches to a polynomial Hamiltonian where the eigenstates represent combinations of 

secondary structure elements, and the eigenvalues represent the scores. Implementing this 

approach on the D-Wave Advantage 1.1 hybrid solver provides performance competitive with a 

parallel replica exchange Monte Carlo (REMC) algorithm utilizing 128 cores programmed with 

the same objective function. 

 

Results 

 RNA secondary structure prediction was implemented as a BQM on a D-Wave AQC 

with a Hamiltonian designed to optimize the number of non-overlapping, consecutive, 

intramolecular base pairs with penalties imposed for pseudoknots and additional constraints to 

prevent bases from forming more than one hydrogen bond. The list of all possible stems is pre-

computed classically using the methods described in (24). Figure 1a shows an example matrix 

formulation for sequence: GGAAGCAAACAUCCCUGU, and Figure 1b provides a 

visualization of the base pairing patterns identified in Figure 1a. The classical data was encoded 

onto the quantum device by mapping each stem to a qubit (Figure 1c). The qubits which return 

“1” upon measurement represent the stems contributing to the secondary structure. The final 

secondary structure pattern is determined by recording the values of the qubits and saving all 

stems represented by qubits that returned “1”. 
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Figure 1: (a) Matrix representation of potential hydrogen bonds. Stems are highlighted in orange, blue, and green. 

(b) Structural representations of stems. Grey lines indicate covalent bonds and red lines indicate intramolecular 

hydrogen bonds. The color of the boxes map to the stems identified in (a). (c) Each stem is assigned to a qubit on the 

quantum device. If the qubit returns “1”, then the associated stem is included in the RNA secondary structure. 

Otherwise, the stem is excluded. 

 

 Directly programming the Quantum Processing Unit (QPU) with the BQM yields noisy 

data. Supplementary Figure 1shows the distribution of scores for systems requiring up to 45 

physical qubits. There are a multitude of factors that contribute to the noise, such as thermal 

fluctuations, and in general the noise is exacerbated by increasing the number of qubits. 

However, D-Wave offers a hybrid solver which uses a classical device to break down the 

problem into smaller pieces that are handled by the QPU. The following sections compare the 

performance of the hybrid solver against a REMC algorithm programmed with the same 

objective function and exact enumeration of the solution space where possible. 
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Exact Enumeration (<= 45 stems) 

Problems with sufficiently small solution spaces can be solved exactly. An MPI-enabled 

solver was written (see Methods) to exhaustively solve systems using massively parallel 

resources. Using this method, systems containing up to 45 qubits (245 (~1013) possible solutions) 

can be solved in under 24 hours using 7,900 CPU cores. Comparing the lowest energy solution to 

the experimentally determined solution (referred to as the known solution) is used to assess the 

suitability of the objective function. The structure predicted by the algorithm is compared to the 

known solution by computing the sensitivity and the specificity. The sensitivity reflects the 

fraction of experimentally determined base pairs that were correctly identified. A high sensitivity 

score (maximum score is 1) means the algorithm predicted every naturally occurring base pair 

and a low sensitivity score (minimum score is 0) means the algorithm did not predict many of the 

naturally occurring base pairs. The specificity reflects the fraction of predicted base pairs that 

map to the naturally occurring structure. A specificity score of 1 indicates that the algorithm only 

predicted base pairs that match the known structure, and a low score indicates that the algorithm 

predicted many base pairs that do not map to the known structure. 

A test set was derived by scraping PseudoBase for examples of RNA sequences with 

experimentally confirmed structures containing pseudoknots (38–40). Redundant sequences, 

defined as sequences with higher than 95% similarity, were removed from the set. The number 

of possible stems was computed for the remaining sequences in the database, and it was found 

that most sequences yielded too many possible stems for exact enumeration. To reduce the total 

number of possible stems down to a set small enough for exact enumeration, the length of the 

smallest possible stem was increased to 4. This restriction excludes stems of lengths 2 and 3 

from the sets, thereby reducing the size of the combinatorial solution space. Imposing this 
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constraint resulted in a test set containing 27 sequences. Figure 2a shows an example 

pseudoknotted structure from the test set. Figure 2b shows the sensitivity of the objective 

function was calculated to be 0.97 and the specificity was found to be 0.93, indicating that 97% 

of the naturally occurring base pairs were recapitulated by the algorithm, and 93% of the base 

pairs predicted by the algorithm correctly map to the naturally occurring structures. The full list 

of results can be found in Supplementary Table 1.  

The same analysis was performed using the REMC and QC methods. The average results 

are shown in Figure 2b, and the full list of results are shown in Supplementary Table 1. Each 

system was run 1 time through each algorithm, and in every case the result obtained matched the 

result from exact enumeration. Therefore, both methods are able to rapidly identify the minimum 

energy solution with high probability for systems containing fewer than 45 stems. 

 

 

Figure 2. (a) Example RNA sequence from simian retrovirus type-1 (SRV-1) with structure containing pseudoknot 

correctly predicted by algorithm (PDB code: 1E95). The phosphate backbone is colored white for unpaired bases. 
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(b) Exact Enumeration (EE) was used to compute the sensitivity and specificity of the proposed Hamiltonian 

(Equation 12) for systems containing 45 stems or fewer. Replica Exchange Monte Carlo (REMC) and quantum 

computing (QC) methods were tested on the same sequences and were found to exactly recapitulate the lowest 

energy solutions found by exact enumeration. 

 

Simulated annealing vs. quantum computing (>45 stems) 

 Scaling the system size beyond 45 stems requires tremendous computational resources 

for exact enumeration therefore these systems are only evaluated against approximate methods. 

Systems containing 45 – 881 stems were evaluated using both the REMC and QC methods. 

Similar to the previous section, the test sequences derive from PseudoBase. However, the 

minimum stem length was set to 3 and the minimum loop length was set to 2, allowing for 

significantly larger problem sizes. Each sequence was run through both algorithms 10 times to 

estimate the variance of the results. The sensitivity and specificity in these cases are less 

indicative of the fitness of the objective function since it is unlikely that the true minimum 

energy solution will be found each time. Figure 3a compares the scores of the REMC and QC 

methods. Points that fall on the dashed line indicate that the same exact score was found for both 

methods. Points that fall below the line indicate that the QC method found a lower energy 

solution, and similarly points above the line indicate the REMC method found a better solution. 

On average, the methods produce results of similar quality. Figure 3b shows the ensemble 

average sensitivity and specificity for each method. The REMC method reported slightly higher 

sensitivity and specificity than the QC method.  
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Figure 3. Replica Exchange Monte Carlo (REMC) and Quantum Computing algorithms were tested on systems 

containing more than 45 stems, which exceeds the practical limit of what can be solved with exact enumeration. The 

eigenvalues of the lowest energy systems are compared in (a). The dashed line represents y=x.  

 

Comparison to existing methods 

 The results presented in the previous sections were compared to three algorithms found in 

the literature. Two of the methods, SPOT-RNA (11) and ProbKnot (41), are capable of 

predicting pseudoknots while the other method, ViennaRNA (42), is not. The algorithms were 

tested on the same datasets as the previous sections. Figure 4 shows a summary of the overall 

sensitivity and specificity for each method applied to each dataset, listed in descending order. 

The method presented in this study had the best overall performance on both datasets. All 

methods performed worse on the dataset containing larger systems (>=45 stems) compared to the 

dataset containing smaller systems (<45 stems).  

ViennaRNA yielded the poorest agreement with both datasets. Given that the method is 

not advertised to predict pseudoknots, this was the expected outcome. SPOT-RNA, a recently 
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proposed method using an ensemble of deep neural networks, performed almost as well as the 

QC on the dataset containing sequences with more than 45 stems and had overall the most 

consistent performance between the two datasets. 

 

 

Figure 4. Comparison of methods on the datasets described in previous sections. Exact Enumeration (EE) is not 

computed for systems containing more than 45 stems.  

 

Discussion 

The purpose of this study was to present a model that enables RNA structure prediction 

using existing quantum hardware. AQCs were chosen to demonstrate the viability of the method 

due to the relative maturity of the technology, but BQM’s are readily implementable on all types 

of QCs. A recent study compared the performance and accuracy of AQCs and gate-based models 

for a BQM describing a biological system and showed that the gate-based platforms lack the 

qubits and physical connectivity required to test realistically large systems (37). However, there 

are proposals to build gate-based error corrected devices with up to 1,000,000 qubits by 2025 

(43). Such a device would be capable of encoding the 10146,440 possible solutions to the RNA 

structure of the SARS-CoV2 spike glycoprotein. The ability to find better approximations to 
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massive combinatorial problems like this could have a tremendous impact on vaccine design and 

drug discovery. 

The objective function used in this study is designed to simultaneously maximize the 

number of base pairs and the average length of the stems. There are cases where the sampling 

methods identify patterns of base pairs that score higher in our metric than what is observed in 

nature, indicating that the scoring function does not perfectly recapitulate the physics driving 

RNA folding. However, despite the simplicity of the scoring function, it was shown that the 

algorithm correctly identified the natural base pairs with 97% sensitivity and 93% specificity in 

smaller cases where exact enumeration was possible. There were 4 cases where either the 

sensitivity or the specificity was below 0.75. In one of the cases, the algorithm preferred a 

configuration containing four stems of length five instead of two stems, one of length five and 

one of length six. In the other 3 cases the algorithm found solutions containing more base pairs 

with at least 70% specificity.  

In larger cases where exact enumeration is impossible, both the quantum and the REMC 

methods yielded results of similar quality. In general, larger systems tended to have poorer 

agreement with naturally occurring structures. Overall, the method presented in this study 

outperformed the three comparator methods in terms of sensitivity and specificity. However, the 

datasets used in this study only included structures containing pseudoknots, but there are many 

classes of RNAs and many other types of secondary structure that need to be tested for a more 

thorough understanding of where the method is applicable. 

The objective function used in this study was designed to be simple and interpretable, but 

there is room for improvement. For example, the force field could take into account the number 

of hydrogen bonds formed by each type of interaction which could potentially reduce the number 
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of degenerate low-lying states. Furthermore, base pairs involved in pseudoknots are penalized by 

scaling back their energetic contribution to the Hamiltonian. The energy contribution for such 

base pairs is expected to be smaller because the formation of the knot requires the backbone to 

bend which puts stress on the hydrogen bonded base pairs. For simplicity, this effect was 

accounted for as a constant, but a systematic structural study could be performed to derive a 

more realistic model.  

It should be noted that the purpose of this work was not to develop a higher fidelity RNA 

folding potential but rather to show how one could develop a classical folding potential that can 

be easily mapped to quantum hardware. As long as one sticks to a discrete polynomial formalism 

more complex potentials can be mapped to existing and future QCs with ease. Hence in 

conclusion QCs are very promising for RNA folding. They are able to rapidly find minimum 

energy solutions for large combinatorial search spaces and have the flexibility to employ more 

complex potentials which should deliver higher specificity and sensitivity with limited impact on 

computational time. As the capabilities of QCs improve, in terms of qubit count, connectivity 

and signal to noise ratios it will become feasible to fold very large RNA sequences that would be 

intractable using classical methods.  

 

Methods 

RNA Secondary Structure Prediction Algorithm 

For a given RNA sequence containing N bases, an NxN matrix in constructed where rows 

and columns represent the bases. The upper diagonal elements of the matrix are populated with 

1’s for combinations of bases that hydrogen bond each other (A-U, G-C, G-U) and 0’s for 

combinations that do not form hydrogen bonds. For a reasonably strong interaction to persist in 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.446060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446060


an RNA structure, a minimum of 3 consecutive hydrogen bonds are required. The simplest way 

to identify consecutive bonds, called stems, is to scan the matrix for repeated 1’s in a diagonal 

perpendicular to the diagonal of the matrix. Figure 1a shows the matrix construction and 

corresponding hydrogen bonding patterns for an example sequence, 

GGAAGCAAACAUCCCUGU. Consecutive hydrogen bonds (with three or more bonds in a 

row) are highlighted in varying shades of gray, and representations of RNA folds subjected to 

these bonding patterns are displayed in Figure 1b.  

 

Implementation of objective function 

The goal of the optimization algorithm is to identify the combination of non-overlapping 

stems that simultaneously maximizes the number of consecutive base pairs along with the 

average length of the chosen set of stems. There are three parts to the global objective function; 

the first term reflects the number of base pairs with an adjustable penalty accounting for 

pseudoknots, the second term adds a penalty for adding short stems, and finally a constraint 

which adds an infinite penalty to combinations of overlapping stems. 

 

Scoring consecutive base pairs 

The base pair scoring function is inspired by the fitness function from Kai et al (24) 

which takes into consideration the number of consecutive base pairs and the number of 

pseudoknots. While there are many approaches to scoring base pairing networks, this approach 

was chosen due to its simplicity. Each stem is parameterized by the index of the first base, i, the 

index of the last base, j, and the length of the stem, k. This is compactly written as mn = (in, jn, kn) 
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for stem n. For a set of stems M = {m0, m1, …, mN}, the average number of consecutive bonds, b, 

is computed by summing over the lengths of each stem divided by the number of stems: 
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To prioritize base pairing configurations with longer stems, the Hamiltonian incorporates 

Equation (2) squared. 
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Equation (3) can be formulated as the Hamiltonian of a quantum system by taking the inner 

product with the vector of qubits comprising the quantum state, q = (q0, q1, …, qN), where qi ∈ 

{0,1}, and cB is a tunable constant: 

 

ℋ+ = 𝑐+##𝑘%𝑘*

&

*

𝑞%𝑞*

&
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			(4) 

 

This representation maps each stem to a labeled qubit, and the values of the binary values of the 

qubits determine which stems from the set contribute to the overall sum. 

The matrix represented in the double sum needs to be restricted to a sum over the upper 

triangular elements, consistent with Equation (1). By decomposing the sum into the trace and a 
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term that sums the contributions of the off-diagonal elements, the sum can be restricted to the 

upper triangular elements. The trace requires a single summation over ki2. Since qubits map to 

binary values, they are idempotent with themselves and therefore qi2 = qi. 
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Since the matrix is symmetric, all off-diagonal terms are accounted for in an upper triangular 

form by multiplying by 2. Thus, 
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Incorporating pseudoknot penalties 

 A pseudoknot is defined as two non-overlapping stems, ma = (ia, ja, ka) and mb = (ib, jb, kb) 

where ia < ib < ja < jb or ib < ia < jb < ja. Pseudoknots are detected by a delta function,  

 

𝛿%* = @𝑐-		𝑖𝑓	𝑝𝑠𝑒𝑢𝑑𝑜𝑘𝑛𝑜𝑡	𝑏𝑒𝑡𝑤𝑒𝑒𝑛	𝑠𝑡𝑒𝑚𝑠	𝑖	𝑎𝑛𝑑	𝑗1			𝑖𝑓	𝑛𝑜	𝑝𝑠𝑒𝑢𝑑𝑜𝑘𝑛𝑜𝑡𝑠																																					 , −1 ≤ 𝑐- ≤ 1			(7) 

 

Where cP is a tunable parameter set by the user. This penalty is designed to reduce the 

contribution of hydrogen bonds from pseudoknots. When cP is set to 1, hydrogen bonds from 

pseudoknots are not penalized. Conversely, when cP is set below 0, pseudoknots will not exist in 

the global minimum and can be avoided altogether. If cP is set to zero, the global minimum could 
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be degenerate with structures containing pseudoknots and the same structures with the 

pseudoknots removed. Incorporating this factor into the Hamiltonian yields Equation (8). 

 

ℋ+ = −𝑐+#𝑘%)𝑞%

&

%

− 𝑐+##𝑘*𝑘,𝑞*𝑞,

&

,$*

𝛿*,

&

*

			(8) 

 

The delta-function is omitted from the single summation since a stem cannot be in a pseudoknot 

with itself, and therefore the function will always evaluate as 1. 

 

Maximize average length of stem 

 One of the distinguishing features of the objective function introduced in (24) is an 

energetic preference for longer stems. Longer stems are assigned lower energetic values in 

Equation (8), but this term does not distinguish between multiple short stems and one long stem. 

For example, two stems of length three would yield a score of (3+3)2 = 36, whereas a single stem 

of length six would yield a score of 62 = 36. A single stem of length 6 would be preferred in most 

cases to two separate stems of lengths three because a penalty is incurred for interrupting the 

contiguous pi-pi interactions between bases. Since there are exceptions (see Results), this feature 

is incorporated into the Hamiltonian as a tunable parameter cL. 

 The average stem length can be maximized by minimizing the difference between the 

length of each stem in the set, ki, with the length of the largest stem in the set, μ. 

 

∆.=#(𝑘% − 𝜇))
&

%

			(9) 
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Equation 9 is rewritten as a Hamiltonian by expanding the product and projecting with the vector 

representing the qubits, q. 

 

ℋ. = 𝑐.#(𝑘%) − 2𝑘%𝜇 + 𝜇))𝑞%

&

%

			(10) 

 

Hamiltonian with constraints 

 Bases are only able to form hydrogen bonds with exactly one other base, so combinations 

of stems that require more than one bond for any given base must be excluded from the solution 

space. A delta-function is introduced to detect such combinations: 

 

𝛿′%* = @∞			𝑖𝑓	𝑠𝑡𝑒𝑚𝑠	𝑖	𝑎𝑛𝑑	𝑗	𝑜𝑣𝑒𝑟𝑙𝑎𝑝													0			𝑖𝑓	𝑠𝑡𝑒𝑚𝑠	𝑖	𝑎𝑛𝑑	𝑗	𝑑𝑜	𝑛𝑜𝑡	𝑜𝑣𝑒𝑟𝑙𝑎𝑝			(11) 

 

 The total Hamiltonian is thus constructed by adding the Hamiltonian defined in Equation 

(8) with the constraint defined in Equation (11): 

  

ℋ =#(𝑐.(𝑘%) − 2𝑘%𝜇 + 𝜇)) − 𝑐+𝑘%))𝑞%

&

%

−##[𝑐+𝑘*𝑘,𝛿*, + 𝛿/*,\𝑞*𝑞,

&

,$*

&

*

			(12) 

 

Algorithm implementations 

 The current approach to performing calculations on quantum devices requires the 

interaction terms to be precomputed on classical devices and read into the quantum devices via 
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specialized APIs. The interaction parameters from Equation (12) were precomputed in python 

3.7 using standard libraries and numpy arrays (44). The numpy arrays were converted to 

dictionaries in accordance with the expected input for the D-Wave libraries. The execution of the 

BQM was carried out using libraries described in the following sections. Each calculation was 

run 10 times. The pseudoknot penalty, cP, was set to 0.5 for all calculations. 

 

D-Wave Advantage 1.1 

The RNA secondary structure BQM was implemented on the D-Wave Advantage System 

1.1 utilizing the Leap Hybrid Solver. This adiabatic quantum device contains more than 5,000 

superconducting qubits. Each qubit is connected to 15 others described by a Pegasus P16 graph 

(45). The Advantage system was accessed through the D-Wave Leap web interface, which serves 

as an access point to QPU hardware as well as an integrated developer environment with built-in 

support for the full D-Wave API. 

The program was constructed and executed using python libraries provided by D-Wave 

systems. The BinaryQuadraticModel class in the dimod 0.9.10 python library was used to 

construct the model from the classically prepared data and convert it to a data structure 

compatible with the quantum device. The one- and two-body interaction terms were 

precomputed, stored in numpy arrays, and passed into the BinaryQuadraticModel instance along 

with an offset of 0.0 as a dimod.BINARY representation. The model was executed using the 

LeapHybridSampler classes in the dwave.system python library. The solver was allotted 3 s of 

execution time. The eigenstate with the lowest associated eigenvalue was chosen to represent the 

result of the simulation. 
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Replica Exchange Monte Carlo 

Replica exchange Monte Carlo (REMC) is a well-established and widely used method for 

identifying global minima on high complexity objective surfaces that contain many local minima 

(46–48). Here, a very basic REMC search algorithm was implemented to explore the folding 

landscape with the following steps: 1. An initial state is created composed of up to 5 randomly 

selected stems from the set of all stems. 2. The objective function is evaluated for this initial 

state. 3. A Monte Carlo move is performed in which three changes to the state are possible, each 

with equal probability: a) a stem is added, b) a stem is removed, or c) a stem is swapped for 

another from the set of all stems. In each case, if the move improves the objective function, the 

state is accepted, otherwise the state is accepted subject to the Metropolis-Hastings criteria (49) 

with a probability proportional to the Boltzmann distribution at a particular temperature. 

Subsequent Monte Carlo moves are then performed a fixed number of times, after which the 

final state of the system is returned. The Monte Carlo search when combined with simulated 

annealing and exponential cooling was found to be effective in identifying the global minimum 

of the objective for systems having fewer than 45 stems. However, as the complexity of the 

objective surface grows with increasing numbers of stems and possible states, obtaining effective 

sampling of the landscape becomes challenging with simulated annealing, often requiring 

increasingly complex cooling schedules, continuous tuning of the initial sampling temperature, 

or drastically increasing the number of sampling steps (50). 

The MC method was designed to allow for the simultaneous evolution of N replicas, each 

at a fixed effective temperature. Replicas sample states with probabilities proportional to the 

Boltzmann distribution at that replica’s temperature. The stochastic nature of the algorithm and 

the initial random configuration of the system necessitates that the replicas be able to exchange 
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states with those at neighboring temperatures. Without exchange, replicas at lower temperatures 

may become stuck in the numerous local minima of the objective function, while those at higher 

temperatures will never sample the desired higher probability states. Thus, by allowing swapping 

of states of neighboring temperatures, lower probability states are sampled in replicas at higher 

temperatures, which are then exchanged with replicas at lower temperatures to sample the 

desired higher probability states (46–48). 

In this implementation, exchanging states between replicas is performed according to the 

Metropolis-Hastings criteria (49), with a probability proportional to the difference in the 

objective’s value between the two states and their temperatures. Exchange attempts are 

performed every fixed number of steps, allowing for independent MC sampling to occur in each 

replica between exchange attempts, ensuring detailed balance. The replica temperature range, as 

well as their spacing are selected such that exchanges between neighboring replicas occurs 

roughly twenty percent of the time. The final state of the system is chosen from the best scoring 

state from the collection of replicas following the final step. 

Using this REMC approach, hundreds of potential stems could be efficiently sampled 

using only 64 replicas, with values of β (1/kT, where k is the Boltzmann constant and T is the 

effective temperature) in arbitrary units ranging from 1 to 30, 106 total steps, and exchange 

attempts every 103 steps. The total time to identify the global minimum for a system composed 

of 400 stems is roughly twelve seconds. 

The REMC method was implemented in pure Python and takes advantage of NumPy 

(44), and Python’s Random and Copy libraries. Replica parallelization, including 

synchronization and swapping of replica states was implemented using MPI for Python (51–53).  
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Comparator methods 

 Three additional, previously published methods were run using the same datasets and the 

same criteria for comparing to known structures as the method proposed in this study. 

RNAstructure ProbKnot 6.3 (41), SPOT-RNA (11), and ViennaRNA RNAfold 2.4.12 (42) were 

all run locally on an HPC cluster using command line defaults. The iterations parameter required 

by ProbKnot was set to 1000. The base pairs were extracted by mining the output PostScript (ps) 

file (ViennaRNA) or Connectivity Table (ct) file (ProbKnot and SPOT-RNA). 

 

Metrics for comparing stems 

 The predicted secondary structure was compared to the experimentally determined 

structure by computing the sensitivity and specificity. The sensitivity, σSN, is computed by 

comparing the number of correctly identified base pairs, C, to the number of predicted base pairs 

missing from the known structure, M, with the following formula: 

 

𝜎0& =
𝐶

𝐶 +𝑀			(13) 

 

The specificity, σSP, is computed by comparing C to the number of predicted base pairs that are 

not represented in the known structure, I. 

 

𝜎0- =
𝐶

𝐶 + 𝐼 			(14) 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.446060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446060


Acknowledgements 

We would like to thank Kim Branson, Deborah Loughney, Laura Zupko, and Lee Tremblay of 

GSK for evaluation and suggested refinements. 

 

Competing Interests 

The authors declare no competing interests. 

References 

1.  Cooper GM. The Cell: A Molecular Approach. 2nd edition [Internet]. Sinauer Associates 

2000; 2000. Available from: http://lib.ugent.be/catalog/ebk01:3450000000002155 

2.  Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA 

machine. Science (80- ). 2008;319(5871):1787–9.  

3.  Serganov A, Patel DJ. Ribozymes, riboswitches and beyond: Regulation of gene 

expression without proteins. Nat Rev Genet. 2007;8(10):776–90.  

4.  Chemla Y, Peeri M, Heltberg ML, Eichler J, Jensen MH, Tuller T, et al. A possible 

universal role for mRNA secondary structure in bacterial translation revealed using a 

synthetic operon. Nat Commun [Internet]. 2020;11(1):1–11. Available from: 

http://dx.doi.org/10.1038/s41467-020-18577-4 

5.  Gorochowski TE, Ignatova Z, Bovenberg RAL, Roubos JA. Trade-offs between tRNA 

abundance and mRNA secondary structure support smoothing of translation elongation 

rate. Nucleic Acids Res. 2015;43(6):3022–32.  

6.  Cambray G, Guimaraes JC, Arkin AP. Evaluation of 244,000 synthetic sequences reveals 

design principles to optimize translation in escherichia coli. Nat Biotechnol. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.446060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446060


2018;36(10):1005.  

7.  Bellaousov S, Reuter JS, Seetin MG, Mathews DH. RNAstructure: Web servers for RNA 

secondary structure prediction and analysis. Nucleic Acids Res. 2013;41(Web Server 

issue).  

8.  Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP. Efficient parameter 

estimation for RNA secondary structure prediction. Bioinformatics. 2007;23(13):19–28.  

9.  Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using 

thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9(1):133–48.  

10.  Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, et al. Improved protein 

structure prediction using potentials from deep learning. Nature [Internet]. 

2020;577(7792):706–10. Available from: http://dx.doi.org/10.1038/s41586-019-1923-7 

11.  Singh J, Hanson J, Paliwal K, Zhou Y. RNA secondary structure prediction using an 

ensemble of two-dimensional deep neural networks and transfer learning. Nat Commun 

[Internet]. 2019;10(1). Available from: http://dx.doi.org/10.1038/s41467-019-13395-9 

12.  Zhang H, Zhang C, Li Z, Li C, Wei X, Zhang B, et al. A new method of RNA secondary 

structure prediction based on convolutional neural network and dynamic programming. 

Front Genet. 2019;10(MAY):1–12.  

13.  Lu W, Tang Y, Wu H, Huang H, Fu Q, Qiu J, et al. Predicting RNA secondary structure 

via adaptive deep recurrent neural networks with energy-based filter. BMC Bioinformatics 

[Internet]. 2019;20(Suppl 25):1–10. Available from: http://dx.doi.org/10.1186/s12859-

019-3258-7 

14.  Fallmann J, Will S, Engelhardt J, Grüning B, Backofen R, Stadler PF. Recent advances in 

RNA folding. J Biotechnol [Internet]. 2017;261(July):97–104. Available from: 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.446060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446060


http://dx.doi.org/10.1016/j.jbiotec.2017.07.007 

15.  Bringmann K, Grandoni F, Saha B, Williams VV. Truly subcubic algorithms for language 

edit distance and RNA folding via fast bounded-difference min-plus product. SIAM J 

Comput. 2019;48(2):481–512.  

16.  Huang L, Zhang H, Deng D, Zhao K, Liu K, Hendrix DA, et al. LinearFold: Linear-time 

approximate RNA folding by 5’-to-3’ dynamic programming and beam search. 

Bioinformatics. 2019;35(14):i295–304.  

17.  Lyngsø RB, Pedersen CNS. RNA pseudoknot prediction in energy-based models. J 

Comput Biol. 2000;7(3–4):409–27.  

18.  Messenger RNA encoding the full-length SARS-CoV-2 spike glycoprotein [Internet]. 

WHO MedNet; 2020. Available from: 

https://web.archive.org/web/20210105162941/https://mednet-

communities.net/inn/db/media/docs/11889.doc 

19.  Alves J, Combes F, Ferrara A, Forveille T, Shore S. Planck 2015 results. Astron 

Astrophys. 2016;594.  

20.  Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Res. 

2003;31(13):3429–31.  

21.  Mathews DH. Revolutions in RNA Secondary Structure Prediction. J Mol Biol. 

2006;359(3):526–32.  

22.  Knudsen B, Hein J. Pfold: RNA secondary structure prediction using stochastic context-

free grammars. Nucleic Acids Res. 2003;31(13):3423–8.  

23.  Montaseri S, Zare-Mirakabad F, Moghadam-Charkari N. RNA-RNA interaction 

prediction using genetic algorithm. Algorithms Mol Biol. 2014;9(1):1–7.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.446060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446060


24.  Kai Z, Yuting W, Yulin L, Jun L, Juanjuan H. An efficient simulated annealing algorithm 

for the RNA secondary structure prediction with Pseudoknots. BMC Genomics [Internet]. 

2019;20(Suppl 13):1–13. Available from: http://dx.doi.org/10.1186/s12864-019-6300-2 

25.  Zhong H-S, Wang H, Deng Y-H, Chen M-C, Peng L-C, Luo Y-H, et al. Quantum 

computational advantage using photons. Science (80- ) [Internet]. 

2020;1463(December):1460–3. Available from: http://science.sciencemag.org/ 

26.  Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, et al. Quantum supremacy 

using a programmable superconducting processor. Nature [Internet]. 

2019;574(7779):505–10. Available from: http://dx.doi.org/10.1038/s41586-019-1666-5 

27.  Bova F, Goldfarb A, Melko RG. Commercial applications of quantum computing. EPJ 

Quantum Technol [Internet]. 2021;8(1):1–13. Available from: 

http://dx.doi.org/10.1140/epjqt/s40507-021-00091-1 

28.  Cheng HP, Deumens E, Freericks JK, Li C, Sanders BA. Application of Quantum 

Computing to Biochemical Systems: A Look to the Future. Front Chem. 

2020;8(November):1–13.  

29.  Elfving VE, Broer BW, Webber M, Gavartin J, Halls MD, Lorton KP, et al. How will 

quantum computers provide an industrially relevant computational advantage in quantum 

chemistry? arXiv. 2020;1–20.  

30.  Wang H, Kais S, Aspuru-Guzik A, Hoffmann MR. Quantum algorithm for obtaining the 

energy spectrum of molecular systems. Phys Chem Chem Phys. 2008;10(35):5388–93.  

31.  Aspuru-Guzik A, Dutoi AD, Love PJ, Head-Gordon M. Chemistry: Simulated quantum 

computation of molecular energies. Science (80- ). 2005;309(5741):1704–7.  

32.  Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Kieferová M, et al. Quantum 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.446060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446060


Chemistry in the Age of Quantum Computing. Chem Rev. 2019;119(19):10856–915.  

33.  Kassal I, Jordan SP, Love PJ, Mohseni M, Aspuru-Guzik A. Polynomial-time quantum 

algorithm for the simulation of chemical dynamics. Proc Natl Acad Sci U S A. 

2008;105(48):18681–6.  

34.  Kühn M, Zanker S, Deglmann P, Marthaler M, Weiß H. Accuracy and Resource 

Estimations for Quantum Chemistry on a Near-Term Quantum Computer. J Chem Theory 

Comput. 2019;15(9):4764–80.  

35.  Muthukrishnan S, Albash T, Lidar DA. Tunneling and speedup in quantum optimization 

for permutation-symmetric problems. Phys Rev X. 2016;6(3):1–23.  

36.  Djidjev H, Chapuis G, Hahn G, Rizk G. Efficient combinatorial optimization using 

quantum annealing. arXiv. 2018;1–25.  

37.  Fox DM, Branson KM, Walker RC. mRNA codon optimization on quantum computers. 

bioRxiv [Internet]. 2021;2021.02.19.431999. Available from: 

https://doi.org/10.1101/2021.02.19.431999 

38.  Van Batenburg FHD, Gultyaev AP, Pleij CWA, Ng J, Oliehoek J. PseudoBase: A 

database with RNA pseudoknots. Nucleic Acids Res. 2000;28(1):201–4.  

39.  Van Batenburg FHD, Gultyaev AP, Pleij CWA. PseudoBase: Structural information on 

RNA pseudoknots. Nucleic Acids Res. 2001;29(1):194–5.  

40.  Taufer M, Licon A, Araiza R, Mireles D, van Batenburg FHD, Gultyaev AP, et al. 

PseudoBase++: An extension of PseudoBase for easy searching, formatting and 

visualization of pseudoknots. Nucleic Acids Res. 2009;37(SUPPL. 1):127–35.  

41.  Bellaousov S, Mathews DH. ProbKnot: Fast prediction of RNA secondary structure 

including pseudoknots. Rna. 2010;16(10):1870–80.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.446060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446060


42.  Lorenz R, Bernhart SH, Höner zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. 

ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6(1):1–14.  

43.  Smith-Goodson P. Quantum Computing With Particles Of Light: A $215 Million Gamble. 

Forbes [Internet]. 2020 Apr; Available from: 

https://www.forbes.com/sites/moorinsights/2020/04/15/quantum-computing-with-

particles-of-light-a-215-million-gambl/?sh=13b4fb5224a7 

44.  Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. 

Array programming with {NumPy}. Nature [Internet]. 2020 Sep;585(7825):357–62. 

Available from: https://doi.org/10.1038/s41586-020-2649-2 

45.  Dattani N, Szalay S, Chancellor N. Pegasus: The second connectivity graph for large-scale 

quantum annealing hardware. arXiv. 2019;  

46.  Geyer CJ, Thompson EA. Annealing Markov Chain Monte Carlo with Applications to 

Ancestral Inference. J Am Stat Assoc [Internet]. 1995;90(431):909–20. Available from: 

https://www.tandfonline.com/doi/abs/10.1080/01621459.1995.10476590 

47.  Koji H, Koji N. Exchange Monte Carlo Method and Application to Spin Glass 

Simulations. J Phys Soc Japan [Internet]. 1996;65(6):1604–8. Available from: 

https://doi.org/10.1143/JPSJ.65.1604 

48.  Swendsen RH, Wang J-S. Replica Monte Carlo Simulation of Spin-Glasses. Phys Rev 

Lett [Internet]. 1986 Nov 24;57(21):2607–9. Available from: 

https://link.aps.org/doi/10.1103/PhysRevLett.57.2607 

49.  Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. 

Biometrika [Internet]. 1970 Apr 1;57(1):97–109. Available from: 

https://doi.org/10.1093/biomet/57.1.97 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.446060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446060


50.  Kofke DA. On the acceptance probability of replica-exchange Monte Carlo trials. J Chem 

Phys [Internet]. 2002 Sep 30;117(15):6911–4. Available from: 

https://doi.org/10.1063/1.1507776 

51.  Dalcín L, Paz R, Storti M. MPI for Python. J Parallel Distrib Comput. 2005;65(9):1108–

15.  

52.  Dalcin LD, Paz RR, Kler PA, Cosimo A. Parallel distributed computing using Python. 

Adv Water Resour [Internet]. 2011;34(9):1124–39. Available from: 

http://dx.doi.org/10.1016/j.advwatres.2011.04.013 

53.  Dalcín L, Paz R, Storti M, D’Elía J. MPI for Python: Performance improvements and 

MPI-2 extensions. J Parallel Distrib Comput. 2008;68(5):655–62.  

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 29, 2021. ; https://doi.org/10.1101/2021.05.27.446060doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.27.446060

