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 25 
Abstract 26 
 27 
Two long standing challenges in theoretical population genetics and evolution are predicting the 28 

distribution of phenotype diversity generated by mutation and available for selection and determining the 29 
interaction of mutation, selection, and drift to characterize evolutionary equilibria and dynamics.  More 30 

fundamental for enabling such predictions is the current inability to causally link population genetic 31 

parameters, selection and mutation, to the underlying molecular parameters, kinetic and thermodynamic.  32 
Such predictions would also have implications for understanding cryptic genetic variation and the role of 33 

phenotypic robustness. 34 
 Here we provide a new theoretical framework for addressing these challenges.  It is built on 35 

Systems Design Space methods that relate system phenotypes to genetically-determined parameters and 36 
environmentally-determined variables. These methods, based on the foundation of biochemical kinetics 37 

and the deconstruction of complex systems into rigorously defined biochemical phenotypes, provide 38 

several innovations that automate (1) enumeration of the phenotypic repertoire without knowledge of 39 

kinetic parameter values, (2) representation of phenotypic regions and their relationships in a System 40 
Design Space, and (3) prediction of values for kinetic parameters, concentrations, fluxes and global 41 
tolerances for each phenotype.  42 
 We now show that these methods also automate prediction of phenotype-specific mutation rate 43 

constants and equilibrium distributions of phenotype diversity in populations undergoing steady-state 44 
exponential growth. We introduce this theoretical framework in the context of a case study involving a 45 
small molecular system, a primordial circadian clock, compare and contrast this framework with other 46 

approaches in theoretical population genetics, and discuss experimental challenges for testing predictions. 47 

 48 

49 
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INTRODUCTION 50 

 51 
The concept of evolution is easily stated and understood:  Mutation generates diversity of phenotypes and 52 

selection favors those with the greatest heritable fitness.  However, there are many complex and inter-53 
related issues that must be addressed to achieve a deeper understanding.  Two prominent examples that 54 

continue to be fundamental challenges are (1) determining the distribution of phenotype diversity, which 55 

offers opportunities for innovation (Charlesworth, 1996; Bataillon & Bailey, 2014) and (2) determining the 56 
interaction of mutation, selection, drift and population structure to determine equilibria and the dynamics 57 

of evolution (Gillespie, 2004; Orr, 2005; Wakeley, 2005).   58 

 While the distribution in the numbers and types of changes in DNA can be determined because of 59 
advances in genome sequencing technology (Metzker, 2010), determining the distribution of the resulting 60 

phenotypes and their fitness characteristics (determinants of total fitness) in natural populations is difficult 61 
in the extreme (Charlesworth, 1996).  The true number of phenotypes and fitness characteristics in the 62 

population is typically unknown and any observed distribution of total fitness (e.g., growth rate of bacteria) 63 
is skewed by what can be observed in the field or measured or generated experimentally in the laboratory 64 
(Gallet et al., 2012; Robert et al., 2018; Bondel et al., 2019; Lebeuf-Taylor, et al., 2019).  With large data 65 

sets, correlations can be established between genome changes and fitness changes in a given environment.  66 
However, at a fundamental level there are many fitness components based on function that remain to be 67 
identified and characterized and many unsolved mappings that prevent a predictive, causal linking of 68 
mutations in DNA, properties of molecular components, integrated system function, phenotypic repertoire, 69 

and fitness.  In short, there is little relevant theory for guidance.  70 
 There is a rich field of theoretical population genetics developed over more than a century that 71 
addresses the interaction of mutation, selection, drift and population structure (Gillespie, 2004; Orr, 2005; 72 

Wakeley, 2005).  However, aside from the simpler cases of one-to-one mapping between gene and 73 
phenotypic function, an appropriate theoretical framework is lacking to pose and answer questions for the 74 

more complex cases that involve mappings between many genes and many functional contributions to 75 

phenotypes.    76 

 In reviewing the genetic theory of adaptation, Orr (2005) examined “the reasons a mature 77 

[mathematical] theory has been slow to develop and the prospects and problems facing current theory” and 78 

concluded that although recent models “seem to successfully explain certain qualitative patterns […] future 79 
work must determine whether present theory can explain the genetic data quantitatively”.  Experimental 80 

evolution studies have shown that mutations in a single gene affecting a specific enzyme can lead to a 81 

marked change in organismal fitness (Barrick & Lenski, 2013; Gresham & Jong, 2015).  Although the 82 
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results might be explained qualitatively, without an adequate systems theory these explanations cannot 83 

provide a rigorous, quantitative, causal understanding of the complex underlying events.   84 
 Can knowledge of molecular systems tell us anything about the distribution of mutant phenotypes 85 

and their evolution?  A large part of the problem in relating molecular mechanisms to phenotype 86 
distributions and evolution is the inability to relate the genotype and environment to the phenotype exhibited 87 

by a biological system, which is one of the ‘Grand Challenges’ in biology (Brenner, 2000).  The causal 88 

linking of genotype to phenotype involves at least three essential mappings:  First is the mapping from the 89 
digital values of the genome sequence to the analogue values of the kinetic parameters that characterize the 90 

underlying molecular processes.  Second is the mapping from the kinetic parameters of the individual 91 

component processes to the quantitative biochemical phenotypes of the integrated cellular system.  Third is 92 
the mapping from the biochemical (endo-) phenotypes to the organismal (exo-) phenotypes, including 93 

observables such as growth rate, taxis, adhesion, etc.  The first of these mappings deals with protein 94 
structure function relationships, which relate DNA sequence to properties of the encoded protein. Recent 95 

success in solving the protein folding problem (Callaway, 2020) bodes well for the eventual ability to 96 
predict kinetic parameters.  The second mapping is the focus of Biochemical Systems Theory (Savageau, 97 
1971; 2009; Voit, 2000; 2013), which in the past decade has provided a novel system deconstruction that 98 

maps genetically-determined parameters and environmentally-determined variables to biochemical 99 
phenotypes.  The result is a highly structured partitioning of parameter space that is defined as the System 100 
Design Space (Savageau et al., 2009).  A Design Space Toolbox (DST3) is available with numerous tools 101 
that automate the analysis (Valderrama-Gómez et al., 2020).  The third of these mappings is perhaps the 102 

most difficult, in any but the simplest cases of one-gene one-protein one-phenotype, due to the large number 103 
of genes and phenotypes with many-to-many interactions that currently can only be characterized by large 104 
data sets and statistical correlations (McCarthy et al., 2008; Greenbury et al., 2016).   105 

 If we could enumerate the full repertoire of phenotypic functions that could be exhibited by a given 106 
biological system and know the ranking of phenotype frequencies in the population undergoing mutational 107 

exchange, we would have a deep understanding of the functional basis for phenotypic diversity and 108 

plasticity available for selection to act upon.  Here we address these issues in five parts.   109 

 First, we introduce a small molecular system, a primordial precursor to a circadian clock, as an aid 110 

to understanding this novel approach.  We have specifically selected a hypothesis-motivated example with 111 

unknown parameter values for this purpose because any real system will initially have many unknowns and 112 
involve the formulation of, and discrimination among, many hypotheses that require experimental testing.  113 

Our approach has advantages to offer specifically at this stage of an investigation (Lomnitz & Savageau, 114 

2016a). Second, we utilize System Design Space concepts (Supplemental Information, Section S1) to 115 
extend and apply the phenotype-centric strategy to predict phenotype-specific mutation rate constants. This 116 
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involves formulating phenotype-specific mutation rates based on transition probabilities between 117 

biochemical phenotypes.  These rate constants are then used to formulate population dynamic equations for 118 
predicting equilibrium distributions of phenotype diversity under non-selecting and selecting conditions.  119 

Third, results for the population genetic model are presented.  Fourth, specific predictions are discussed in 120 
the light of experimental challenges for their testing.  Fifth, in the discussion, we briefly compare and 121 

contrast the theoretical framework provided by the System Design Space approach with that provided by 122 

other approaches.   123 
 124 

PUTATIVE PRIMORDIAL CIRCADIAN CLOCK 125 

 126 
The molecular system, treated as a case study here, is related to the positive-negative feedback module 127 

found at the core of nearly all circadian clocks (Bell-Pedersen et al., 2005; Hardin, 2011; Cohen & Golden, 128 
2015; Nohales & Kay, 2016; Papazyan et al., 2016; Creux & Harmer, 2020) and several synthetic oscillator 129 

designs (Atkinson et al., 2003; Stricker et al., 2008; Tigges et al., 2009; Lomnitz & Savageau, 2014).  In 130 
the transcription-translation oscillators, this module consists of a positive transcription factor that activates 131 
its own synthesis as well as synthesis of a negative transcription factor, which in turn represses synthesis 132 

of the positive transcription factor.  The originally identified module in Drosophila is elaborated upon in 133 
animals (Preitner etal., 2002) and plants (Creux & Harmer, 2020) with numerous variations on the theme, 134 
including diverse input stimuli that modulate expression of one or both factors (Balsalobre, et al. 2000; 135 
O’Neill & Reddy, 2012) and rich output interactions with nearly all cellular functions (Creux & Harmer, 136 

2020).  137 
 In the cyanobacterial clock, the transcription-translation mechanism is a minor player whereas a 138 
posttranslational oscillator mechanism with different positive and negative interactions plays the dominant 139 

role (Cohen & Golden, 2015).  When growing exponentially in a normal diurnal light cycle, phenotypes 140 
without the oscillatory characteristic are at a selective disadvantage when compared to the wild type 141 

(oscillatory phenotype); however, they exhibit no measurable disadvantage when grown under the non-142 

selecting condition (constant light), as determined by growth competition between mutants and wild type 143 

in an otherwise isogenic background (Ouyang et al., 1998).  Under these conditions, biochemical 144 

phenotypes map closely to organismal phenotypes, which is the assumption typically made in studying the 145 

evolution of specific molecular systems in bacteria (Brajesh, et al., 2019).   146 
 Roenneberg & Merrow (2002) and many others have speculated that the robust limit cycle or 147 

sustained oscillation exhibited by circadian clocks in modern organisms is unlikely to have arisen full 148 

blown.  We propose that some of the coordinating functions could have been provided by a simpler core 149 
module having a damped oscillation with a frequency that resonates to and becomes synchronized with the  150 
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 151 

Figure 1. Common genetic module for the putative precursor of the modern core mechanism of 152 
nearly all circadian clocks.  Positive (P) and negative (N) transcription factor proteins and the 153 
corresponding mRNAs (mP and mN).  Environmental input stimulus (S) and biochemical output response 154 
(R) are suggestive only, other targets and coordinating signals could be considered. See also Supplemental 155 
Information, Section S2. 156 
 157 

diurnal cycle.  Indeed, such damped oscillations have been experimentally observed in strains of 158 
cyanobacteria: namely, clock mutants of Synechococcus (Ouyang et al., 1998; Kawamoto et al., 2020) and 159 
marine Prochlorococcus marinus (Holtzendorff et al., 2008).   160 

 For our purposes here, we shall consider the primordial mechanisms to involve only the negative 161 
feedback loop at the core of modern transcription-translation mechanisms, as shown schematically in 162 
Figure 1. The equations used to represent this putative primordial clock (Supplemental Information, 163 
Section S2) are based on the foundation of fundamental biochemical kinetics.  These models have broad 164 

general applicability, as the vast majority of biochemical models are of this type (Chelliah et al., 2013). 165 

These equations, recast as an equivalent GMA-system of equations (Supplemental Information, Section 166 

S3), can be expressed as a set of differential-algebraic equations in the syntax of the Design Space Toolbox 167 
(Lomnitz & Savageau, 2016b).   168 
 For the illustrative purposes of this case study, we make three simplifying assumptions.  (1) The 169 
precursor is likely to involve a minimal number of processes and a minimal degree of cooperativity in the 170 

interactions.  The two-transcription factor model involves at least four processes and two cooperative DNA 171 

interactions.  For it to generate a damped oscillatory response, the system must be near the threshold of 172 

instability, which requires a value of loop cooperativity [(n*p) in the Eqn. (S1) to Eqn. (S4)] equal to 4 for 173 
a system with four temporally dominant stages (Savageau, 1975; Thron, 1991).  We let the cooperativity 174 

parameters n=p=2.  Kawamoto et al. (2020) considered a simpler three-stage model for Synechococcus; but 175 
it requires a much higher degree of cooperativity, n >8 as shown in Savageau (1975).  (2) To provide the 176 

most challenging shape for testing different methods of volume calculation, we select values for the two 177 

parameters (capacity for regulation for the two transcripts) with the potential to break the symmetry such 178 
that a skewed volume is generated for the phenotype with an oscillatory characteristic (Supplemental  179 

mP

P

mN

N

S

R
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 Table 1. Phenotypic repertoire for the model in Figure 1. 

Phenotype 
Number 

Phenotype 
Signature 

Eigenvalues with 
Positive real part 

Complex Conjugate 
Eigenvalues 

1 11 11 11 11 11 11 0 - 
3 11 11 11 11 21 11 0 - 
5 11 11 21 11 11 11 0 - 
6 11 11 21 11 11 21 0 - 
7 11 11 21 11 21 11 0 + 
8 11 11 21 11 21 21 0 - 
11 21 11 11 11 21 11 0 - 
15 21 11 21 11 21 11 0 - 
16 21 11 21 11 21 21 0 - 

Results determined using only Eqns. (S5 to S12). 180 

Information, Section S4, Figure S1).  (3) To aid visualization of the results we focus on a two-dimensional 181 
slice through the System Design Space with the two binding constants displayed on the vertical and 182 
horizontal axes, which is representative of the invariant for this system design space (Supplemental 183 

Information, Section S5, Figure S2).   184 
 The Design Space Toolbox 3 (DST3, Valderrama-Gómez et al., 2020) can be used to enumerate 185 
the repertoire of phenotypes without assuming values for any of the model’s kinetic parameters, and the 186 

results demonstrate a maximum of nine possible phenotypes.  The listing of the phenotypes, along with the 187 
properties of their eigenvalues when n=p=2, is shown in Table 1.  Each sequential pair of integers in the 188 
phenotype signature identifies the specific positive and negative terms in the corresponding GMA equation 189 
that are instrumental in defining the phenotype. A comparison of the phenotype signatures with the GMA 190 

equations in Supplemental Information, Section S3, identifies the specific S-system equation for each 191 
phenotype. All phenotypes are stable with no complex conjugate eigenvalues, except for phenotype #7; 192 
thus, only phenotype #7 has the potential to initiate damped oscillatory behavior.   193 

 It should be emphasized that the enumeration of the full repertoire by DST3 is accomplished 194 
without having to specify values for any of the thermodynamic and kinetic parameters. By specifying the 195 

stoichiometry for binding repressor and activator as n=2 and p=2, DST3 automatically predicts scaled 196 

values (Table 2, Legend) of all 12 thermodynamic and kinetic parameter values of the system, identifies 197 

the region in design space for the realization of phenotype #7, the phenotype of interest here, as well as the 198 

steady-state values of the four dynamic variables.  By choosing the simplest scaling, generating a skewed 199 

volume for phenotype #7, and shifting the entire Design Space to center the visualization on phenotype #7 200 
(Supplemental Information, Section S5, Figure S2), we predict values for the 12 parameters and the 201 

steady-state values for the four dynamic variables as shown in Table 2.   202 

 203 
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Table 2.  Scaled values for the parameters and steady state concentrations automatically determined 204 
and fixed for phenotype 7 (11 11 21 11 21 11).  The behavior of the model is determined by these scaled 205 
parameter values.  If necessary, twelve experimental measurements (e.g., maximum expression, minimum 206 
expression and lifetime of each mRNA and protein) are sufficient to determine the actual parameter values.  207 
However, as can be seen in the Eqn. (1), our methods involve differences in log space so the scale factors 208 
cancel out and thus there is no effect on the qualitative or quantitative results.  Predicted normalized steady-209 
state values: mP = 100.0; P = 1.0; mN = 3.16; N = 3.16.  210 
 211 

Parameters Value 
KN 0.316 
KP 1.78 

amNmax 10.0 
amNmin 1.00 
amPmax 10000 
amPmin 1.00 

aN 1.00 
aP 0.01 

bmN 1.00 
bmP 1.00 
bN 1.00 
bP 1.00 

 212 
 Although we could examine variations in all 12 parameters, we choose to fix the predicted values 213 

for all parameters except for the two equilibrium dissociation constants KP and KN, which will be allowed 214 
to vary because of mutation.  This simplification reduces the dimensions of the Design Space for ease in 215 

visualizing the results while providing an accurate representation of the underlying Design Space invariant.  216 
The size of the regions in Design Space occupied by each of the phenotypes (Figure 2A) then can be 217 
determined by a vertex enumeration method (Avis 2000, Barber et al. 1996).  These methods work well for 218 
small systems and other methods are available for large systems (Supplemental Information, Section S6, 219 

Figure S3).  220 
 We are fully aware that this simplified example used to introduce our theoretical framework does 221 

not illustrate its full potential. There is a growing number of molecular systems for which there is 222 
information sufficient to specify their architecture.  By model architecture we mean molecules, interactions 223 

among them, and the signs of the interactions.  Surprisingly, much of what can be learned about the system 224 
depends largely on its architecture. It suggests mechanistic hypotheses without having to know details of 225 

the many kinetic and thermodynamic parameters.  As noted in the INTRODUCTION, this is all that is 226 

needed to formulate testable hypotheses amenable to analysis in the System Design Space framework.  One 227 
the other hand, we are also fully aware that this simplified example does not address numerous realistic and 228 

important questions in the large field of theoretical population genetics. These issues must be the subject of 229 

future work.   230 
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NEW APPROACHES: DERIVATION OF PHENOTYPE-SPECIFIC MUTATION RATE CONSTANTS 231 

AND POPULATION DYNAMIC EQUATIONS 232 
 233 

The System Design Space approach enables a novel ‘phenotype-centric’ modeling strategy that is radically 234 
different from the conventional ‘simulation-centric’ approach (Valderrama-Gómez et al., 2018).  A 235 

summary of System Design Space concepts is provided (Supplemental Information, Section S1) to 236 

facilitate understanding of the phenotype-centric strategy used to predict phenotype-specific mutation rate 237 
constants.   238 

 The mechanistic framework we are proposing requires new concepts and methods; the reader is 239 

directed to Supplemental Information where these are fully developed. Here we simply summarize the 240 
four factors in System Design Space contributing to the probability of transition between phenotypes by 241 

mutational change in the mechanistic parameters: (1) mutated parameters change value along ‘tracks’ 242 
orthogonal to non-mutated parameters, (2) ‘volume’ of the phenotype resulting from mutation, (3) ‘size 243 

scale’ of parameter changes between original (doner) and resultant (recipient) phenotypes, and (4) 244 
‘directional bias’ of parameter changes that are more probable in one direction vs. the alternative.  These 245 
four factors are elaborated on in the following sections and it will be most helpful to visualize these factors 246 

in terms of the geometry of System Design Space that is determined by the architecture of the underlying 247 
molecular system (Supplemental Information, Section S7).    248 
 249 
Mutated vs. Orthogonal Parameters 250 

 251 
We consider only mutational events that influence a single parameter. Thus, we need only consider a single 252 
‘track’ for the mutated parameter between values of orthogonal parameters.  Such mutations can influence 253 

multiple systemic functions indirectly, which is pleiotropy at the phenotype level.  The tracks are rigorously 254 
defined by the vertices of the phenotype polytopes and, in some cases, polytopes are split into more than 255 

one track (Figure S4D).  The single parameter restriction can be relaxed to consider mutations that 256 

influence multiple parameters of a single component, which might be considered pleiotropy at the single 257 

molecule level (e.g., the degradation rate constant of a transcription factor and its DNA binding constant). 258 

The single parameter restriction can also be relaxed to consider simultaneously multiple mutants (e.g., rare 259 

double mutant events).  However, to make causal predictions upon removal of the single parameter 260 
restriction will require formulation of testable mechanistic hypotheses (Lomnitz & Savageau, 2016a).   261 

 262 

 263 
 264 
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Phenotype Volume 265 

 266 
Because the volume of a phenotype becomes infinite when the phenotype is independent of some parameter 267 

in the model, we bound the universe of values for all parameters by a hyper-cube in log space that is P-268 

orders of magnitude on edge.  The value of P should be large enough to include all phenotypes in the 269 

System Design Space but not so large as to exceed physically realistic parameter values; this will exclude 270 

phenotypes that can only be realized with unrealistic parameter values.  We have set P = 6, which seems 271 

large enough to cover all values that can be distinguished experimentally, which is typically about 3-orders 272 

of magnitude. For example, the repressor for the lactose operon of Escherichia coli binds tightly to specific 273 
recognition sites in the DNA with an occupancy of nearly 100%, but reduction of its equilibrium 274 

dissociation constant by three orders of magnitude reduces the occupancy to nearly 0% (Lewin, 2008).  275 
Moreover, it is very unlikely that parameter values ever go to zero because there are typically promiscuous 276 
proteins capable of performing the same function with at least some minimal activity (Khersonsky & 277 

Tawfin, 2010; Rueda et al., 2019).  In any case, we have obtained similar results with P = 8, and DST3 278 

allows users to select a custom value for P.   279 

 Given a particular set of parameter values characterizing the donor phenotype in volume Vi, one of 280 
the four contributions to the probability of mutating to any other set of parameter values in the volume of 281 
the recipient phenotype Vj, along a given mutant parameter track, is given by the ratio of the recipient 282 
volume to the total volume along the entire track.  Thus, this contribution to the probability of mutating 283 

from a phenotype with a small track volume to one with a large track volume is greater than in the opposite 284 
direction.  285 
 286 

Size Scale  287 
 288 
Large scale mutations are rare; small scale mutations are frequent in well adapted systems (Bataillon & 289 

Bailey, 2014; Tataru et al., 2017; Bondel et al., 2019; Templeton, 2021).  This size-scale effect depends on 290 

the distance, s, between the operating point (a parameter set) of the donor phenotype and that of the recipient 291 
phenotype.  By sampling each donor and recipient combination along the line representing the change in 292 

the mutated mechanistic parameter, the probability of each mutation can be calculated based on the track 293 

volume of the recipient phenotype and distribution of size-scale effects for the mutations.  Although the 294 

actual distributions for size-scale effect are unknown, we assume that the probability of parameter change 295 

by mutation decreases exponentially with a size scale l, i.e. ~ exp(-s/l).  This will be made more concrete 296 

in RESULTS (first subsection).   297 
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 The size-scale effect of mutations can be calculated as an average distance over all combinations 298 

of donor and recipient parameter values within a track, which is computationally demanding, or by 299 
considering the distance between ‘phenotype centroids’ (red dots in Figure S4B,C,D), analogous to the 300 

‘centers of mass’ in mechanics.  The results are the same for both methods (Supplemental Information, 301 
Section S8, Figure S5) and, since it is computationally more efficient, we use the centroid method.   302 

 303 

Directional Bias 304 
 305 

The probability of mutation can be further refined by consideration of “directional bias”.  The probability 306 

is larger when a parameter change is in the direction of increasing entropy; it is smaller when the change is 307 
in the direction of decreasing entropy. Although the actual differences in value are currently unknown, we 308 

account for these directional biases by assigning a multiplicative weighting factor d that increases the 309 

effective size scale l when a parameter change is in the direction of increasing entropy and decreases it 310 

when the parameter change is in the direction decreasing entropy (Supplemental Information, Section 311 
S9, Table S1).   312 
 313 

Mutation Rates 314 
 315 
Phenotype-specific mutation rate constants are determined in three steps.  First, for each donor i and 316 

recipient j phenotype, the mechanistic parameter contribution to the mutation, , is determined with an 317 

exponential distribution (Table S1) involving size scale , directional bias , and the magnitude of 318 

parameter difference s, between phenotype centroids , i.e.,    319 

  or  (1) 320 

depending on whether the directional bias of the mutation is toward increased entropy ( ) or decreased 321 

entropy ( ).  The product of the mechanistic contribution, , and the track volume of the recipient 322 

phenotype, Vj, is proportional to the probability of a mutation from donor phenotype i to recipient phenotype 323 
j.   324 

 Second, the normalized probability of a mutation from donor phenotype i to recipient phenotype j 325 

along a track variable is written 326 

        (2) 327 

Kij

λ δ

Ci

Kij ~ exp(− logCi − logCj / λδ ) Kij ~ exp(− logCi − logCj δ / λ)

1/δ

δ Kij

kij = KijV j /
j=1

nj

∑KijV j

⎛

⎝⎜
⎞

⎠⎟
kij

j=1

nj

∑ = 1
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where nj is the number of recipient phenotypes that phenotype i can reach by a single mutation of the 328 

mutated parameter under consideration.   329 
 The phenotype-specific mutation rate is proportional to the general mutation rate, represented by 330 

the parameter m.  There is a great deal of variation in m among species and ecological contexts (Westra et 331 
al., 2017).  In humans, mutations/base pair is estimated at ~ 10-8 per generation (Nachman & Crowell, 2000) 332 

and, assuming an average gene size of ~ 1000 base pairs, this results in a general mutation rate m on the 333 

order of 10-5 mutations/locus per generation. In E. coli, mutations/base pair is estimated at ~10-10  per 334 
generation (Foster, et al., 2015).  Thus, for an average gene size, the estimated general mutation rate m is 335 

on the order of 10-7 mutations/locus per generation.  Matic et al. (1997) found that values for the E. coli 336 

mutation rate to drug resistance are typically in agreement with this figure (~ 10-7), but they also found 337 
examples as high as ~ 10-5.  The values that might have been relevant for early periods of evolution are 338 

unknown, but likely to be on the higher end because of error-prone conditions thought to have prevailed at 339 
that time.  This would be a relevant issue for our case study of a putative primordial circadian clock, which 340 

will be treated in RESULTS.  We focus on spontaneous point mutations resulting from replication that are 341 
the major source of variation in a bacterium like E. coli (Foster, et al., 2015).  The general mutation rate is 342 
subject to evolution in various contexts (Sniegowski et al., 2000; Raynes et al., 2018) and, as we will show 343 

for our clock model, the interaction of phenotype-specific mutation rates and near-neutral fitness effects 344 
(i.e., growth rates, as a measure of total fitness, are nearly equal for all phenotypes) results in different 345 
values of the general mutation rate that are optimal for individual phenotypes.   346 

 Finally, the phenotype-specific mutation rate constant between phenotypes i and j is given by 347 

the product of two factors , where m is the general mutation rate constant given by the number of 348 

mutations per generation and  is the probability of a specific transition from phenotype i to phenotype j.  349 

The production rate of a phenotype (mutant) in units of mutations/time is then the product of the 350 

phenotype-specific mutation rate constant,   the exponential growth rate constant of the donor phenotype 351 

(related to the doubling time, ), and  the size of the donor population.  Note that this differs 352 

from the conventional description in that the product is typically represented by a single specific rate 353 

constant per generation (e.g., Levin et al., 2000; Reams et al., 2010) that is not predicted but measured or 354 

estimated for a particular mutant phenotype.   355 

 356 
 357 

 358 

 359 

mij

mkij

kij

mij

γ i

ln2 /τ D Ni

mkij
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Population Dynamic Equations 360 

 361 
To simplify the presentation, we restrict consideration to asexual haploid organisms in a spatially 362 

homogenous context growing in an exponential steady state, which is the most rigorously defined state for 363 
a cellular population (Maaløe & Kjeldgaard, 1966).  Under these idealized conditions, all effective 364 

population sizes Ne are equal to the census population size N, mutants are never lost from the population, 365 

and the equilibrium distribution can be rigorously determined under non-selecting and selecting conditions.  366 
Lethal mutations (~ 1%) can be subsumed within a net growth rate constant since there is evidence that 367 

these mutants occur by a first-order process (Robert et al., 2018).  Of course, steady-state exponential 368 

growth cannot continue indefinitely.  Nevertheless, results obtained under these conditions provide a 369 
rigorous reference or standard to which results under more realistic conditions can be compared, analogous 370 

to the historical role played by the frictionless plane in mechanics (Hawking, 2002) and by the Hardy-371 
Weinberg law in population genetics (Crow, 1988; Wakeley, 2005).  As with these idealizations, the 372 

intention is to get at something essential with the understanding that refinements will undoubtedly be added 373 
in the future; just as wind resistance and static friction were eventually added in mechanics and selection, 374 
drift and population structure were eventually added in population genetics.  In each case, the expectation 375 

is that more realistic aspects will be added as the theory becomes refined. In DISCUSSION we will suggest 376 
methods to relax our assumptions.  377 
 The population dynamic equations for steady-state exponential growth can be written in terms of 378 
numbers for each of the n phenotypes in the population 379 

      (3) 380 

The first sum is the rate of increase by mutation, the second sum the rate of loss by mutation, and the final 381 

term the rate of increase by net exponential growth, with  in doublings per unit time.  These equations 382 

have the undesirable feature that the population is continually increasing.  However, by expressing the 383 

population numbers  as a fraction of the total population  (or relative frequency) the resulting 384 

equations have a more convenient form with a well-defined steady state.  Thus, the relative frequency of 385 

phenotype i is 386 

   and        (4) 387 

Starting with the derivative of the relative frequency 388 

dNi

dt
= mkjiγ jN j

j=1
j≠i

n

∑ − mkijγ iNi
j=1
j≠i

n

∑ + γ iNi i = 1,!,n

γ i

Ni NT

Ri = Ni /
j=1

n

∑N j Ri
i=1

n

∑ =1
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        (5) 389 

substituting  from Eqn. (3), and noting the cancelation of the mutation terms in , we 390 

obtain 391 

     (6) 392 

In anticipation of the case study to follow, we shall consider the situation in which phenotype k has growth 393 

rate in a non-selecting condition and  in a selecting condition.  By adding and subtracting the same 394 

terms, normalizing time t by  (  in generations) and defining relative growth rates as 395 

, Eqn. (6) can be rearranged and rewritten for phenotype k and for all other phenotypes i to emphasize three 396 
separate contributions to their rate of change:  397 

   (7) 398 

  (8) 399 

where the seledtion coefficient is defined as .  If there are no fitness effects in the non-selecting 400 

condition (all growth rates identical), then the form of the above equations in the selecting condition has 401 

the meaning  402 

               Net Rate of Change  =   Mutation    403 
+   Mutation-x-Selection       (9) 404 

+   Selection 405 

 406 

d Ni / NT( )
dt
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dt
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 407 

Figure 2.  Predicted phenotype characteristics in System Design Space.  (A) Visualization of phenotype 408 
regions. Region of oscillatory phenotype #7 is the central rectangular shape. (B) Steady state concentration 409 
of total protein (N+P) plotted log10 as a heat map on the z-axis.  (C) Validated oscillatory behavior for 410 
phenotype #7.  Concentrations of activator P (left y-axis, Blue) and repressor N (right y-axis, Gold) as a 411 
function of time scaled by a factor of 1/3.  Initial conditions are: mP=100; P = 1.0; mN = 3.16; N = 1.58. 412 
Figures generated with the following parameter values: KN = 0.316; KP = 1.78; aN = 1.0; aP = 0.01; 413 
amNmax = 10.0; amNmin = 1.0; amPmax = 10000.0; amPmin = 1.0; bN = 1.0; bP = 1.0; bmN = 1.0; bmP 414 
= 1.0; Kinetic order(s): n=2, p=2; (The parametric constraints amPmax>amPmin and amNmax>amNmin 415 
are automatically satisfied by this parameterization of the model.) 416 
 417 
The middle term involves mutations generated specifically by replication of the phenotype with the 418 
selective advantage; hence, it is the only term that involves both a mutation rate and the selection 419 
coefficient.  The above equations can be considered one of several alternative forms of the standard 420 

population genetic equations (Wilke, 2005); however, the alternative form used here most clearly reveals 421 
the three distinct rate contributions we wish to consider.  422 
 423 

RESULTS 424 
 425 
The Design Space Toolbox 3.0 has algorithms for the automatic prediction of numerous characteristics 426 

within and between phenotypes.  Examples of characteristics within phenotypes include the predicted 427 
volume (global robustness) of individual phenotypes, protein burden due to differential protein expression, 428 

dynamic behavior, and system design principles for the realization of the phenotype.  Volumes are shown 429 

with identifying phenotype numbers in Figure 2A.  There are numerous phenotypic characteristics that can 430 
be plotted on the z-axis as a heat map; an example is the protein burden of each phenotype due to differential 431 

protein expression in the non-selecting condition (Figure 2B). Simulation of the full system, with time t 432 

scaled by a factor of 1/3 ( ) to match a 24-hour cycle time, produces the results in Figure 2C, 433 

which validates the prediction of a damped oscillatory characteristic for phenotype #7.   434 
 Examples of characteristics that distinguish between phenotypes include phenotype-specific 435 

mutation rate constants and system design principles.  The first example, involving phenotype-specific 436 
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mutation rate constants, distinguish between phenotypes in the context of the population dynamic model.  437 

In this model the focus is on the dynamics of the populations of organisms with the different phenotypes 438 
rather than the dynamics of the biochemical molecules of the system (oscillator).  The second example, 439 

involving design principles, follows from the definition of a “qualitatively-distinct phenotype” as a 440 
combination of dominant processes operating within an intact biochemical system (Savageau et al, 2009).  441 

Phenotype #5 (signature 11 11 21 11 11 11) and phenotype #7 (signature 11 11 21 11 21 11) in Table 1 are 442 

distinguished by a single change in dominance involving the rate of transcription of the mRNA for the 443 
activator (Bold digits in the signature).  In our simplified case, allowing only the two equilibrium 444 

dissociation constants to vary by mutation, the condition is the following:  Phenotype #5   445 

and Phenotype #7 .  This suggests that a mutation increasing  alone by a sufficient 446 

amount can convert phenotype #7 to #5.  In the more general context of distinguishing phenotype #7 from 447 
its neighbors, phenotype #7 in Figure 2A must be to the left of phenotypes #5 and #8 and to the right of 448 

phenotypes #3 and #15.  The result is not at all obvious or intuitive, rather it is a subtle system design 449 
principle (Savageau & Fasini, 2009; Savageau, 2013) defined by four boundaries (Supplemental 450 
Information, Section S10).  Thus, all system parameters must satisfy constraints involving specific 451 

constellations of values with many opportunities for compensation; there is no single parameter capable of 452 
distinguishing between phenotypes.  This is particularly apparent in the case of complex diseases for which 453 

many genes and parameters interact in subtle ways that are difficult to identify; there is no single effective 454 

target for treatment, rather there are many potential targets with a spectrum of effectiveness.   455 
 Small changes, in the limit of linearization, within a phenotypic region eliminates the possibility of 456 
epistatic interactions.  Larger changes, but still within a phenotypic region, can account for a variety of 457 

epistatic interactions.  For example, the simple conditions in the previous paragraph show an epistatic 458 

interaction between two mutations with one affecting and the other affecting .  This is clear from 459 

the fundamental product of power law nonlinearities found in biochemical kinetics.  Moreover, with 460 

changes large enough to move the system from one qualitatively distinct phenotypic region to another, 461 
nearly any type of epistatic interaction can be realized.   462 

 463 

Fixing Two Free Parameters 464 
 465 

Two features that any population model should capture are that “large-effect” mutations are rare whereas 466 

“small-effect” mutations are abundant in well adapted systems (Bataillon & Bailey, 2014; Tataru et al., 467 
2017; Bondel et al., 2019; Templeton, 2021) and detrimental mutations outnumber beneficial ones.  468 

KNKP
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Although there are exceptions, which we discuss later, these two features must be considered in the context 469 

of our model before we can predict phenotype-specific mutation rate constants and fitness effects.  470 
 Although terms such as large-, small-, zero-, positive-, and negative-effect are often applied to 471 

mutations in describing their effects on fitness, these terms only apply to populations in a given 472 
environment.  With a change in environment the same mutation can have a different, indeed often an 473 

opposite, effect on fitness (Templeton, 2021).  This is because fitness is a property of the phenotype, which 474 

in turn is a function of both genotype and environment.  To separate these issues, we use the terms “size 475 
scale” (i.e., whether the change in value of a kinetic parameter caused by mutation is large or small) and 476 

“directional bias” (i.e., whether parameter change caused by mutation is in the direction of increasing or 477 

decreasing entropy) to characterize mutations without regard to fitness.  Fitness is then a function of the 478 
phenotype and not of the mutation per se.  This separation has the advantage of allowing us to characterize 479 

the frequency distribution of phenotypes under non-selecting and selecting conditions.  480 
 In our theoretical framework, we account for the size scale and directional bias of mutations with 481 

an exponential distribution having scale factor l and directional bias parameter d that increases or decreases 482 

the effective scale factor.  Unlike the other parameters in our theoretical framework, these two must be 483 
estimated from experimental data.  For this purpose, we draw upon the best studied specific function in 484 
molecular biology, LAC repressor binding to its recognition sites in the DNA of E. coli.  Markiewicz et al. 485 
(1994) generated ~4000 protein variants by making substitutions at each amino acid position.  After being 486 

transformed through the molecular mechanisms that provide the causal connection between the gene 487 
sequence and the integrated function of the lac system, a corresponding distribution of phenotypes was 488 
determined.  As Markiewicz et al. (1994) showed, there are essentially three qualitatively-distinct 489 

phenotypes involving LAC binding: (1) the inducible “wild-type”, (2) non-inducible constitutive, and (3) 490 
non-inducible super-repressed.  Under the conventional laboratory conditions used to detect these three 491 
phenotypes, the data in their figure 1 show that changes at ~ 67% of the positions were tolerant to 492 

substitutions (no change in DNA binding), 31% were intolerant with an increase in binding entropy 493 

(decrease in DNA binding), and ~2% were intolerant with a decrease in entropy (increase in DNA binding).   494 

 In our prediction of phenotypes resulting from mutations in the N gene of the clock model, there 495 
are three analogous qualitatively-distinct phenotypes: the oscillatory “wild type”, the non-oscillatory 496 

constitutive, and non-oscillatory super-repressed (Figure S6).  Values of l=0.6 and d=1.85 provide the best 497 

fit to the experimental data and the predicted distribution of fitness effects in this case is ~ 67% oscillatory 498 

(wild-type DNA binding), ~ 31% non-oscillatory constitutive (decreased DNA binding), and ~ 2% non-499 

oscillatory super-repressed (increased DNA binding).  This distribution of effects is likely to be similar for 500 
other proteins at least qualitatively.  For example, Markiewicz et al. (1994) examined the sequence 501 

alignment of proteins in the LAC family of proteins (which includes proteins of unrelated function in 502 
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addition to other transcription factors) and found that 61% of the residues were not conserved (tolerant of 503 

evolutionary changes) and 39% were conserved (intolerant of evolutionary changes).  In view of the 504 
different percentages of non-conserved and conserved residues being similar in a variety of unrelated 505 

proteins, fitting values of the l and d to these percentages is likely to be appropriate for other systems as 506 

well.   507 

 To summarize, there are two free parameters in this model, l and d, that must be estimated from 508 

experimental data. Based on the above considerations, we assign the following model values for these two 509 

parameters: l=0.6 and d=1.85. All the remaining parameters have values predicted solely based on the 510 

underlying mechanistic model using methods from the Design Space Toolbox (Valderrama-Gómez et al, 511 
2020), as described in the following sections.   512 

 513 
Phenotype-Specific Mutation Rate Constants 514 
 515 

In what follows we predict the equilibrium distribution of phenotype diversity under non-selecting 516 
conditions in three stages to clearly distinguish different contributions.  First, we consider the idealized case 517 
in which there is no size scale or directional bias for mutations that have neutral fitness effects and show 518 
that the distribution differs from the expectation of a uniform distribution. Second, we add size scale and 519 

directional bias and find that the distribution exhibits an increasing gradient from phenotypes with low 520 

entropy to those with high entropy.  Third, as a specific example involving phenotypes with mixed fitness 521 

effects, we consider their protein burdens to obtain a distribution with a central peak resulting from entropy 522 
– selection balance.  It should be noted that this type of balance is different from other types of specific 523 
mutation – selection balance (Barton, 2007; Lynch, 2010; Orlenko et al., 2016) and the general mutation – 524 
selection balance that always exists at equilibrium.  Finally, we illustrate the shift in the distribution when 525 
the oscillatory phenotype is subject to various degrees of selection.   526 

 527 

Distributions for Neutral Mutations Without Size Scale or Directional Bias Effects 528 
 529 

Neutral mutations without size scale or directional bias effects produce a uniform distribution of values in 530 

parameter space; however, the partitioning of design space, which is dictated by the architecture of the 531 
underlying molecular system, results in an equilibrium distribution of phenotype frequencies that is 532 

determined by the normalized values of the phenotypic volumes (Figure 3A, Blue), as obtained 533 

analytically.  Large volumes (e.g., phenotype #6) imply robust phenotypes that are tolerant to large changes 534 
in parameter values; small volumes (e.g., phenotype #15) imply fragile phenotypes that are easily disrupted 535 

by small changes.  The absence of size scale and directional bias is of course an idealization, but useful for 536 
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identifying the volume contribution and providing a baseline on which to characterize more realistic 537 

features, as described below.    538 
 539 

Distributions for Neutral Mutations with Size Scale and Directional Bias Effects 540 
 541 

In the presence of size scale and directional bias effects (l = 0.6 and d = 1.85), the equilibrium distribution 542 

exhibits a gradient from phenotypes with lower entropy (lower left corner in Figure 2A) toward phenotypes 543 
with higher entropy (upper right corner in Figure 2A), as obtained numerically from the steady state 544 

solution of the population dynamic equations and shown in Figure 3A (Black).  Note that the phenotype 545 

with highest entropy, based on directional bias, is phenotype #1, which corresponds to mutations in both 546 
transcription factors that essentially eliminates the ability to recognize their DNA binding sites.  547 

Conversely, the phenotype with the lowest entropy, based on directional bias, is phenotype #16,  548 
 549 

 550 

Figure 3.  Equilibrium distributions of phenotype diversity.  Mutational entropy is increasing from left 551 
to right, from the phenotype with both equilibrium dissociation constants having the lowest values 552 
(phenotype #16) to that with both having the highest values (phenotype #1).  (A) Mutations with neutral 553 
fitness effects (all ) under non-selecting conditions (Blue) in the absence of size scale ( ) 554 

and directional bias ( ), and shifted down (Black) in the presence of size scale ( ) and 555 
directional bias ( ).  In the absence of directional bias there is a minimal gradient; whereas this 556 
gradient is approximately 4-orders of magnitude when directional bias is present.  (B) Mutations with 557 
mixed fitness effects (  different) under non-selecting conditions in the presence of size scale (558 
) and directional bias ( ). The distribution is shifted to the left with decreasing values of m =10-4 559 
(Blue), 10-5 (Yellow), 10-6 (Orange) and 10-7  (Red) compared with the strictly neutral results in (Black).  560 
The distribution changes dramatically, increasing, reaching a peak, and then decreasing when directional 561 
bias is present.  Fitness effects normalized with respect to the experimental data for E. coli ß-galactosidase 562 
burden. (C) Mutations with mixed fitness effects (  different) under selecting conditions with 563 
various degrees of selection.  The peak of the distribution under the non-selecting conditions (m=10-7) 564 
shifts to the right, from phenotype #11 (non-oscillatory, Red) to phenotype #7 (oscillatory, Black) and its 565 
frequency increases with increasing values of the selection coefficient whereas the frequency of the other 566 
phenotypes decrease according to their selective disadvantage.  567 
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which corresponds to mutations in both transcription factors that makes for overly tight binding.  The 568 

gradient in this case is approximately 4-orders of magnitude.    569 
 570 

Distributions for Mixed Mutations with Size Scale and Directional Bias Effects 571 
 572 

In the non-selecting constant light environment, in which mutants are assumed to exhibit fitness differences 573 

unrelated to the specific phenotype characteristic of oscillation, the equilibrium distribution is among 574 
mutations with mixed fitness effects, positive, negative and neutral.  As an example of a phenotype-specific 575 

fitness characteristic that can be predicted, we consider the size of the protein coding regions and the protein 576 

burden of extraneous protein expression for each phenotype.   577 
 Experimental evidence in the case of lac operon expression in E. coli suggests that inappropriate 578 

constitutive expression (nevertheless within the normal range for expression of the wild-type induced state) 579 
decreases the growth rate by < ~ 0.1%. (Koch, 1983).  The decrease would be even less if we consider only 580 

the contribution from ß-galactosidase, and neglecting that from the permease and transacetylase, in making 581 
estimates for our clock module.  Given the 10-fold larger size of the ß-galactosidase monomer, its tetrameric 582 
structure and the 1000-fold protein burden (difference between wild-type uninduced expressed and mutant 583 

constitutive expression), compared to the assumed 100 amino acid length, dimer structure and predicted 584 
100-fold protein burden for our molecular model, allows the appropriately scaled decrease in growth rate 585 
to be  < ~ 0.001%.  The following relative growth rates (selection coefficients) for each phenotype, relative 586 
to phenotype #7 in the non-selecting condition, follow from the predicted levels of protein expression for 587 

each phenotype (Figure 3B):   =  0.999997573 (-2.43E-04 %),  = 1.000000322 (3.22E-05 %),  = 588 

0.999997527 (-2.47E-04 %),  = 0.999997357 (-2.64E-04 %),  = 1.0 (0 %),  = 0.999999693 (-589 

3.07E-05 %),  = 1.000000412 (4.12E-05 %),  = 1.000000115 (1.15E-05 %), and  = 0.99999976 590 

(-2.40E-05 %).  Note that these small differences in growth rate that are undoubtedly overestimates would 591 

be considered neutral, given the technical limitations of experimentally determining growth rate differences 592 
less than ~ 0.1% (Gallet et al., 2012).    593 

 When both size scale and directional bias effects are present, the graded distribution in the strictly 594 

neutral case (Figure 3A,B, Black) is dramatically changed to a peaked distribution that is increasingly 595 
weighted to the left (Figure 3B Orange, Red) as the general mutation rate is decreased.  The result is what 596 

might be called entropy-selection balance.   597 

 Note that all the distributions in Figure 3A and 3B occur under the non-selecting condition with 598 
respect to the oscillatory phenotype characteristic.  Moreover, despite the difficulty distinguishing between 599 

mutations with neutral fitness effects and mutations without detectable fitness effects, these results show 600 
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that the equilibrium distributions are radically different.  It is also clear that there is an optimal value for 601 

the general mutation rate that favors each phenotype.   602 
 603 

Equilibrium Distribution of Phenotype Diversity Under the Selecting Condition 604 
 605 

When connections to both the synchronizing environmental signal and the integrated cellular biochemistry 606 

are made by a critical new mutation, it would confer no selective advantage if it were to occur in one of the 607 
phenotypic regions that lack the ability to oscillate.  For example, it has the highest probability of occurring 608 

in phenotype #11 because its frequency in the population is nearly 100% before the mutation occurred. 609 

More rarely, it would occur in the region of phenotype #7, but then there would be the potential to 610 
synchronize with the light-dark environment (the selecting condition) and have a selective advantage.  The 611 

predicted equilibrium distribution of phenotype diversity under the selecting condition as a function of the 612 
selection strength is shown in Figure 3C.  Beyond a critical level of selection, the peak of the equilibrium 613 

distribution shifts from phenotype #11 to phenotype #7.  Although we cannot currently predict the fitness 614 
of phenotype #7 under selecting conditions, if it were possible to estimate the distribution of phenotype 615 
diversity, then one could back calculate the selection strength that produces the best fit to the estimated 616 

distribution (Supplemental Information, Section S11).  617 
 The three separate contributions to the rate of change in phenotype frequency in the neutral case 618 
(Eqn. 9, mutation, mutation-x-selection, and selection) are shown in Figure 4 as a function of selection 619 
 620 

 621 

Figure 4.  Three separate contributions to the steady-state rate of change in frequency for the 622 
oscillatory phenotype #7.  The three panels show results for mutations with neutral fitness effects and 623 
general mutation rate m = 10-7 (A), m = 10-6 (B), and m = 10-5 (C). The contributions (Eqn. 9) are shown 624 
as a function of selection strength at equilibrium.  Selection alone (Blue) is balanced with mutation alone 625 
(Red); the contribution by mutation-x-selection (Green) is negligible for the strengths of selection shown.  626 
The maximum rates of change are proportional to the general mutation rate (note the change of scales), and 627 
stronger selection is required to overcome the effects of higher general mutation rates.  628 
 629 
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strength and general mutation rate.  The rate of change at equilibrium is equal to zero and the contributions 630 

of mutation alone and selection alone are nearly opposite and equal.  The contribution from mutation-x-631 
selection is negligible at the selection strengths shown.  Note the differences in scale: the maximum 632 

contribution to the rate at equilibrium is proportional to the general mutation rate, and the degree of selection 633 
necessary to achieve the maximum rate increases rapidly with the general mutation rate.   634 

 635 

Non-Equilibrium Distribution of Phenotypes Under the Selecting Condition 636 
 637 

In this and the following subsection, instead of determining the phenotype distribution at equilibrium under 638 

either the non-selecting or selecting condition, we determine the temporal changes in distribution between 639 
the two equilibria – from non-selecting to selecting or from selection to non-selecting.  The light-dark 640 

environment generates the selecting condition. The ability to synchronize with the light-dark environment 641 
generates a selective advantage for the oscillatory phenotype (#7) greater than that of the other phenotypes.  642 

Aside from #7, all the other phenotypes have either a mixed distribution or a neutral distribution of fitness 643 
effects.   644 
 Results with a neutral distribution of fitness effects for phenotypes other than #7 are shown in 645 

Figure 5A, starting from the equilibrium distribution under the non-selecting condition (Figure 3A,B: 646 

Black) and evolving to the equilibrium distribution under the selecting condition (selection coefficient µ7
* 647 

- 1 = 6.0E-3 %, all other µi  = µ7 and fixed).   Phenotype #7 increases rapidly with a time scale dominated 648 

by selection, while there is little change in the other phenotypes until ~ 5.0E+04 generations (Figure 5A, 649 
vertical dashed line).  After this point, phenotype #7 approaches its maximum at ~ 1.5E+05 and all other 650 

phenotypes slowly decrease asymptotically toward the new equilibrium distribution with a time scale 651 

dominated by mutation.  There are no changes in the ranking of phenotype frequencies in the population 652 

after 3.5E+05 generations.   653 
 654 

Non-Equilibrium Distribution of Phenotypes with Removal of the Selecting Condition 655 

 656 
Experimental studies have explored the evolutionary loss of phenotypes in response to the relaxation of 657 

selection.  For example, the ability of Bacillus subtilis to sporulate is lost when it is no longer under selection 658 
(Maughan et al., 2007).  In the clock model, relaxation of selection occurs when the selective advantage of 659 

phenotype #7 is removed (switched to constant light) and the population returns with time to the equilibrium 660 

distribution under the non-selecting condition.   661 
 662 
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 663 

Figure 5. Temporal response in relative frequency of phenotypes following imposition and removal 664 
of the selecting condition.  (A,B) Neutral distribution of fitness effects.  (A) The increase of phenotype #7 665 
(Red) is accompanied initially by very little change in the other phenotypes, followed (after the dashed line) 666 
by a slow decrease in all other phenotypes. All changes in the rank of the relative frequencies occur before 667 
3.5E+05 generations. (B) The decrease of phenotype #7 (Red) is accompanied initially by a rapid increase 668 
in all other phenotypes, a peak (the last occurring at the dashed line) followed by a slow decrease in all 669 
other phenotypes except for phenotype #1, #5 and #6, which continue to increase slowly. All changes in 670 
the rank of the relative frequencies occur before 2.5E+08 generations. The overall response is ~ 1000-times 671 
slower than (A).  (C,D) Mixed distribution of fitness effects. (C) The increase of phenotype #7 (Red) is 672 
accompanied initially by very little change in the other phenotypes, followed (after the dashed line) by a 673 
slow decrease in all other phenotypes. All changes in the rank of the relative frequencies occur before 674 
4.0E+05 generations. (D) The decrease of phenotype #7 (Red) is accompanied initially by a rapid increase 675 
in all other phenotypes, a peak (the last occurring at the dashed line) followed by a slow decrease in all 676 
other phenotypes except for phenotype #11, which continues to increase.  All changes in the rank of the 677 
relative frequencies occur before 6.3E+07 generations. The overall response is ~ 400-times slower than 678 
(C).  Imposition occurs by a change from a non-selecting (µ7* = 1.0) to a selecting (µ7* = 1.00006) 679 
environment and removal by the reverse. The general mutation rate m = 10-7.   680 
 681 
 Results with a neutral distribution of fitness effects for phenotypes other than #7 are shown in 682 
Figure 5B, starting from the equilibrium distribution under the selecting condition (selection coefficient 683 

µ7
* - 1 = 6.0E-3 %, all other µi  = µ7  and fixed) and evolving to the distribution under the non-selecting 684 

condition (Figure 3A,B: Black).  The large number of the selected phenotype (#7) in the initial equilibrium 685 
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distribution is rapidly lost and redistributed to all the other phenotypes within ~ 7.5E+07 generations.  There 686 

is a subsequent slow redistribution and decrease among all the phenotypes except #1, #5 and #6 (high 687 
entropy phenotypes) until a new equilibrium distribution is approached asymptotically with a time scale 688 

dominated by mutation.  There are no changes in the ranking of phenotype frequencies in the population 689 

after ~ 2.5E+08 generations.  Comparison of the time scales in Figure 5A and B shows that the response 690 
to the removal of selection is approximately ~ 1000-times slower than that to the imposition of selection.   691 

 Results with a mixed distribution of fitness effects for phenotypes other than #7 are shown in 692 

Figure 5D, starting from the equilibrium distribution under the selecting condition (selection coefficient 693 

µ7
* - 1 = 6.0E-3 %, all other µi  determined by protein burden and fixed) and evolving to the distribution 694 

under the non-selecting condition (Figure 3B: red).  The large number of the selected phenotype (#7) in 695 
the initial equilibrium distribution is rapidly lost and redistributed to all the other phenotypes within ~ 696 

2.5E+07 generations.  There is a subsequent slow redistribution and decrease among all the phenotypes 697 

except #11 (low entropy phenotype) until a new equilibrium distribution is approached asymptotically with 698 
a time scale dominated by mutation.  There are no changes in the ranking of phenotype frequencies in the 699 
population after ~ 6.3E+07 generations.  These results are in qualitative agreement with those of Maughan 700 

et al. (2007) when the larger target size of the sporulation machinery and the higher mutation rate of their 701 
mutator strain are considered.  Comparison of the time scales in Figure 5C and D shows that the response 702 

to the removal of selection is approximately ~ 400-times slower than that to the imposition of selection. 703 
 The large differences in time scale indicate that alternating between equal periods in selecting and 704 
non-selecting environments before reaching equilibria would lead not to an average of the two distributions 705 

but to a distribution closer to that in the selecting environment, which is reminiscent of “conflict between 706 
selection in two directions” (Haldane & Jayakar, 1963).   707 
 708 
EXPERIMENTAL IMPLICATIONS 709 

 710 
There are two major challenges in determining the distribution of phenotypes available for selection to act 711 

upon.  One is the time of sampling relative to the evolutionary dynamics of natural populations and the 712 

second is technical limitations in the ability to identify and measure phenotypes.  Both help to explain the 713 
pessimism expressed by Charlesworth (1996) in determining the distribution of the phenotypes and their 714 
fitness characteristics in natural populations.   715 

 Experimental studies based on mutants constructed from a highly evolved system (wild type) in a 716 
given environment (in the extreme, optimized according to Fisher’s Geometric model) may have only a 717 
very narrow distribution of alternative phenotypes capable of improvement in that environment.  Those 718 

based on mutants constructed from a system that is far from its optimal state in a new environment, are 719 
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likely to offer a more fertile distribution of phenotypes capable of improvement. Indeed, Matuszewski et 720 

al. (2014) pointed out a violation of Fisher’s prediction that mutations of small effect are the primary raw 721 
material of adaptive evolution.  They considered a geometric model like Fisher’s but with environmental 722 

change.  In contrast to Fisher’s predictions, larger adaptive steps often occur with a moving optimum.  723 

Mutations of small effect are not always the main material of adaptive change even when there is a single 724 
adaptive optimum, albeit a moving one.  However, determining the natural distribution from subsequent 725 

measurements depends on the time of sampling following the construction, with the actual distribution of 726 

fitness effects bounded by two extremes: sampling at time zero and sampling at the time to reach 727 
equilibrium.  The time zero sample has not involved any exchange; thus, it simply reflects the construction 728 

and may have little to do with any subsequent distribution in nature.  The equilibrium sample in some cases 729 

might be the more relevant distribution in nature, but there is insufficient time to test this in practice.  Thus, 730 
the natural distribution undoubtedly lies somewhere between these extremes.  There is the additional 731 
difficulty of identifying the phenotypes because of technical limitations.  Experimental studies based on 732 
natural variants face the same two challenges.   733 
 Orr (2005) also identifies challenges in two related problems. “The first is the current theory is 734 

limited in several ways – all the models that have been mentioned rest on important assumptions and 735 
idealizations.  Although they are reasonable starting points for theory, none of these assumptions is 736 
necessarily correct and changing any might well change our predictions. […] The second problem concerns 737 

testability.  The difficulty is practical, not principled. Whereas current theory does make testable 738 
predictions, the effort required to perform these tests is often enormous (particularly as the theory is 739 
probabilistic, making predictions over many realizations of adaptation). Given, for example, the inevitable 740 
and often severe limits on replication in microbial evolution work, we can usually do no more than test 741 

qualitative predictions.”  Our theory is grounded in measurable biochemical parameters, and thus a different 742 
set of assumptions and idealizations need experimental testing.   743 
 744 

Experimental Evolution Studies in a Chemostat 745 

 746 

The equilibrium distributions of phenotype diversity under selecting and non-selecting conditions can be 747 

approximated experimentally by growing populations in a chemostat/turbidostat (Bustos & Golden, 1992; 748 

Gresham & Jong, 2015).  This allows us to relax the assumptions concerning the ideal context.  If a one-749 
liter chemostat is initialized with a single cell and the population grows exponentially until reaching typical 750 

densities of 108 to 1010 cells/ml (Gresham & Jong, 2015), at this point nearly all phenotypes will be present 751 

in the population (Figure 6). If the flow of fresh media into the chemostat is initiated at this point, the 752 
doubling of the population in each subsequent generation due to growth coupled with the 50% reduction in  753 
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 754 

Figure 6. Non-equilibrium distributions of phenotype diversity under non-selecting and selecting 755 
conditions after exponential grow from one to 1013 cells.  Cells with general mutation rate m = 10-7 are 756 
inoculated into fresh media in a one-liter chemostat without flow. (A) Under non-selecting conditions with 757 
neutral fitness effects, phenotypes with the lowest frequency (#11, #15 and #16) are expected to have ~ 10 758 
cells in the chemostat.  (B) Under non-selecting conditions with a protein burden spectrum of fitness effects, 759 
phenotypes with the lowest frequency (#15 and #16) are expected to number ~ 1000 cells.  (C) Under 760 
selecting conditions with a protein burden spectrum of fitness effects, nearly all phenotypes are expected 761 
to be present at more than ~ 100,000 cells.  Size scale effects and directional bias effects are present in all 762 
cases. The initial distribution (Blue) can be expected to approach the equilibrium distribution (Red) 763 
asymptotically with time following long-term exponential growth with the flow of fresh media to the 764 
chemostat.   765 
 766 
population size per generation due to dilution will introduce fluctuations in the numbers of cells.  767 
Phenotypes with a low frequency must be treated stochastically when the differences between effective 768 

population size and the census population size become significant.  All other phenotypes are expected to 769 

persist in the chemostat.   770 
 Under non-selecting conditions, the case with neutral fitness effects is the most difficult.  At the 771 

time when the chemostat reaches the full operating density, all phenotypes in the population will be present 772 
with a significant frequency except for #11, #15 and #16 (~ 10 cells in Figure 6A).  The issue of genetic 773 
drift could be introduced here by the addition of stochastic changes (replication or removal) in each 774 
generation.  In the case of mixed fitness effects due to protein burden, even those phenotypes with the 775 

smallest frequency will have a census size of ~ 1000 cells (Figure 6B).  Under selecting conditions, at the 776 
time when the chemostat reaches the full operating density, even those phenotypes with the smallest 777 
frequency will have a census size of ~ 100,000 cells (Figure 6C).    778 

 779 
Measuring Qualitatively Distinct Phenotypes  780 
 781 

Although current experimental limitations make it difficult to measure individual phenotypes, there are 782 

some cases in which relevant aggregate phenotypes can be measured.  In the classic studies of Markiewicz 783 

et al. (1994), the authors constructed a collection of LAC mutants, measured their b-galactosidase 784 
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expression, grouped the results into qualitatively-distinct phenotypes (constitutive, super-repressed or 785 

inducible), and determined the resulting distribution of phenotypes measured at time zero.  They found 2% 786 
super-repressed, 67% inducible, and 31% constitutive.  This is not surprising, given a low mutation rate (m 787 

= 10-7) and that the construction started with the highly evolved and presumably fit lac system of E. coli. 788 

 Fluorescently tagged protein might be an updated approach for other proteins.  In our case study, 789 
measuring the activity of the N gene protein and classifying the results as constitutive (phenotypes #6 and 790 

#8), super-repressed (phenotypes #3 and #11) or oscillatory (phenotype #7) leads to the following 791 

predictions.  In analogy with the LAC studies, and sampling the distribution at time zero, our results would 792 
match those of Markiewicz et al. (1994) because these values were used to fit the two free parameters of 793 

our model l and d.  The distribution of phenotypes measured after reaching equilibrium under non-selecting 794 

conditions (loss of selection) with neutral fitness effects is predicted to be 2% super-repressed, 5% 795 

oscillatory and 93% constitutive (Figure 7A, ).  This reflects the dominant influence of entropy.  796 

The distribution of phenotypes measured after reaching equilibrium under non-selecting conditions with 797 

mixed fitness effects based on protein burden is predicted to be 96% super-repressed, 3% oscillatory and 798 

1% constitutive (Figure 7B, ).  Under selecting conditions, the degree of selection required to reach 799 

a distribution with 60% oscillatory phenotype with mixed fitness effects is four-fold greater than that with 800 
neutral fitness effects.  These differences, suggesting that the results with a neutral distribution of fitness 801 
effects can be achieved more easily than with the protein burden distribution, might be relevant for the 802 

evolution of LAC repressor as well.  Furthermore, an examination of different values for the general 803 
mutation rate, m, at equilibrium with mixed fitness effects shows that even when the relative frequency of 804 
the oscillatory phenotype is maximum at m = 3x10-6, the results are still very different from that of wild-805 
type LAC repressor selected in nature (Supplemental Information, Section S11, Figure S7).   806 

 Testing such predictions would require finding rare cells in the population, at the limit of detection 807 
for many methods.  Based on the start of a chemostat experiment as described in the previous section, the 808 
effluent at any subsequent time during the experimental evolution could be collected and the cells subjected 809 

to counting or sorting.  Counting might well be able to determine the numbers of rare cells, sorting would 810 

allow sufficient material for further experimental tests.  A double-sieve strategy would have advantages.  811 
First, the cells are grown under non-selecting conditions and sorted into two abundant classes, those with 812 

constitutive and non-constitutive expression.  Second, the sorted cells with non-constitutive expression are 813 

grown under selecting conditions and sorted into those enriched for super-repressed and wild-type 814 
expression.  This approach would require ~ 1010 cells to be collected and sorted within a reasonable amount 815 

of time and cost, which should be feasible with recent advances in high-throughput sorting methods (Fan 816 

et al., 2013; Zhukov et al., 2021).   817 
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 818 

Figure 7. Equilibrium distributions of qualitatively distinct phenotypes under selecting conditions 819 
with various degrees of selection.  Comparisons made with general mutation rate m = 10-7 and (A) neutral 820 
fitness effects (all ), and (B) a protein burden spectrum of fitness effects (  different) under non-821 
selecting conditions ( ).  The degree of selection required to reach a distribution with 60% oscillatory 822 
phenotype (dashed line) with mixed fitness effects is ~ four-fold greater than that with neutral fitness 823 
effects. The second most common phenotype is super-repressed with mixed and constitutive with neutral 824 
fitness effects.  Thus, only the results predicted in in (A) match the experimental results of Markiewicz et 825 
al. (1994).  826 
 827 
DISCUSSION 828 
 829 

Two complex and interrelated issues in evolution are the distribution of phenotype diversity, which offers 830 
opportunities for innovation, and the interaction of phenotype-specific mutation rates and phenotype-fitness 831 
differences, which determines population dynamics and the subsequent evolution of the population.  Some 832 

experimental approaches to determining the distribution of mutant effects only address large effect 833 
mutations because there are technical limitations to the size of changes in growth rate that can be measured 834 

(Gallet et al., 2012).  Others only address small effect mutations in the context of nearly-neutral theory 835 

(Kimura, 1983; Ohta, 1992).  As Bondel, et al. (2019) pointed out, together the two provide a bigger picture 836 
by complementing one another.  However, neither of these approaches deal with the causal linkages 837 

between genotype/environment and phenotype.    838 

 There are few examples attempting to determine the distribution of mutant effects by addressing 839 
the mechanistic link.  Orlenko et al. (2016; 2017) have examined linear pathways in which classical 840 

Michaelis-Menten kinetics were assumed, kinetic parameters were sampled, and the system of ordinary 841 

differential equations was repeatedly solved.  They found a lack of evolutionarily stable rate limiting steps 842 
in large stable populations (Orlenko et al., 2016) but stable patterns of limiting steps in some cases of 843 
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fluctuating environments and population sizes (Orlenko et al., 2017). They note that more complex realistic 844 

systems remain to be studied in this context.  Examples include systems involving more complex forms of 845 
regulation, enzyme-enzyme complexes and cascades, as well as branched and cyclic pathways. Loewe & 846 

Hillston (2008) focused on a simple limit cycle model for circadian rhythms (Leloup, et al., 1999) with a 847 

set of assumed parameter values as reference.  They converted the biochemical kinetic equations from 848 
ordinary differential equations into pseudo-chemical kinetic equations for stochastic simulations.  They 849 

employed dense sampling of parameter values and repeated stochastic simulations to generate statistical 850 

data for analysis in terms of various fitness correlates.  Brajesh et al.  (2019) focused on the lac operon of 851 
E. coli because it is a simple, specific system that has been studied for decades (Muller-Hill, 1996; Ullmann, 852 

2003) and for which there are experimental values for nearly all the key parameters.  Starting with this well-853 

characterized system, they explored its phenotypic repertoire by dense sampling of the parameter space 854 
combined with numerical solution of the ordinary differential equations for the nonlinear mechanistic 855 
model.  It will be difficult to replicate these approaches for other systems in which there is a large number 856 
of parameters with unknown value that are difficult or currently impossible to measure or estimate.  This is 857 
precisely the bottleneck currently limiting the successful application of the conventional simulation-centric 858 

modeling strategy.  This ultimately becomes a scaling issue for large systems because of the density of 859 
sampling required, coupled with the repeated deterministic and stochastic numerical simulations of the 860 
nonlinear differential equations.  Moreover, with certain combinations of parameter values these numerical 861 

solutions often fail for technical reasons, which makes automation of the process problematic.   862 
 The phenotype-centric modeling strategy largely circumvents the bottleneck presented by a 863 
mechanistic model with a large number of unknown parameter values (Valderrama-Gómez  & Savageau, 864 
2018).  Here we showed that it also can predict phenotype-specific mutation rates and the distribution of 865 

mutant effects under non-selecting and selecting conditions.  It must be noted that the phenotype-centric 866 
approach does not escape the issue of scaling to large realistic systems, although it does not involve the 867 
limitations of dense sampling and repeated simulations mentioned above.  The issue is the large number of 868 

phenotypes that must be treated analytically for any realistic system.  However, each phenotype is a separate 869 

linear algebraic problem, which makes it what computer scientists call ‘embarrassingly parallelizable’, and 870 

therefore amenable to cloud computing.   871 

 By way of conclusion, we discuss differences between the theoretical framework of System Design 872 

Space and other theoretical frameworks, similarities between them, and potential areas of mutual interest 873 
for further development.  We finish with a summary of results, some that are consistent with well-known 874 

results in theoretical population genetics and others that are new.   875 

 876 
 877 
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Differences and Similarities Between Theoretical Frameworks 878 

 879 
A broad context of theoretical population genetics is provided by the historical review of Orr (2005).  He 880 

focused on the advances and limitations involving the two main classes of mathematical models: older 881 

phenotype-based models following in the spirit of Fisher’s geometric model and newer DNA sequence-882 
based models emphasizing nearly neutral and extreme value theory.   883 

 The Design Space model has some superficial similarity to the geometric model of Fisher (1930), 884 

but it is fundamentally different.  Although both prominently feature geometry, quantitative phenotype 885 
traits and size of changes caused by mutations, a brief comparison of Fisher’s Geometric model vs. the 886 

Design Space model shows there is little else in common: 887 
• Phenotype definition is generic, ad hoc, and descriptive (height, weight, etc.) vs. specific, 888 

mathematical, and rigorous (genotypically-determined parameters and environmentally determined 889 
variables). 890 

• Phenotypic traits are for unspecified systems in unstructured Cartesian space vs. biochemically 891 
specified systems in structured logarithmic space. 892 

• Mutation causing symmetric changes involving any combination of the orthogonal traits 893 
(omnidirectional) vs. asymmetric (entropic) changes involving one mechanistic trait (bidirectional). 894 

• Mutations simultaneously affect all n traits in general (highly pleiotropic) vs. n = 1 specific trait 895 
(model-dependent pleiotropic).  896 

• Organizing principle is random variation in proximity to an optimum vs. deterministic structure of a 897 
Design Space.  898 

• Methodology focused on statistical analysis and computer simulation vs. analytic geometry and 899 
computational algebra.   900 

• Focus on new mutations vs. standing genetic variation.   901 
 902 
 Although these theories are very different, there are a few connections between them that might be 903 

worth exploring.  For example, two strong results from Fisher’s model and the extreme value theory are 904 
that an exponential distribution of positive effects mutations may be universal (Orr, 2005) and that there is 905 
a progression of size effects from initially large to subsequent smaller (Gillespie, 2004).  In Design Space 906 

theory, the first of these results might have a connection to the assumption of exponential distributions for 907 

both positive and negative effect mutations.  However, these exponential distributions are in logarithmic 908 
coordinates, which in design space theory means that they could also be considered power law in Cartesian 909 

coordinates.  Regarding the second of the above results, we can speculate that if the initial mutation takes 910 

the system from an optimal state into a qualitatively different region of Design Space, then the first 911 
significant mutation taking it back will likely have a large effect on average.  Once back near the optimum, 912 
then smaller quantitative changes will add refinements.  However, back mutations with small changes at 913 

the level of kinetic parameters could lead to large qualitative changes at the phenotype level, but only when 914 
the phenotype undergoing back mutation is quantitatively near the common boundary with the recipient 915 

phenotype.  This is also related to the long-standing robustness vs. evolvability issue (de Visser et al., 2003; 916 



Article  

 

31 

Draghi et al., 2010; Payne & Wagner, 2014; Greenbury et al., 2016; Wei & Zhang, 2017).  In our 917 

mechanistic framework phenotypes with large volumes in System Design Space are globally the most 918 
robust to mutation (to changes in the qualitatively distinct phenotype).  Mutations with large-size effects 919 

can explore distant phenotypes infrequently.  However, if there is a more favorable adjacent phenotype, 920 

then there will always be a minority of cells with parameters that locate them near the boundary with the 921 
more favorable phenotype so that even mutations with small-size effects can result in movement into a 922 

qualitatively different phenotypic region that is favorable. Thus, evolvability coexists with robustness.  A 923 

statistical approach within the Design Space framework could be used to test these speculations. 924 
 The results in Figure 6, which represent the most extreme bottleneck with a single founder cell, 925 

suggest that most of the phenotypes are regenerated with sizable cell numbers within the initial growth 926 

phase.  A stochastic approach could be used to study the long-term fate of the remaining phenotypes whose 927 
population sizes are < ~ 100 cells, each of which is retained or lost in each generation.   928 
 In this paper, the phenotype-centric approach provides a novel theoretical framework to pose and 929 
answer questions of phenotype-specific mutation rates and ranking of phenotype frequencies in the 930 
population under non-selecting and selecting conditions.  This framework makes a key distinction between 931 

‘entropy increasing/entropy decreasing’ mutations, which cause genetically-determined parameter values 932 
to change in the direction of an increase/decrease in entropy, and ‘beneficial/detrimental’ mutations, which 933 
cause the integrated activities of the entire system to change in the direction of an increases/decreases in 934 

phenotype fitness.  The two causes are separable.  The importance of the distinction can be exemplified by 935 
considering the consequence for a population evolving in a temperature gradient (Zhang et al., 2018; 936 
Wooliver et al., 2020).   937 
 In an idealized case, if the population finds itself in a new environment with a higher temperature 938 

than the one in which it was previously adapted, the binding of a regulator will now be less effective (higher 939 
temperature implies looser binding).  The fitness of the organisms will typically decrease.  An entropy-940 
decreasing mutation causing tighter binding of the regulator can cause an improvement in fitness.  941 

Conversely, an entropy-increasing mutation causing an even looser binding can cause a further reduction 942 

in fitness. The argument is different if the population finds itself in a new environment that has a lower 943 

temperature.  The binding of the regulator will now be too tight (lower temperature implies stronger 944 

binding).  The fitness of the organisms will typically decrease.  Now, an entropy-increasing mutation that 945 

causes a looser binding of the regulator can improve fitness.  Conversely, an entropy-decreasing mutation 946 
that causes an even tighter binding can cause a further reduction in fitness.  Thus, depending on the 947 

environmental condition, an entropically probable mutation at the level of the molecular mechanism can 948 

cause either a beneficial or detrimental effect on fitness at the level of an integrated system (Figures 3 & 949 
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7).  These same distinctions provide a mechanistic context for interpreting the large differences in frequency 950 

of positive-effect mutations that have been discussed by Bondel, et al. (2019).   951 
 The theoretical framework based on Design Space analysis can distinguish and quantify various 952 

phenomena.  For example, it distinguishes among three contributions to phenotype-specific mutation rates: 953 

phenotype robustness (volume in Design Space), size effect and directional bias, and selection (Figure 3); 954 
distinguishes among three contributions to the equilibrium distribution with neutral fitness effects(Eqn. 9): 955 

mutation alone and selection alone, which nearly balance, and mutation-x-selection (mutations generated 956 

specifically by the selected phenotype), which is only significant with extremely strong selection (Figure 957 
4); quantifies the different time scales of evolution between equilibria under selecting and non-selecting 958 

conditions (Figure 5).   959 

 960 
Summary of Results Old and New 961 
 962 
The findings in RESULTS agree with many well-known phenomena in theoretical population genetics. 963 
Examples include stronger selection is needed to counteract higher mutation rates, evolution can be faster 964 

with higher mutation rates, positive-effect mutations are rare in well adapted systems and small-effect 965 
mutations are common, and the characteristic distributions observed in directional (Darwin, 1859; Mitchell-966 
Olds et al., 2007) and stabilizing (Charlesworth et al., 1982; Campbell & Reece, 2002) selection; mutation-967 

selection balance (Barton, 2007; Lynch, 2010), and cryptic variation under non-selecting conditions (Paaby 968 
et al., 2014; Zheng et al., 2019).  969 
 However, in all these cases the Design Space framework provides a more nuanced understanding 970 
of their underlying molecular mechanisms with phenotype-specific mutation playing a role in each.  For 971 

example, the phenotype distribution with no size effect, directional bias or differences in growth rate under 972 
the non-selecting condition, which might be expected to produce a uniform distribution of mutant effects, 973 
is weakly directional even though no selection is involved (Figure 3A, Blue); the causal fitness 974 

characteristic is the robustness (polytope volume) of phenotypes with phenotype #6 dominating.  The 975 

phenotype distribution with size effect and directional bias but no differences in growth rate under the non-976 

selecting condition is more strongly directional even though no selection is involved (Figure 3A, Black), 977 

with phenotype #6 dominating; the causal fitness characteristics are robustness and entropy.  Although the 978 

phenotype distribution with size effect, directional bias and protein burden differences in growth rate under 979 
the non-selecting condition may also appear to be directional (Figure 3B, Red), with phenotype #11 980 

dominating, it is actually balancing since the causal fitness characteristics are a balance between protein 981 

burden differences in growth rate in one direction and entropy in the other.  Furthermore, the point of 982 
balance is a function of the general mutation rate m, which is 10-7 in this case.  With a higher general 983 
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mutation rate m, the balance shifts in favor of entropy (Figure 3B), and as m approaches 10-4, entropy 984 

dominates to such an extent that the distribution suggests directional selection.  The phenotype distribution 985 
with size effect, directional bias and protein burden differences in growth rate under the selecting condition 986 

is a more complex balancing selection (Figure 3C, Black), with phenotype #7 dominating; the causal fitness 987 

characteristics are a balance between protein burden differences in growth rate in one direction and the 988 
selective advantage of oscillation and entropy in the other.  The general mutation rate (m = 10-7 in this case) 989 

also plays a causal role in the balance. The distribution of cryptic variation present under non-selecting 990 

conditions differs, depending on whether the fitness effects of mutations are neutral (Figure 3A,Black) vs. 991 
near-neutral (Figure 3B, Red).  Although it is difficult to measure such small differences in fitness 992 

experimentally, the resulting distributions are markedly different, as are the results under selection (Figure 993 

7).  The causal fitness characteristics involved in the balance are entropy, protein burden differences in 994 
growth rate, and genomic mutation rate; the first is dominant in the neutral case, the second is dominant in 995 
the near-neutral case, and the third is capable of eliminating the distinction between neutral and near-neutral 996 
at sufficiently high rates (Figure 3B, Blue).   997 
 Other results are new, e.g., there is an optimal mutation rate for each phenotype (Figures 3 & S7); 998 

the percentage of positive effect mutations is smaller when equilibrium is dominated by phenotypes with 999 
high entropy and larger when dominated by those with low entropy (Figure 7); evolution is slower in the 1000 
former an faster in the latter; there are many changes in population rank with weak selection (Figure 5), 1001 

and few with strong selection (not shown); a non-selected phenotype can increase (without hitch-hiking) as 1002 
an indirect result of selection for a different phenotype connected by a high phenotype-specific mutation 1003 
rate (Figure S8); and back calculation of selection coefficients is possible from well characterized 1004 
distributions (Figure 7).  We also provide evidence suggesting that experimental evolution in chemostats 1005 

can be used to experimentally test predictions made possible by the phenotype-centric theory (Figure 6). 1006 
 We return to the fundamental question raised at the outset and ask, what is the relevant distribution 1007 
of phenotype frequencies to consider from which there is evolution of new phenotypes?  This is still an 1008 

open question.  New phenotypes will grow to dominance when the population suddenly finds itself in a 1009 

selecting condition because of a change in genotype or a change in environment. The results for the clock 1010 

model suggest that the equilibrium distribution of the full repertoire in the non-selecting condition with 1011 

neutral fitness effects, might be most relevant to consider (Figure 7).  However, even small differences 1012 

from neutrality that are experimentally undetectable, such as protein burden effects, can result in a marked 1013 
difference in the distribution (Figure 3) that argue against its relevance in the case of the natural lac operon.   1014 

 Finally, it should be noted that although we have emphasized qualitatively-distinct phenotypes, 1015 

quantitative variants exist within each phenotypic region in System Design Space.  Thus, the phenotype-1016 
centric approach also provides the opportunity to explore finer changes in quantitative characteristics such 1017 
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as frequency, phase and amplidude of the oscillations within the region of phenotype #7 (Lomnitz & 1018 

Savageau, 2013).  Such results would be relevant to the work of Ouyang et al. (1998) showning that mutants 1019 
with small changes in frequency of the cyanobacteria circadian clock experience negative selection when 1020 

their frequency differs from that of the environmental light-dark cycle.   1021 

 1022 
MATERIALS AND METHODS 1023 

 1024 

Methods developed in this work are described in the section DERIVATION OF PHENOTYPE-SPECIFIC 1025 
MUTATION RATE CONSTANTS AND POPULATION DYNAMIC EQUATIONS. Associated 1026 

computational tools with further details can be accessed through the Design Space Toolbox v.3.0, which is 1027 

freely available for all major operating systems via Docker. After Docker has been installed on your system, 1028 
running the following commands on a terminal window will provide access to the software: 1029 
 1030 

1. docker pull savageau/dst3 1031 
2. docker run -d -p 8888:8888 savageau/dst3 1032 

3. Access the software by opening the address http://localhost:8888/ on any internet browser. 1033 
 1034 
Please refer to Valderrama-Gómez et al. (2020) for detailed installation instructions and troubleshooting. 1035 

Several IPython notebooks are provided to reproduce figures in the main text and supplementary 1036 
information. These notebooks can be found within the Docker image (savageau/dst3) under the directory 1037 
/Supporting_Notebooks/MBE.  1038 
 1039 
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