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ABSTRACT 

Machine learning (ML) algorithms are used to build predictive models or classifiers for specific disease 

outcomes using transcriptomic data. However, some of these models show deteriorating performance when 

tested on unseen data which undermines their clinical utility.  

In this study, we show the importance of directly embedding prior biological knowledge into the classifier 

decision rules to build simple and interpretable gene signatures. We tested this in two important classification 

examples— a) progression in non-muscle invasive bladder cancer; and b) response to neoadjuvant 

chemotherapy (NACT) in triple-negative breast cancer (TNBC) – using different ML algorithms. For each 

algorithm, we developed two sets of classifiers: agnostic, trained using either individual gene expression values 

or the corresponding pairwise ranks without biological consideration; and mechanistic, trained by restricting the 

search to a set of gene pairs capturing important biological relations. Both types were trained on the same 

training data and their performance was evaluated on unseen testing data using different methodologies and 

multiple evaluation metrics.  

Our analysis shows that mechanistic models outperform their agnostic counterparts when tested on independent 

data and show more consistency to their performance in the training with enhanced interpretability. These 

findings suggest that using biological constraints in the training process can yield more robust and interpretable 

gene signatures with high translational potential. 
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In oncology, machine learning (ML) algorithms are used to analyze gene expression data to identify predictive or 

prognostic gene signatures associated with specific cancer phenotypes like tumor metastasis, progression, or 

therapeutic response. Some of these signatures are currently being used in clinical settings to predict the 

prognosis and to guide further treatment1,2. Notably, the process of discovery and validation of gene signatures 

comes with great difficulties3. The most striking one is the unstable performance of the discovered signatures 

when tested on different data than the ones used in training. The main reason for this is the great discrepancy 

between the number of features or genes used for prediction (tens of thousands) and the number of observations 

or samples (tens to hundreds). What happens is that the ML model misinterprets "noise" as "signal" and ends up 

memorizing all the details in the training data which in turn cannot be generalized to other datasets, this 

phenomenon is known as overfitting4. There are several approaches to reduce overfitting and variance, the most 

important of which is by increasing the number of samples. However, this is not always feasible in biomedical 

and cancer research due to financial limitations or rarity of the studied cancer type. Another solution is to use 

simple algorithms which are less susceptible to overfitting5 or by adding regularization on complex models6,7. A 

third option is to reduce the data dimensionality by filtering out non-informative or redundant features or using 

feature selection methods8.  

In this study, we examine whether embedding prior biological knowledge in the model training process can 

improve the performance and consistency of the resulting gene signatures. For this purpose, we limit the training 

process to a pre-defined relevant biological mechanism in the form of gene pairs whose relative ordering 

determines the predicted class. We compare the performance of these simple mechanistic rank-based models to 

conventional agnostic models trained without biological consideration in two different classification cases: 1. 

predicting the progression of non-muscle invasive bladder cancer (NMIBC) (stage T1) to muscle-invasive 

disease (MIBC) (stages T2-T4); and 2. predicting the response to neoadjuvant chemotherapy (NACT) in triple 

negative breast cancer (TNBC). In each case, we use four different ML algorithms: K-Top Scoring Pairs (K-

TSPs), Support Vector Machine (SVM), Random Forest (RF) and Extreme Gradient Boosting (XGB). 

For mechanistic models, we restrict the training process to a biological mechanism relevant to the phenotype under 

study. For bladder cancer progression, we use feed-forward loops (FFLs) consisting of transcription factors (TFs) 
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and microRNAs (miRNAs) target genes as our mechanism. Transcription factors regulate the expression of their 

target genes through various mechanisms9. MicroRNAs are small, non-coding RNAs that have an important role in 

the post-transcriptional gene regulation through the induction of mRNA degradation10. They also regulate the 

transcription of their target genes by setting a response threshold to transcriptional induction11. Current evidence 

shows that both TFs and miRNAs regulate the expression of common target genes and the expression of each 

other through feed-back (FBLs) and feed-forward loops (FFLs)11–14. Moreover, other studies have identified that 

the interaction between miRNAs targets and TFs is involved in the progression of several cancers including 

bladder cancer15–19. For the TNBC case, we restrict the training process to a mechanism involving both Notch and 

MYC signaling pathways owing to the role they play in mediating cancer chemoresistance. Notch signaling 

pathway is involved in promoting cancer angiogenesis and epithelial-mesenchymal transition (EMT)20. NOTCH 

signaling also promotes chemoresistance in several cancers including breast cancer by inhibiting apoptosis and 

mediating cancer stem cells (CSC) self-renewal capacity21. Similarly, c-MYC promotes chemoresistance by 

mediating CSC self-renewal and proliferation22,23 and also by dysregulating the expression of some ATP-binding 

cassette (ABC) transporters necessary for cellular drug transport24. 

Here, we simply embed this existing knowledge into the algorithms decision rules to build biologically relevant 

predictive models. We show that these models, even with a very small number of features, can have a 

comparable performance to agnostic models using hundreds and thousands of genes. 

Results 

Characteristics of the datasets 

For predicting bladder cancer progression, five datasets with a total of 350 samples were used in the analysis. The 

training data included 260 NMIBC samples of which 49 progressed to MIBC while the testing data included 90 

samples of which 18 progressed to muscle-invasive stages. For predicting the response to NACT in TNBC, the 

training data included pretreatment samples from 112 patients, of whom 37 achieved pathological complete 

response (pCR) while 75 had residual disease (RD). The testing data had pre-treatment samples from 58 patients, 

of whom 20 achieved pCR and 38 had RD. 
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Predicting bladder cancer progression 

In the bootstrap approach, both K-TSPs models had a similar performance at predicting bladder cancer 

progression in the testing data (Figure 1). However, the mechanistic K-TSPs performance in the testing was 

highly consistent with that in the training data suggesting that using biological constrains together with simple 

algorithms can improve the consistency of performance of gene signatures. For the other three algorithms, 

mechanistic models showed a higher testing performance than agnostic models trained using the top DEGs 

(Figure 1). Notably, using pairwise comparisons derived from the top DEGs, instead of using their individual 

expression values, improved the performance of agnostic models and slightly reduced the gap between their 

training and testing predictions. 

Subsequently, we investigated if increasing the number of features used for training the agnostic models can 

improve their performance. To this end, we re-trained the agnostic models using gene expression values from the 

top 100, 200, and 500 DEGs or their corresponding pairwise comparisons (50, 100, and 250 pairs) and compared 

their performance to mechanistic models built using FFLs. The results showed that increasing the number of 

features used in the training did not improve the testing performance of the agnostic compared with the 

mechanistic models (see Figure S1). 

Figure 1. Performance of the agnostic and mechanistic models at predicting bladder cancer progression using the bootstrap 

approach. Models were trained on 1000 bootstraps of the training data (transparent colors). Mechanistic (dark violet) models were trained 
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using the feed-forward loops mechanism. Agnostic models were trained either using the top differentially expressed genes (green) or the 

corresponding pairwise comparisons (yellow). Each model was evaluated on the untouched testing data (solid colors) using the Area Under 

the ROC Curve (AUC). Curves represent the smoothed density distribution of the AUC values and each panel corresponds to one of the four 

algorithms used. KTSP: K-top scoring pairs; RF: random forest; SVM: support vector machine; XGB: extreme gradient boosting; FFLs: feed-

forward loops; DEGs: differentially expressed genes. 

In the cross-study validation approach, we calculated the average performance of both models across the five 

training-testing iterations. We found that both the mechanistic and agnostic K-TSPs had a similar average AUC in 

the testing data while the mechanistic model outperformed its agnostic counterpart in terms of the average 

balanced accuracy, sensitivity and MCC (see Table 1). In alignment with the bootstrap results, the testing 

performance of the mechanistic K-TSPs was also highly consistent with that in the training suggesting reduced 

overfitting. Similar results were seen with the other three algorithms (RF, SVM, and XGB) in which the 

mechanistic models had a higher average performance than their agnostic counterparts (see Table 1). 

Table 1.  The average performance in the cross-study validation approach. Each of the five studies was used once for testing and the 

other four for training. Agnostic models were trained using either individual gene expression values (Agnostic genes) or their corresponding 

pairwise comparisons (Agnostic Pairs). Mechanistic models were trained using the FFLs mechanism. 

* Note that for the K-TSPs algorithm, only pairs can be used for classification. 

K-TSPs: K-Top Scoring Pairs; RF: Random Forest; SVM: Support Vector Machine; XGB: Extreme Gradient Boosting; AUC: Area Under the ROC Curve; MCC: Matthews Correlation 

Coefficient. 

Features Performance metric KTSP * RF SVM XGB 

  training testing training testing training testing training testing 

Agnostic genes 

AUC 
Accuracy 
Balanced Accuracy 
Sensitivity 

NA 
NA 
NA 
NA 

NA 
NA 
NA 
NA 

1.00 
1.00 
1.00 
1.00 

0.72 
0.56 
0.52 
0.18 

1.00 
1.00 
1.00 
1.00 

0.64 
0.60 
0.50 
0.06 

0.92 
0.90 
0.92 
0.94 

0.64 
0.64 
0.55 
0.23 

 Specificity NA NA 1.00 0.87 1.00 0.94 0.90 0.86 

 MCC NA NA 0.99 0.05 1.00 0.00 0.81 0.09 

Agnostic pairs 

AUC 
Accuracy 
Balanced Accuracy 
Sensitivity 

0.92 
0.84 
0.85 
0.86 

0.71 
0.66 
0.59 
0.34 

1.00 
0.94 
0.96 
1.00 

0.71 
0.60 
0.55 
0.27 

0.95 
0.89 
0.90 
0.91 

0.64 
0.65 
0.57 
0.30 

0.96 
0.88 
0.92 
0.97 

0.71 
0.64 
0.60 
0.38 

 Specificity 0.84 0.85 0.93 0.83 0.89 0.84 0.86 0.82 

 MCC 0.61 0.19 0.85 0.10 0.73 0.13 0.73 0.20 

Mechanistic pairs 

AUC 
Accuracy 
Balanced Accuracy 
Sensitivity 

0.75 
0.68 
0.72 
0.77 

0.69 
0.57 
0.62 
0.56 

1.00 
0.95 
0.97 
1.00 

0.73 
0.62 
0.59 
0.41 

0.92 
0.87 
0.87 
0.86 

0.71 
0.63 
0.64 
0.53 

0.91 
0.84 
0.86 
0.90 

0.76 
0.70 
0.70 
0.60 

 Specificity 0.66 0.69 0.94 0.77 0.87 0.74 0.83 0.81 

 MCC 0.35 0.22 0.86 0.14 0.65 0.25 0.63 0.35 
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Predicting the response to neoadjuvant chemotherapy in TNBC 

When predicting the response to NACT in patients with TNBC, the mechanistic K-TSPs models built on the 

NOTCH-MYC mechanism had a similar testing performance to the agnostic models built using the top 50 DEGs 

(Figure 2). However, the mechanistic RF, SVM, and XGB outperformed their agnostic counterparts on the testing 

data (Figure 2). 

Additionally, the results showed that increasing the number of features used to train the agnostic models slightly 

improved their classification performance. Particularly, agnostic models built using the top 200 and 500 DEGs (or 

100 and 250 pairs) had a higher performance than those trained with smaller number of features (see Figure S2). 

Furthermore, models trained on the top 500 DEGs (or 250 pairs) achieved a similar testing performance to the 

mechanistic models especially using the XGB algorithm (see Figure S2). 

Figure 2. Performance of the agnostic and mechanistic models at predicting the response to neoadjuvant chemotherapy in triple-

negative breast cancer using the bootstrap approach. Mechanistic (dark violet) models were trained using the NOTCH-MYC mechanism. 

Agnostic models were trained either using the top differentially expressed genes (green) or the corresponding pairwise ranks (yellow). The 

performance of each model was evaluated in the testing data (solid colors) using the Area Under the ROC Curve (AUC). Shown are the 

smoothed density distributions of the AUC values with each panel corresponding to one of the four algorithms used. KTSP: K-top scoring 

pairs; RF: random forest; SVM: support vector machine; XGB: extreme gradient boosting; DEGs: differentially expressed genes. 
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Discussion 

Overfitting remains one of the most difficult problems in machine learning especially in transcriptomics owing to 

the very large number of features and the smaller number of samples3,4. The inconsistency of performance of 

genomic predictive models is one of the reasons why their clinical usage has not been widely implemented and 

represents a major obstacle to the process of personalizing health care. While some approaches like increasing 

the sample size may help improve the performance and stability of such models, these may not always be 

feasible in clinical research owing to financial limitations or the unavailability of samples in cases of rare or 

lethal cancer types. 

Several studies have shown that using prior knowledge can help to choose the input data or the correct algorithm 

for the mission at hand25,26. In this study, we employed a similar concept to train stable and interpretable predictive 

models by adding biological constraints to the algorithm decision rules. We examined this approach in two 

clinically important classification cases: predicting bladder cancer progression from non-muscle invasive to 

muscle invasive stages and predicting the response to neoadjuvant chemotherapy in TNBC. In each, we used 

different algorithms to predict the phenotype of interest and compared the performance of biologically constrained 

rank-based models to agnostic ones trained using the top DEGs or their derived pairwise ranks. In the bladder 

cancer case, we used FFLs to construct the mechanistic model based on the evidence supporting their involvement 

in cancer progression and invasion15–19. In the TNBC case, we used a mechanism based on the NOTCH and c-

MYC signaling pathways based on their role in mediating CSC self-renewal and chemo-resistance21–23. 

When evaluated on the testing data, the mechanistic rank-based models yielded a similar or even better 

performance than agnostic models trained using the individual expression values of the top DEGs or their 

corresponding pairwise ranks. Moreover, in the bladder cancer case, mechanistic models, especially K-TSPs, had a 

more consistent performance between the training and testing data compared to their agnostic counterparts. This 

was evident in the bootstrap approach in which models were trained on 1000 training bootstraps and tested 

independently indicating that our results are not confounded by certain specifications in the training data. This was 

also confirmed in the cross-study validation approach in which the mechanistic models had a higher average 

testing performance using different metrics. Even in situations where there was a small number of samples 
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available for training like the TNBC case, the mechanistic models still outperformed their agnostic counterparts in 

the testing and their performance was matched by the agnostic models only when a large number of features (> 

200) was used. 

Overall, these results show that models using a small number of biologically important features can have a 

comparable performance to those using hundreds and thousands of genes. Furthermore, these mechanistic models 

use simple decision rules that depend entirely on the relative ordering of features in each sample rather than their 

definite expression values. These simple rank-based decision rules greatly enhance the interpretability of the 

resulting gene signatures which is crucial to their clinical usage. Also, these models are robust to preprocessing 

techniques and can be feasibly implemented by another technology as long as the ranking is preserved. For 

example, signatures derived from microarrays or RNA-Seq studies can be transformed to a more clinically feasible 

technology like RT-PCR which further increases their translational value. 

Notably, our study has some inherent limitations. First, the biological mechanisms used in the mechanistic 

models are in the form of contrasting gene pairs but this pairwise relationship may not completely capture the 

underlying biology compared to other formats like gene networks for example. However, this lack of 

sophistication in the design of the biological mechanism was deemed necessary in our analysis for several 

reasons related to the format requirement of the used algorithms and the future interpretability of the resulting 

signatures. For example, the K-TSPs algorithm is naturally dependent on the relative ordering of gene pairs and 

restricting the training process can either be implemented at the gene or pair-level. At the gene-level, the 

selection of gene pairs can be restricted to certain features like the top DEGs. At the pair-level, the selection can 

be restricted to certain pre-specified set of pairs whose rank is expected, based on biological judgment, to differ 

significantly between the two classes. Additionally, these pairwise comparisons are extremely simple and can be 

used as predictors for other more complex algorithms and the resulting signatures will still retain a higher level of 

interpretability compared to models trained using the individual gene expression values or using a network-based 

biological mechanism. Another limitation resides in the lack of external validation of the results. Although we 

tested the performance of both the agnostic and mechanistic models on independent testing datasets, there is still 

the need to validate these results in external patient cohorts to confirm the conclusions. 
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Despite these limitations, our results show that simple rank-based mechanistic models trained on relevant 

biological mechanisms have a similar or even better performance than conventional agnostic models. These 

results are evident in two different clinical cases, using different methodological approaches and different ML 

algorithms. The simplicity of these rank-based gene signatures allows for their feasible cross-platform 

implementation and this, combined with their high performance and interpretability, increase their translational 

potential. Improving the interpretability and stability of gene signatures can eventually increase their integration 

in clinical practice on a wider scale and bring routine personalized medicine one step closer to reality. 

Materials and Methods 

Data collection 

The bladder cancer case 

We used both the NCBI Gene Expression Omnibus (GEO)27 and ArrayExpress28 to identify gene expression 

datasets containing primary tumor samples from non-muscle invasive bladder cancer (NMIBC). We refined the 

initial results to keep only the datasets with information about the progression status (progression to MIBC 

versus no progression). Five datasets met our inclusion criteria, four of which are microarray-based 

(GSE5781329, GSE1350730, GSE3289431 and pmid1593033732) and the fifth is RNA-Seq based dataset (E-

MTAB-432133). 

The breast cancer case 

We included the two datasets (GSE25055 and GSE25065) used by Hatzis et al to discover a gene signature 

associated with the response to neoadjuvant chemotherapy (NACT) in breast cancer34. 

Data preprocessing 

The bladder cancer case 

In each dataset, we removed non-invasive papillary carcinoma (Ta) and carcinoma in situ (Tis) samples and kept 

only T1 lesions with information about the progression status. To remove uninformative features in the 

microarray datasets, we kept genes with raw intensity greater than 100 in at least 50% of the samples. Similarly, 

in E-MTAB-4321 (RNA-Seq) we kept genes with more than one count per million (CPM) in at least 50% of the 
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samples. The four microarray datasets were normalized and log2-scaled upon retrieval from GEO. For E-MTAB-

4321, the read counts were normalized using trimmed mean of M-values (TMM) and transformed to log2-counts 

per million (log-CPM). Next, we performed Z-score transformation (by gene) of each normalized dataset 

separately to ensure that the datasets from both technologies (microarrays and RNA-Seq) are on a similar scale. 

To identify a subset of cross-study reproducible genes, we used the integrative correlation coefficient (ICC)35,36 

keeping only genes whose ICC was greater than 0.15 or the 33rd percentile. In summary, the ICC is computed by 

calculating the Pearson correlation coefficient of the expression values of each pair of genes within and across 

studies (correlation of correlation). Although the integrative correlation analysis was performed on all data before 

division into training and testing, this does not violate the validation process since this method only uses the 

expression data and does not take into account the phenotype information. Of the 5139 genes in common 

between the five datasets, 3109 genes met the ICC threshold and were used in the downstream analysis. 

The breast cancer case 

In both datasets, we kept only TNBC samples in which ER, PR, and HER2 were all negative by 

immunohistochemistry (IHC) and with available information about the response to NACT whether pathological 

complete response (pCR) or residual disease (RD). This reduced the number of samples to 112 and 58 in the first 

and second datasets, respectively. Similar to the bladder cancer example, we removed uninformative features 

using unsupervised filters based on the probe raw intensity. Finally, we mapped each probe ID to the 

corresponding gene symbol and restricted each expression matrix to the gene symbols in common (4892 genes). 

Mechanistic pairs assembly 

We took advantage of existing biological knowledge to construct biological mechanisms most relevant to the 

phenotypes under study. These biological mechanisms are in the form of gene pairs, each consisting of a gene 

associated with bad prognosis (e.g., progression or chemo-resistance) and another associated with good 

prognosis. 
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Feedforward loops 

The TF-miRNA mediated gene regulatory loops that we are interested in are the coherent feed-forward loops in 

which a TF (e.g., MYC) inhibits a target gene (e.g., CD164) directly and indirectly via activation of a hub 

miRNA (e.g., hsa-miR-346). The TF and target gene have an inverse relationship; over-expression of the TF 

results in down-regulation of the target gene and vice versa. This inverse relationship makes these pairs suitable 

for classification. To construct these loops, three different interaction types have to be obtained: the interaction 

between the TF and target gene (TF-target), the interaction between the TF and miRNA (TF-miRNA), and the 

interaction between miRNA and target gene (miRNA-target). The TF-target interactions were obtained from 

Harmonizome37 using the following databases: ENCODE, ESCAPE, CHEA, JASPAR, MotifMap and 

TRANSFAC. The TF-miRNA interactions were obtained from the same databases as above together with 

TransmiR v2.0 database38. Finally, the miRNA-target interactions were obtained from TargetScan39, 

miRTarBase40 and miRWalk41. 

The loops were constructed by merging the three different interaction types. It was assumed that the TF always 

activates the miRNA and always inhibits the target gene. This assumption could be made since loops in which the 

TF does not activate the miRNA and/or inhibit the target gene, will not be selected as top scoring pairs by the K-

TSPs algorithm, as described below. Finally, we chose TF-miRNA and TF-target interactions which were present in 

at least one of the databases and miRNA-target interactions which were present in at least two databases. This 

resulted in 985 gene pairs which were used for predicting bladder cancer progression. 

The NOTCH-MYC mechanism 

We used the Molecular Signature Database (MsigDB)42 to retrieve gene sets associated with the regulation of the 

NOTCH signaling pathway or including genes up and downregulated by NOTCH. The NOTCH mechanism was 

constructed by pairing the genes involved in the positive regulation of NOTCH signaling pathway or genes up-

regulated by NOTCH with those involved in the downregulation of the NOTCH signaling pathway or those down-

regulated by NOTCH. Similarly, the MYC mechanism was constructed by pairing the genes up-regulated with 

those down-regulated by c-MYC. Finally, both mechanisms were combined into a single mechanism consisting of 

7420 pairs which was further used in the TNBC classification case. 
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Data splitting 

In the bladder cancer analysis, we implemented two data splitting approaches: bootstrap and cross-study 

validation43 (see Figure 3). In the bootstrap approach, the five datasets were combined together based on the set of 

reproducible genes. The data was then divided into 75% training and 25% testing using balanced stratification. 

This was done to ensure a balanced representation of the parent datasets together with important clinical and 

pathological variables (age, sex, tumor grade, recurrence status, and intra-vesical therapy) in the training and 

testing data. Subsequently, models were trained to predict bladder cancer progression on 1000 bootstraps of the 

training data and their performance was evaluated on the untouched testing data using the Area Under the ROC 

Curve (AUC) as evaluation metric. In the cross-study validation approach, four out of five datasets were used for 

model training and the fifth was used for testing. This process was repeated five times so that each dataset was 

used for testing once. 

In the TNBC analysis, we implemented the bootstrap approach using GSE25055 (112 samples) for training and 

GSE25065 (58 samples) for testing. Models were trained on 1000 bootstraps of the training data to predict the 

response to NACT (pCR vs RD), and the testing data was used to assess their performance (Figure 3).

Figure 3. An overview of the data collection, preprocessing and training and testing approaches. Two different classification cases 
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were considered: predicting bladder cancer progression (yellow section) and predicting the response to NACT in TNBC patients (green 

section). NACT: neoadjuvant chemotherapy, TNBC: triple-negative breast cancer, K-TSPs: K-top scoring pairs, RF: random forest, SVM: 

support vector machine, XGB: extreme gradient boosting, DEGs: differentially expressed genes. 

Evaluating the performance of mechanistic versus agnostic models 

In each classification case, we used four different algorithms: K-TSPs, RF, SVM, and XGB. Each algorithm was 

trained using two different model types: 1. mechanistic: using a manually curated biological mechanism in the 

form of pairwise comparisons (see below), and 2. agnostic: using the top differentially expressed genes (DEGs) 

(agnostic-genes) or the corresponding pairwise comparisons (agnostic-pairs). Importantly, a pairwise comparison 

is based on the relative ordering of the expression of two genes. For example, in a particular sample, a given gene 

pair consisting of gX and gY would be assigned a value of ’1’ if gX is more expressed than gY in that sample, and 

a value of ’0’ if the opposite is true. Such pairwise comparisons were then used as features in the training process 

of mechanistic and agnostic-pairs models. 

Importantly, both agnostic and mechanistic models were trained and tested on the corresponding training and 

testing data, respectively. In the bootstrap approach, the AUC of each model was computed in both the training 

and testing data. The distribution of the AUC values of the mechanistic was plotted against that of the agnostic 

models to compare their average performance. In the cross-study validation, the average performance across the 

five iterations of training and testing was computed. Different metrics were used including: the AUC, accuracy, 

balanced accuracy, sensitivity, specificity, and Matthews correlation coefficient (MCC). 

The K-TSPs classifier 

The K-TSPs is a rank-based classification method that selects gene pairs (K) whose expression levels switch 

their ranking between the two classes of interest44,45. More specifically, in the training process, if gene X is 

consistently more expressed relative to gene Y in samples of a particular class compared to the other, it will be 

selected as a top scoring pair (TSP) and used for classification. In this sense, the output of this algorithm is a 

number of gene pairs with each voting for a particular class based on the relative ordering of expression values 

and the final class prediction is determined by the sum of votes. This rank assessment process used by the 
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algorithm during the training process can be applied to all genes or can be restricted to the top DEGs (agnostic) 

or to certain predetermined pairs chosen based on prior knowledge (mechanistic). The agnostic K-TSPs models 

were trained on the top DEGs by Wilcoxon rank sum test using different number of top features: the top 74, 100, 

200, and 500 DEGs in the bladder and the top 25, 50, 100, 200, and 500 DEGs in the TNBC case. The training of 

the mechanistic K-TSPs models was restricted to the FFLs and the NOTCH-MYC mechanisms in the bladder 

and TNBC cases, respectively. In both, we restricted the number of output pairs (the final signature) to a range 

between 3 and 25 pairs. Finally, pairwise comparisons derived from the maximum number of unique pairs 

returned by the mechanistic K-TSPs models (37 and 84 in the bladder and TNBC, respectively) was used to train 

the mechanistic versions of RF, SVM, and XGB algorithms. 

Support Vector Machine 

SVM is an algorithm that aims at identifying a hyper-plane separating data points distinctively46. We trained the 

agnostic and mechanistic SVM models using polynomial kernel and used a repeated 10-fold cross-validation (CV) 

of the training data to identify the best parameter (degree, scale, and cost) values for each model. The final models 

were trained on the entire training data using the best parameters resulting from the repeated CV process. 

Random Forest 

RF is an ensemble ML algorithm that consists of a large number of decision trees47. Each tree in the forest votes 

for a specific class and the final predicted class is the one with the majority of votes. To determine the best 

number of variables randomly selected by the algorithm at each split (mtry), each model was tuned by the 

tuneRF function using the following parameters: mtryStart = 1, ntreeTry = 500, stepFactor = 1, and improve = 

0.05. To deal with class imbalance, the final model was instructed to draw an equal number of samples from both 

classes for each tree. This number was set to be equal to the number of samples in the minority class of each of 

the training data re-samples (in the bootstrap approach) or the training data as a whole (in the cross-study 

validation approach). 
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Extreme gradient boosting 

Similar to RF, XGB is another ensemble ML algorithm but unlike RF in which each tree is built on a random 

subset of predictors, XGB sub-models (sub-trees) sequentially add weight or more focus on instances with high 

error rates48. We divided the training data itself into 70% "actual training" and 30% "internal validation". We set 

the number of iterations to 500 with an early stopping threshold of 50 meaning that the training process will stop if 

the AUC in the internal validation set did not improve over 50 iterations. This step is necessary to minimize 

overfitting. 

Software and packages 

All steps of this analysis were performed using R programming language49. The integrative correlation analysis 

was performed using the MergeMaid package50. The K-TSPs models were constructed using SwitchBox 

package51. The SVM models were constructed using both the Caret52 and the Kernlab53 packages. The RF models 

were constructed using the RandomForest package54 and the XGB models using xgboost package48. 

Availability of data and materials 

All datasets used in this study are publicly available from the Gene Expression Omnibus (GEO) and ArrayExpress 

under the corresponding accession number. The code for this analysis can be accessed at the following GitHub 

repository: https://github.com/marchionniLab/BiologicalConstraints  
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