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Article: Methods 2

Abstract

Two long standing challenges in theoretical population genetics and evolution are predicting the
distribution of phenotype diversity generated by mutation and available for selection and determining the
interaction of mutation, selection, and drift to characterize evolutionary equilibria and dynamics. More
fundamental for enabling such predictions is the current inability to causally link population genetic
parameters, selection and mutation, to the underlying molecular parameters, kinetic and thermodynamic.
Such predictions would also have implications for understanding cryptic genetic variation and the role of
phenotypic robustness.

Here we provide a new theoretical framework for addressing these challenges. It is built on
Systems Design Space methods that relate system phenotypes to genetically-determined parameters and
environmentally-determined variables. These methods, based on the foundation of biochemical kinetics
and the deconstruction of complex systems into rigorously defined biochemical phenotypes, provide
several innovations that automate (1) enumeration of the phenotypic repertoire without knowledge of
kinetic parameter values, (2) representation of phenotypic regions and their relationships in a System
Design Space, and (3) prediction of values for kinetic parameters, concentrations, fluxes and global
tolerances for each phenotype.

We now show that these methods also automate prediction of phenotype-specific mutation rate
constants and equilibrium distributions of phenotype diversity in populations undergoing steady-state
exponential growth. We introduce this theoretical framework in the context of a case study involving a
small molecular system, a primordial circadian clock, compare and contrast this framework with other

approaches in theoretical population genetics, and discuss experimental challenges for testing predictions.
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INTRODUCTION

The concept of evolution is easily stated and understood: Mutation generates diversity of phenotypes and
selection favors those with the greatest heritable fitness. However, there are many complex and inter-
related issues that must be addressed to achieve a deeper understanding. Two prominent examples that
continue to be fundamental challenges are (1) determining the distribution of phenotype diversity, which
offers opportunities for innovation (Charlesworth, 1996; Bataillon & Bailey, 2014) and (2) determining the
interaction of mutation, selection, drift and population structure to determine equilibria and the dynamics
of evolution (Gillespie, 2004; Orr, 2005; Wakeley, 2005).

While the distribution in the numbers and types of changes in DNA can be determined because of
advances in genome sequencing technology (Metzker, 2010), determining the distribution of the resulting
phenotypes and their fitness characteristics (determinants of total fitness) in natural populations is difficult
in the extreme (Charlesworth, 1996). The true number of phenotypes and fitness characteristics in the
population is typically unknown and any observed distribution of total fitness (e.g., growth rate of bacteria)
is skewed by what can be observed in the field or measured or generated experimentally in the laboratory
(Gallet et al., 2012; Robert et al., 2018; Bondel et al., 2019; Lebeuf-Taylor, et al., 2019). With large data
sets, correlations can be established between genome changes and fitness changes in a given environment.
However, at a fundamental level there are many fitness components based on function that remain to be
identified and characterized and many unsolved mappings that prevent a predictive, causal linking of
mutations in DNA, properties of molecular components, integrated system function, phenotypic repertoire,
and fitness. In short, there is little relevant theory for guidance.

There is a rich field of theoretical population genetics developed over more than a century that
addresses the interaction of mutation, selection, drift and population structure (Gillespie, 2004; Orr, 2005;
Wakeley, 2005). However, aside from the simpler cases of one-to-one mapping between gene and
phenotypic function, an appropriate theoretical framework is lacking to pose and answer questions for the
more complex cases that involve mappings between many genes and many functional contributions to
phenotypes.

In reviewing the genetic theory of adaptation, Orr (2005) examined “the reasons a mature
[mathematical] theory has been slow to develop and the prospects and problems facing current theory” and
concluded that although recent models “seem to successfully explain certain qualitative patterns [...] future
work must determine whether present theory can explain the genetic data quantitatively”. Experimental
evolution studies have shown that mutations in a single gene affecting a specific enzyme can lead to a

marked change in organismal fitness (Barrick & Lenski, 2013; Gresham & Jong, 2015). Although the
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83  results might be explained qualitatively, without an adequate systems theory these explanations cannot
84  provide a rigorous, quantitative, causal understanding of the complex underlying events.
85 Can knowledge of molecular systems tell us anything about the distribution of mutant phenotypes
86  and their evolution? A large part of the problem in relating molecular mechanisms to phenotype
87  distributions and evolution is the inability to relate the genotype and environment to the phenotype exhibited
88 by a biological system, which is one of the ‘Grand Challenges’ in biology (Brenner, 2000). The causal
89  linking of genotype to phenotype involves at least three essential mappings: First is the mapping from the
90  digital values of the genome sequence to the analogue values of the kinetic parameters that characterize the
91  underlying molecular processes. Second is the mapping from the kinetic parameters of the individual
92  component processes to the quantitative biochemical phenotypes of the integrated cellular system. Third is
93  the mapping from the biochemical (endo-) phenotypes to the organismal (exo-) phenotypes, including
94  observables such as growth rate, taxis, adhesion, etc. The first of these mappings deals with protein
95  structure function relationships, which relate DNA sequence to properties of the encoded protein. Recent
96  success in solving the protein folding problem (Callaway, 2020) bodes well for the eventual ability to
97  predict kinetic parameters. The second mapping is the focus of Biochemical Systems Theory (Savageau,
98 1971; 2009; Voit, 2000; 2013), which in the past decade has provided a novel system deconstruction that
99  maps genetically-determined parameters and environmentally-determined variables to biochemical
100  phenotypes. The result is a highly structured partitioning of parameter space that is defined as the System
101  Design Space (Savageau et al., 2009). A Design Space Toolbox (DST3) is available with numerous tools
102  that automate the analysis (Valderrama-Goémez et al., 2020). The third of these mappings is perhaps the
103  mostdifficult, in any but the simplest cases of one-gene one-protein one-phenotype, due to the large number
104  of genes and phenotypes with many-to-many interactions that currently can only be characterized by large
105  data sets and statistical correlations (McCarthy et al., 2008; Greenbury et al., 2016).
106 If we could enumerate the full repertoire of phenotypic functions that could be exhibited by a given
107  Dbiological system and know the ranking of phenotype frequencies in the population undergoing mutational
108  exchange, we would have a deep understanding of the functional basis for phenotypic diversity and
109  plasticity available for selection to act upon. Here we address these issues in five parts.
110 First, we introduce a small molecular system, a primordial precursor to a circadian clock, as an aid
111  to understanding this novel approach. We have specifically selected a hypothesis-motivated example with
112 unknown parameter values for this purpose because any real system will initially have many unknowns and
113  involve the formulation of, and discrimination among, many hypotheses that require experimental testing.
114  Our approach has advantages to offer specifically at this stage of an investigation (Lomnitz & Savageau,
115  2016a). Second, we utilize System Design Space concepts (Supplemental Information, Section S1) to

116  extend and apply the phenotype-centric strategy to predict phenotype-specific mutation rate constants. This
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117  involves formulating phenotype-specific mutation rates based on transition probabilities between
118  Dbiochemical phenotypes. These rate constants are then used to formulate population dynamic equations for
119  predicting equilibrium distributions of phenotype diversity under non-selecting and selecting conditions.
120  Third, results for the population genetic model are presented. Fourth, specific predictions are discussed in
121  the light of experimental challenges for their testing. Fifth, in the discussion, we briefly compare and
122  contrast the theoretical framework provided by the System Design Space approach with that provided by
123  other approaches.

124

125  PUTATIVE PRIMORDIAL CIRCADIAN CLOCK

126

127  The molecular system, treated as a case study here, is related to the positive-negative feedback module
128 found at the core of nearly all circadian clocks (Bell-Pedersen et al., 2005; Hardin, 2011; Cohen & Golden,
129  2015; Nohales & Kay, 2016; Papazyan et al., 2016; Creux & Harmer, 2020) and several synthetic oscillator
130  designs (Atkinson et al., 2003; Stricker et al., 2008; Tigges et al., 2009; Lomnitz & Savageau, 2014). In
131 the transcription-translation oscillators, this module consists of a positive transcription factor that activates
132  its own synthesis as well as synthesis of a negative transcription factor, which in turn represses synthesis
133  of the positive transcription factor. The originally identified module in Drosophila is elaborated upon in
134  animals (Preitner etal., 2002) and plants (Creux & Harmer, 2020) with numerous variations on the theme,
135  including diverse input stimuli that modulate expression of one or both factors (Balsalobre, et al. 2000;
136  O’Neill & Reddy, 2012) and rich output interactions with nearly all cellular functions (Creux & Harmer,
137  2020).

138 In the cyanobacterial clock, the transcription-translation mechanism is a minor player whereas a
139  posttranslational oscillator mechanism with different positive and negative interactions plays the dominant
140  role (Cohen & Golden, 2015). When growing exponentially in a normal diurnal light cycle, phenotypes
141  without the oscillatory characteristic are at a selective disadvantage when compared to the wild type
142  (oscillatory phenotype); however, they exhibit no measurable disadvantage when grown under the non-
143  selecting condition (constant light), as determined by growth competition between mutants and wild type
144  in an otherwise isogenic background (Ouyang et al., 1998). Under these conditions, biochemical
145  phenotypes map closely to organismal phenotypes, which is the assumption typically made in studying the
146  evolution of specific molecular systems in bacteria (Brajesh, et al., 2019).

147 Roenneberg & Merrow (2002) and many others have speculated that the robust limit cycle or
148  sustained oscillation exhibited by circadian clocks in modern organisms is unlikely to have arisen full
149  blown. We propose that some of the coordinating functions could have been provided by a simpler core

150 module having a damped oscillation with a frequency that resonates to and becomes synchronized with the
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152  Figure 1. Common genetic module for the putative precursor of the modern core mechanism of
153  nearly all circadian clocks. Positive (P) and negative (N) transcription factor proteins and the
154  corresponding mRNAs (mP and mN). Environmental input stimulus (S) and biochemical output response
155  (R) are suggestive only, other targets and coordinating signals could be considered. See also Supplemental
156  Information, Section S2.

157

158  diurnal cycle. Indeed, such damped oscillations have been experimentally observed in strains of
159  cyanobacteria: namely, clock mutants of Synechococcus (Ouyang et al., 1998; Kawamoto et al., 2020) and
160  marine Prochlorococcus marinus (Holtzendorff et al., 2008).

161 For our purposes here, we shall consider the primordial mechanisms to involve only the negative
162  feedback loop at the core of modern transcription-translation mechanisms, as shown schematically in
163  Figure 1. The equations used to represent this putative primordial clock (Supplemental Information,
164  Section S2) are based on the foundation of fundamental biochemical kinetics. These models have broad
165  general applicability, as the vast majority of biochemical models are of this type (Chelliah et al., 2013).
166  These equations, recast as an equivalent GMA-system of equations (Supplemental Information, Section
167  S3), can be expressed as a set of differential-algebraic equations in the syntax of the Design Space Toolbox
168  (Lomnitz & Savageau, 2016b).

169 For the illustrative purposes of this case study, we make three simplifying assumptions. (1) The
170  precursor is likely to involve a minimal number of processes and a minimal degree of cooperativity in the
171  interactions. The two-transcription factor model involves at least four processes and two cooperative DNA
172  interactions. For it to generate a damped oscillatory response, the system must be near the threshold of
173  instability, which requires a value of loop cooperativity [(#*p) in the Eqn. (S1) to Eqn. (S4)] equal to 4 for
174  a system with four temporally dominant stages (Savageau, 1975; Thron, 1991). We let the cooperativity
175  parameters n=p=2. Kawamoto et al. (2020) considered a simpler three-stage model for Synechococcus; but
176 it requires a much higher degree of cooperativity, n >8 as shown in Savageau (1975). (2) To provide the
177  most challenging shape for testing different methods of volume calculation, we select values for the two
178  parameters (capacity for regulation for the two transcripts) with the potential to break the symmetry such

179  that a skewed volume is generated for the phenotype with an oscillatory characteristic (Supplemental
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Table 1. Phenotypic repertoire for the model in Figure 1.

Phenotype Phenotype Eigenvalues with Complex Conjugate
Number Signature Positive real part Eigenvalues
1 11111 0 -
3 111111112111 0 -
5 111121111111 0 -
6 111121111121 0 -
7 111121112111 0 +
8 111121112121 0 -
11 211111112111 0 -
15 211121112111 0 -
16 211121112121 0 -
180 Results determined using only Eqns. (S5 to S12).

181 Information, Section S4, Figure S1). (3) To aid visualization of the results we focus on a two-dimensional
182  slice through the System Design Space with the two binding constants displayed on the vertical and
183  horizontal axes, which is representative of the invariant for this system design space (Supplemental
184  Information, Section S5, Figure S2).

185 The Design Space Toolbox 3 (DST3, Valderrama-Gomez et al., 2020) can be used to enumerate
186  the repertoire of phenotypes without assuming values for any of the model’s kinetic parameters, and the
187  results demonstrate a maximum of nine possible phenotypes. The listing of the phenotypes, along with the
188  properties of their eigenvalues when n=p=2, is shown in Table 1. Each sequential pair of integers in the
189  phenotype signature identifies the specific positive and negative terms in the corresponding GMA equation
190 that are instrumental in defining the phenotype. A comparison of the phenotype signatures with the GMA
191  equations in Supplemental Information, Section S3, identifies the specific S-system equation for each
192  phenotype. All phenotypes are stable with no complex conjugate eigenvalues, except for phenotype #7;
193  thus, only phenotype #7 has the potential to initiate damped oscillatory behavior.

194 It should be emphasized that the enumeration of the full repertoire by DST3 is accomplished
195  without having to specify values for any of the thermodynamic and kinetic parameters. By specifying the
196  stoichiometry for binding repressor and activator as #=2 and p=2, DST3 automatically predicts scaled
197  values (Table 2, Legend) of all 12 thermodynamic and kinetic parameter values of the system, identifies
198  the region in design space for the realization of phenotype #7, the phenotype of interest here, as well as the
199  steady-state values of the four dynamic variables. By choosing the simplest scaling, generating a skewed
200  volume for phenotype #7, and shifting the entire Design Space to center the visualization on phenotype #7
201  (Supplemental Information, Section S5, Figure S2), we predict values for the 12 parameters and the
202  steady-state values for the four dynamic variables as shown in Table 2.

203
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204  Table 2. Scaled values for the parameters and steady state concentrations automatically determined
205  and fixed for phenotype 7 (11 11 21 11 21 11). The behavior of the model is determined by these scaled
206  parameter values. If necessary, twelve experimental measurements (e.g., maximum expression, minimum
207  expression and lifetime of each mRNA and protein) are sufficient to determine the actual parameter values.
208 However, as can be seen in the Eqn. (1), our methods involve differences in log space so the scale factors
209  cancel out and thus there is no effect on the qualitative or quantitative results. Predicted normalized steady-
210  state values: mP =100.0; P =1.0; mN =3.16; N =3.16.

211
Parameters Value
KN 0.316
KP 1.78
amNmax 10.0
amNmin 1.00
amPmax 10000
amPmin 1.00
aN 1.00
aP 0.01
bmN 1.00
bmP 1.00
bN 1.00
bP 1.00
212
213 Although we could examine variations in all 12 parameters, we choose to fix the predicted values

214  for all parameters except for the two equilibrium dissociation constants Kr and Ky, which will be allowed
215  to vary because of mutation. This simplification reduces the dimensions of the Design Space for ease in
216  visualizing the results while providing an accurate representation of the underlying Design Space invariant.
217  The size of the regions in Design Space occupied by each of the phenotypes (Figure 2A) then can be
218  determined by a vertex enumeration method (Avis 2000, Barber et al. 1996). These methods work well for
219  small systems and other methods are available for large systems (Supplemental Information, Section S6,
220  Figure S3).

221 We are fully aware that this simplified example used to introduce our theoretical framework does
222  not illustrate its full potential. There is a growing number of molecular systems for which there is
223  information sufficient to specify their architecture. By model architecture we mean molecules, interactions
224  among them, and the signs of the interactions. Surprisingly, much of what can be learned about the system
225  depends largely on its architecture. It suggests mechanistic hypotheses without having to know details of
226  the many kinetic and thermodynamic parameters. As noted in the INTRODUCTION, this is all that is
227  needed to formulate testable hypotheses amenable to analysis in the System Design Space framework. One
228  the other hand, we are also fully aware that this simplified example does not address numerous realistic and
229  important questions in the large field of theoretical population genetics. These issues must be the subject of

230 future work.
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231 NEW APPROACHES: DERIVATION OF PHENOTYPE-SPECIFIC MUTATION RATE CONSTANTS
232  AND POPULATION DYNAMIC EQUATIONS

233

234 The System Design Space approach enables a novel ‘phenotype-centric’ modeling strategy that is radically
235  different from the conventional ‘simulation-centric’ approach (Valderrama-Gomez et al., 2018). A
236  summary of System Design Space concepts is provided (Supplemental Information, Section S1) to
237  facilitate understanding of the phenotype-centric strategy used to predict phenotype-specific mutation rate
238  constants.

239 The mechanistic framework we are proposing requires new concepts and methods; the reader is
240  directed to Supplemental Information where these are fully developed. Here we simply summarize the
241  four factors in System Design Space contributing to the probability of transition between phenotypes by
242  mutational change in the mechanistic parameters: (1) mutated parameters change value along ‘tracks’
243  orthogonal to non-mutated parameters, (2) ‘volume’ of the phenotype resulting from mutation, (3) ‘size
244 scale’ of parameter changes between original (doner) and resultant (recipient) phenotypes, and (4)
245  ‘directional bias’ of parameter changes that are more probable in one direction vs. the alternative. These
246  four factors are elaborated on in the following sections and it will be most helpful to visualize these factors
247  in terms of the geometry of System Design Space that is determined by the architecture of the underlying
248  molecular system (Supplemental Information, Section S7).

249

250  Mutated vs. Orthogonal Parameters

251

252  We consider only mutational events that influence a single parameter. Thus, we need only consider a single
253  ‘track’ for the mutated parameter between values of orthogonal parameters. Such mutations can influence
254  multiple systemic functions indirectly, which is pleiotropy at the phenotype level. The tracks are rigorously
255  defined by the vertices of the phenotype polytopes and, in some cases, polytopes are split into more than
256  one track (Figure S4D). The single parameter restriction can be relaxed to consider mutations that
257  influence multiple parameters of a single component, which might be considered pleiotropy at the single
258  molecule level (e.g., the degradation rate constant of a transcription factor and its DNA binding constant).
259  The single parameter restriction can also be relaxed to consider simultaneously multiple mutants (e.g., rare
260  double mutant events). However, to make causal predictions upon removal of the single parameter
261  restriction will require formulation of testable mechanistic hypotheses (Lomnitz & Savageau, 2016a).

262

263

264
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265  Phenotype Volume

266

267  Because the volume of a phenotype becomes infinite when the phenotype is independent of some parameter
268  in the model, we bound the universe of values for all parameters by a hyper-cube in log space that is I1-
269  orders of magnitude on edge. The value of I should be large enough to include all phenotypes in the
270  System Design Space but not so large as to exceed physically realistic parameter values; this will exclude
271  phenotypes that can only be realized with unrealistic parameter values. We have set [1 = 6, which seems
272  large enough to cover all values that can be distinguished experimentally, which is typically about 3-orders
273  of magnitude. For example, the repressor for the lactose operon of Escherichia coli binds tightly to specific
274  recognition sites in the DNA with an occupancy of nearly 100%, but reduction of its equilibrium
275  dissociation constant by three orders of magnitude reduces the occupancy to nearly 0% (Lewin, 2008).
276  Moreover, it is very unlikely that parameter values ever go to zero because there are typically promiscuous
277  proteins capable of performing the same function with at least some minimal activity (Khersonsky &
278  Tawfin, 2010; Rueda et al., 2019). In any case, we have obtained similar results with I'T = 8, and DST3
279  allows users to select a custom value for I1.

280 Given a particular set of parameter values characterizing the donor phenotype in volume V;, one of
281  the four contributions to the probability of mutating to any other set of parameter values in the volume of
282  the recipient phenotype Vj, along a given mutant parameter track, is given by the ratio of the recipient
283  volume to the total volume along the entire track. Thus, this contribution to the probability of mutating
284  from a phenotype with a small track volume to one with a large track volume is greater than in the opposite
285  direction.

286

287  Size Scale

288

289  Large scale mutations are rare; small scale mutations are frequent in well adapted systems (Bataillon &
290  Bailey, 2014; Tataru et al., 2017; Bondel et al., 2019; Templeton, 2021). This size-scale effect depends on
291  thedistance, s, between the operating point (a parameter set) of the donor phenotype and that of the recipient
292  phenotype. By sampling each donor and recipient combination along the line representing the change in
293  the mutated mechanistic parameter, the probability of each mutation can be calculated based on the track
294  volume of the recipient phenotype and distribution of size-scale effects for the mutations. Although the
295  actual distributions for size-scale effect are unknown, we assume that the probability of parameter change
296 by mutation decreases exponentially with a size scale A, i.e. ~ exp(-s/4). This will be made more concrete

297  in RESULTS (first subsection).
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298 The size-scale effect of mutations can be calculated as an average distance over all combinations
299  of donor and recipient parameter values within a track, which is computationally demanding, or by
300 considering the distance between ‘phenotype centroids’ (red dots in Figure S4B,C,D), analogous to the
301  “‘centers of mass’ in mechanics. The results are the same for both methods (Supplemental Information,
302  Section S8, Figure S5) and, since it is computationally more efficient, we use the centroid method.

303

304  Directional Bias

305

306  The probability of mutation can be further refined by consideration of “directional bias”. The probability
307 s larger when a parameter change is in the direction of increasing entropy; it is smaller when the change is
308 in the direction of decreasing entropy. Although the actual differences in value are currently unknown, we
309  account for these directional biases by assigning a multiplicative weighting factor 6 that increases the
310  effective size scale A when a parameter change is in the direction of increasing entropy and decreases it
311  when the parameter change is in the direction decreasing entropy (Supplemental Information, Section
312  S9, Table S1).

313

314  Mutation Rates

315

316  Phenotype-specific mutation rate constants are determined in three steps. First, for each donor i and

317  recipient j phenotype, the mechanistic parameter contribution to the mutation, K, , is determined with an

7o
318  exponential distribution (Table S1) involving size scale A, directional bias O , and the magnitude of

319  parameter difference s, between phenotype centroids C, , i.e.,
320 K, ~exp(-|logC,—logC|/A8)  or K, ~exp(-|logC,—logC|[5/2) (1)
321  depending on whether the directional bias of the mutation is toward increased entropy (1/98) or decreased

322  entropy (S ). The product of the mechanistic contribution, K, , and the track volume of the recipient

i
323  phenotype, V}, is proportional to the probability of a mutation from donor phenotype i to recipient phenotype
324 .

325 Second, the normalized probability of a mutation from donor phenotype i to recipient phenotype j

326  along a track variable is written

327 k; =KV, /[Z}K,]Vj] Mk, =1 @)
=
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328  where #n; is the number of recipient phenotypes that phenotype i can reach by a single mutation of the
329  mutated parameter under consideration.

330 The phenotype-specific mutation rate is proportional to the general mutation rate, represented by
331  the parameter m. There is a great deal of variation in m among species and ecological contexts (Westra et
332 al,2017). In humans, mutations/base pair is estimated at ~ 10® per generation (Nachman & Crowell, 2000)
333  and, assuming an average gene size of ~ 1000 base pairs, this results in a general mutation rate m on the
334  order of 10” mutations/locus per generation. In E. coli, mutations/base pair is estimated at ~107'" per
335  generation (Foster, et al., 2015). Thus, for an average gene size, the estimated general mutation rate m is
336  on the order of 107 mutations/locus per generation. Matic et al. (1997) found that values for the E. coli
337  mutation rate to drug resistance are typically in agreement with this figure (~ 107), but they also found
338  examples as high as ~ 10°, The values that might have been relevant for early periods of evolution are
339  unknown, but likely to be on the higher end because of error-prone conditions thought to have prevailed at
340  thattime. This would be a relevant issue for our case study of a putative primordial circadian clock, which
341  will be treated in RESULTS. We focus on spontaneous point mutations resulting from replication that are
342  the major source of variation in a bacterium like E. coli (Foster, et al., 2015). The general mutation rate is
343  subject to evolution in various contexts (Sniegowski et al., 2000; Raynes et al., 2018) and, as we will show
344  for our clock model, the interaction of phenotype-specific mutation rates and near-neutral fitness effects
345  (i.e., growth rates, as a measure of total fitness, are nearly equal for all phenotypes) results in different

346  values of the general mutation rate that are optimal for individual phenotypes.

347 Finally, the phenotype-specific mutation rate constant 7, between phenotypes i and j is given by

348  the product of two factors mkij , where m is the general mutation rate constant given by the number of

349  mutations per generation and kl]- is the probability of a specific transition from phenotype i to phenotype ;.
350  The production rate of a phenotype (mutant) in units of mutations/time is then the product of 7, the

351  phenotype-specific mutation rate constant, ¥; the exponential growth rate constant of the donor phenotype
352 (related to the doubling time, In2/7,)), and /&, the size of the donor population. Note that this differs
353  from the conventional description in that the product mkij is typically represented by a single specific rate

354  constant per generation (e.g., Levin et al., 2000; Reams et al., 2010) that is not predicted but measured or
355  estimated for a particular mutant phenotype.

356

357

358

359
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360  Population Dynamic Equations

361

362  To simplify the presentation, we restrict consideration to asexual haploid organisms in a spatially
363  homogenous context growing in an exponential steady state, which is the most rigorously defined state for
364  a cellular population (Maalge & Kjeldgaard, 1966). Under these idealized conditions, all effective
365  population sizes N, are equal to the census population size N, mutants are never lost from the population,
366  and the equilibrium distribution can be rigorously determined under non-selecting and selecting conditions.
367  Lethal mutations (~ 1%) can be subsumed within a net growth rate constant since there is evidence that
368  these mutants occur by a first-order process (Robert et al., 2018). Of course, steady-state exponential
369  growth cannot continue indefinitely. Nevertheless, results obtained under these conditions provide a
370  rigorous reference or standard to which results under more realistic conditions can be compared, analogous
371  to the historical role played by the frictionless plane in mechanics (Hawking, 2002) and by the Hardy-
372  Weinberg law in population genetics (Crow, 1988; Wakeley, 2005). As with these idealizations, the
373  intention is to get at something essential with the understanding that refinements will undoubtedly be added
374  in the future; just as wind resistance and static friction were eventually added in mechanics and selection,
375  drift and population structure were eventually added in population genetics. In each case, the expectation
376  isthat more realistic aspects will be added as the theory becomes refined. In DISCUSSION we will suggest
377  methods to relax our assumptions.

378 The population dynamic equations for steady-state exponential growth can be written in terms of

379  numbers for each of the n phenotypes in the population

dN, n

380 dt’ = E mk}lyjNJ_zmkUlel+Y1Nl i:l’-..’n (3)
J=1 =
J# i

381  The first sum is the rate of increase by mutation, the second sum the rate of loss by mutation, and the final
382  term the rate of increase by net exponential growth, with ¥, in doublings per unit time. These equations
383  have the undesirable feature that the population is continually increasing. However, by expressing the
384  population numbers N, as a fraction of the total population N, (or relative frequency) the resulting
385  equations have a more convenient form with a well-defined steady state. Thus, the relative frequency of
386  phenotype i is

387 R =N,/ )N, and iRi =1 )

j=I i=1

388  Starting with the derivative of the relative frequency
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d(N,/N;) 1 dN, N, 1 dN,
389 — e i (5)
dt N, dt N, N, dt

390  substituting dN,/dt from Eqn. (3), and noting the cancelation of the mutation terms in dN, /dt, we

391 obtain

392 ‘z:f = mk,y R - mkyR+Yy.R—R, (2 Y jRj] (6)
j=1 J=1

J=1
J#i J#i

393  In anticipation of the case study to follow, we shall consider the situation in which phenotype & has growth
394  rate Y, in a non-selecting condition and )/Z, in a selecting condition. By adding and subtracting the same
395  terms, normalizing time tby ¥, (T =¥,/ in generations) and defining relative growth ratesas W, =¥, /7,

396 , Eqn. (6) can be rearranged and rewritten for phenotype & and for all other phenotypes i to emphasize three

397  separate contributions to their rate of change:

dR n n n
a’—k: D mky R, = | X kiR, +(/“‘k —ZﬂjRj)Rk
T I= j=1 j=1
ek Tk
398 = (g =D| X mk,R, (7)
J=1
ik

+[ (4, ~D(A-R)R, ]

a;; = /Z: mk R, |~ ; mhy LR, |+ {,u,, - /Z:}u//?/}kf
s i
399 +[ (= Dy, R, | [k (8)
~[(u; - DR.R ]
400  where the seledtion coefficient is defined as g1, —1. If there are no fitness effects in the non-selecting

401  condition (all growth rates identical), then the form of the above equations in the selecting condition has

402  the meaning

403 Net Rate of Change = Mutation
404 + Mutation-x-Selection 9
405 + Selection

406
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408  Figure 2. Predicted phenotype characteristics in System Design Space. (A) Visualization of phenotype
409  regions. Region of oscillatory phenotype #7 is the central rectangular shape. (B) Steady state concentration
410  of total protein (N+P) plotted log10 as a heat map on the z-axis. (C) Validated oscillatory behavior for
411  phenotype #7. Concentrations of activator P (left y-axis, Blue) and repressor N (right y-axis, )as a
412 function of time scaled by a factor of 1/3. Initial conditions are: mP=100; P = 1.0; mN = 3.16; N = 1.58.
413  Figures generated with the following parameter values: KN = 0.316; KP = 1.78; aN = 1.0; aP = 0.01;
414  amNmax = 10.0; amNmin = 1.0; amPmax = 10000.0; amPmin = 1.0; bN = 1.0; bP = 1.0; bmN = 1.0; bmP

415 = 1.0; Kinetic order(s): n=2, p=2; (The parametric constraints amPmax>amPmin and amNmax>amNmin
416  are automatically satisfied by this parameterization of the model.)
417

418  The middle term involves mutations generated specifically by replication of the phenotype with the
419 selective advantage; hence, it is the only term that involves both a mutation rate and the selection
420  coefficient. The above equations can be considered one of several alternative forms of the standard
421  population genetic equations (Wilke, 2005); however, the alternative form used here most clearly reveals
422  the three distinct rate contributions we wish to consider.

423

424  RESULTS

425

426  The Design Space Toolbox 3.0 has algorithms for the automatic prediction of numerous characteristics
427  within and between phenotypes. Examples of characteristics within phenotypes include the predicted
428  volume (global robustness) of individual phenotypes, protein burden due to differential protein expression,
429  dynamic behavior, and system design principles for the realization of the phenotype. Volumes are shown
430  with identifying phenotype numbers in Figure 2A. There are numerous phenotypic characteristics that can
431  beplotted on the z-axis as a heat map; an example is the protein burden of each phenotype due to differential
432  protein expression in the non-selecting condition (Figure 2B). Simulation of the full system, with time ¢
433  scaled by a factor of 1/3 (7 =7/3) to match a 24-hour cycle time, produces the results in Figure 2C,
434  which validates the prediction of a damped oscillatory characteristic for phenotype #7.

435 Examples of characteristics that distinguish between phenotypes include phenotype-specific

436  mutation rate constants and system design principles. The first example, involving phenotype-specific
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437  mutation rate constants, distinguish between phenotypes in the context of the population dynamic model.
438  In this model the focus is on the dynamics of the populations of organisms with the different phenotypes
439  rather than the dynamics of the biochemical molecules of the system (oscillator). The second example,
440 involving design principles, follows from the definition of a “qualitatively-distinct phenotype” as a
441  combination of dominant processes operating within an intact biochemical system (Savageau et al, 2009).
442  Phenotype #5 (signature 11 11 21 11 11 11) and phenotype #7 (signature 11 11 21 11 21 11) in Table 1 are
443  distinguished by a single change in dominance involving the rate of transcription of the mRNA for the

444  activator (Bold digits in the signature). In our simplified case, allowing only the two equilibrium

445  dissociation constants to vary by mutation, the condition is the following: Phenotype #5 K, K ; >316°

446  and Phenotype #7 K NK12, <316°. This suggests that a mutation increasing K, alone by a sufficient

447  amount can convert phenotype #7 to #5. In the more general context of distinguishing phenotype #7 from
448  its neighbors, phenotype #7 in Figure 2A must be to the left of phenotypes #5 and #8 and to the right of
449  phenotypes #3 and #15. The result is not at all obvious or intuitive, rather it is a subtle system design
450  principle (Savageau & Fasini, 2009; Savageau, 2013) defined by four boundaries (Supplemental
451  Information, Section S10). Thus, all system parameters must satisfy constraints involving specific
452  constellations of values with many opportunities for compensation; there is no single parameter capable of
453  distinguishing between phenotypes. This is particularly apparent in the case of complex diseases for which
454  many genes and parameters interact in subtle ways that are difficult to identify; there is no single effective
455  target for treatment, rather there are many potential targets with a spectrum of effectiveness.

456 Small changes, in the limit of linearization, within a phenotypic region eliminates the possibility of
457  epistatic interactions. Larger changes, but still within a phenotypic region, can account for a variety of
458  epistatic interactions. F