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19 
Over the past two decades, several broadly neutralizing antibodies (bnAbs) that confer 20 
protection against diverse influenza strains have been isolated1,2.  Structural and 21 
biochemical characterization of these bnAbs has provided molecular insight into how they 22 
bind distinct antigens1. However, our understanding of the evolutionary pathways leading 23 
to bnAbs, and thus how best to elicit them, remains limited. Here, we measure equilibrium 24 
dissociation constants of combinatorially complete mutational libraries for two naturally 25 
isolated influenza bnAbs3-5 (CR-9114, 16 mutations; CR-6261, 11 mutations), 26 
reconstructing all possible intermediates back to the unmutated germline sequences. We 27 
find that these two libraries exhibit strikingly different patterns of breadth: while many 28 
variants of CR-6261 display moderate affinity to diverse antigens, those of CR-9114 display 29 
appreciable affinity only in specific, nested combinations. By examining the extensive 30 
pairwise and higher-order epistasis between mutations, we find key sites with strong 31 
synergistic interactions that are highly similar across antigens for CR-6261 and different 32 
for CR-9114. Together, these features of the binding affinity landscapes strongly favor 33 
sequential acquisition of affinity to diverse antigens for CR-9114, while the acquisition of 34 
breadth to more similar antigens for CR-6261 is less constrained. These results, if 35 
generalizable to other bnAbs, may explain the molecular basis for the widespread 36 
observation that sequential exposure favors greater breadth6-8, and such mechanistic 37 
insight will be essential for predicting and eliciting broadly protective immune responses. 38 

39 
Vaccination harnesses the adaptive immune system, which responds to new pathogens by 40 
mutating antibody-encoding genes and selecting for variants that bind the pathogen of interest. 41 
However, influenza remains a challenging target for immunization: most antibodies elicited by 42 
vaccines provide protection against only a subset of strains, largely due to the rapid evolution of 43 
the influenza surface protein hemagglutinin (HA)9,10. After nearly two decades of studies, only a 44 
handful of broadly neutralizing antibodies (bnAbs) have been isolated from humans, with varying 45 
degrees of cross-protection against diverse strains1,3,4,11. Still, we do not fully understand many 46 
factors affecting how and when bnAbs are produced. In particular, affinity is acquired through a 47 
complex process of mutation and selection12, but the effects of mutations on binding affinity to 48 
diverse antigens are not well characterized. 49 
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For example, consider two well-studied influenza bnAbs that display varying levels of breadth: 51 
CR-9114 is one of the broadest anti-influenza antibodies ever found, neutralizing strains from 52 
both groups of influenza A and strains from influenza B, while CR-6261 is limited to neutralizing 53 
strains from Group 1 of influenza A3-5,13. Both antibodies were isolated from vaccinated donors, 54 
derive from very similar germline sequences (IGHV1–69 and IGHJ6), and bind the conserved HA 55 
stem epitope (ED Fig. 1)3-5. Each antibody heavy chain has many mutations (18 amino acid 56 
changes for CR-9114, 14 for CR-6261, Fig. 1a), including seven positions that are mutated in 57 
both, yet the contributions of these mutations to affinity against different antigens remain unclear4. 58 

59 
Beyond single mutational effects, it remains unknown whether there are correlated effects or 60 
strong trade-offs between binding to different antigens (pleiotropy), or non-additive interactions 61 
between mutations (epistasis). Such epistatic and pleiotropic effects can constrain the mutational 62 
pathways accessible under selection, as has been observed for other proteins14-22. Epistasis in 63 
antibody-antigen interactions remains significantly understudied23-25, and most deep mutational 64 
scanning studies have focused on antigens26-28. In contrast to typical protein evolution, antibody 65 
affinity maturation proceeds by discrete rounds of mutation and selection12, typically with more 66 
than one nucleotide mutation occurring between selective rounds29. In addition, antibodies are 67 
inherently mutationally tolerant25,30,31, and bnAbs tend to have many more mutations than specific 68 
antibodies2,32, generating opportunities for interactions that scale combinatorially. Thus, if epistatic 69 
and pleiotropic constraints exist for antibodies, they could affect the likelihood of producing bnAbs 70 
under different antigen selection regimes24 and may account for the low frequencies of bnAbs in 71 
natural repertoires1. Characterizing the prevalence of these constraints on bnAb evolution will 72 
provide valuable insight for designing optimal vaccination strategies33,34. 73 

74 
To date, studies of antibody binding have been limited to small numbers of individual sequences, 75 
deep mutational scans of single mutations, and mutagenesis of small regions 24,25,31,35-40, due in 76 
part to practical constraints on library scale and the throughput of affinity assays. This has limited 77 
our ability to comprehensively characterize binding landscapes for naturally isolated bnAbs, which 78 
often involve many mutations spanning framework (FW) and complementarity-determining 79 
regions (CDR)1,2,32. Here, we overcome these challenges by generating combinatorially complete 80 
libraries of up to ~105 antibody sequences and assaying their binding affinities in a high-81 
throughput yeast-display system35. Specifically, we made all combinations of 16 mutations from 82 
CR-9114 (65,536 variants) and all combinations of 11 mutations from CR-6261 (2,048 variants). 83 
These libraries include all heavy-chain mutations in these antibodies, except select mutations 84 
distant from the paratope (Fig. 1a, and see SI). Both antibodies engage antigens solely through 85 
their heavy-chain regions4,5, and thus are well-suited for yeast display as single-chain variable 86 
fragments (see SI)41. 87 

88 
We use the Tite-Seq method35, which integrates flow cytometry and sequencing (ED Fig. 2b), to 89 
assay equilibrium binding affinities of each sequence in these libraries against select antigens 90 
that span the breadth of binding for each antibody (Fig 1b). For CR-6261, we chose two divergent 91 
group 1 HA subtypes (H1 and H9), while for CR-9114, we chose the three highly divergent 92 
subtypes present in the vaccine (H1 from group 1, H3 from group 2, and influenza B)3. Inferred 93 
affinities outside our titration boundaries (10-11 – 10-6 M for H3 and influenza B, 10-12 – 10-7 M for 94 
H1 and H9) are pinned to the boundary, as deviations beyond these boundaries are likely not 95 
physiologically relevant42. Antibody expression is not strongly impacted by sequence identity, 96 
although some mutations have modest effects that may be inversely correlated with their effect 97 
on affinity (ED Fig. 3). Affinities obtained by Tite-Seq are reproducible across biological triplicates 98 
(ED Fig. 2c,e; average standard error of 0.047 –logKD units across antibody-antigen pairs) and 99 
are highly accurate as verified for select variants by isogenic flow cytometry (ED Fig. 2d,f) and by 100 
solution-based affinity measurements made by others3,4,13,24. 101 
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We begin by examining the distribution of binding affinities across antigens for each antibody 102 
library (Fig. 1). We observe that most CR-9114 variants have measurable affinity to H1 (97%), 103 
fewer to H3 (11%), and still fewer to influenza B (0.3%) (Fig. 1c,d). For H1, only a few mutations 104 
are needed to improve from the germline affinity. In contrast, variants are not able to bind H3 105 
unless they have several more mutations, and many more for influenza B. This hierarchical 106 
structure is in striking contrast to the CR-6261 library, in which most variants can bind both 107 
antigens (92% for H1, 81% for H9), variants have a similar KD distribution, and many variants 108 
display intermediate affinity to both antigens (Fig. 1e,f). To visualize how genotypes give rise to 109 
the hierarchical structure of CR-9114 binding affinities, we represent the binding affinities for H1 110 
as a force-directed graph. Here, each variant is a node connected to its 16 single-mutation 111 
neighbors, with edge weights inversely proportional to the change in H1 binding affinity, such that 112 
variants with similar genotype and KD tend to form clusters (Fig. 1g, ED Fig. 4). Coloring this 113 
genotype-to-phenotype map by the –logKD to each of the three antigens, we see that sequences 114 
that bind H3 and influenza B are highly localized and overlapping, meaning that they share 115 
specific mutations. Thus, while many CR-9114 variants strongly bind H1, only a specific subset 116 
bind multiple antigens. 117 

118 
To dissect how mutations drive the structure of these binding landscapes, we next infer specific 119 
mutational effects. We first log-transform binding affinities to produce free energy changes, which 120 
should combine additively under the natural null expectation43,44. We then define a linear model 121 
with single mutational effects and interaction terms up to a specified order (defined relative to the 122 
unmutated germline sequence, see SI for alternatives), and fit coefficients by ordinary least 123 
squares regression (see SI for models with nonlinear transformations). We use cross-validation 124 
to identify the maximal order of interaction for each antigen and report coefficients at each order 125 
from these best-fitting models (CR-9114: 5th order for H1, 4th for H3, 1st for influenza B; CR-6261: 126 
4th order for H1 and H9; see SI).  We note that the maximum order of interactions is affected by 127 
our inference power, particularly by the number of sequences with appreciable binding, and so 128 
we interpret these models as showing strong evidence of epistasis at least up to the order 129 
indicated. We also explored inferring epistasis up to full order using Walsh-Hadamard 130 
transformations; results are qualitatively similar but less conservative than cross-validated 131 
regression (see SI). 132 

133 
Examining the effect of individual mutations on the germline background (Fig. 2a,b), we observe 134 
several mutations that enhance binding to all antigens (e.g. S83F for CR-9114), and mutations 135 
that confer trade-offs for binding distinct antigens (e.g. F30S in CR-9114 reduces affinity for H1 136 
but enhances affinity for influenza B). Generally, large-effect mutations are at sites that contact 137 
HA4,5 (Fig. 2c, ED Fig. 5). Consistent with prior biochemical and structural work, mutations 138 
essential for CR-9114 breadth are spread throughout FW3 and the CDRs, forming hydrophobic 139 
contacts and hydrogen bonds with residues in the conserved HA stem epitope4. We observe three 140 
specific mutations that are required for binding to H3 (present at over 90% frequency in the set of 141 
binding sequences), and eight specific mutations that are required for binding to influenza B. Many 142 
of these breadth-conferring mutations are absent in CR-6261, particularly those in CDR24,5. 143 
Notably, these sets of required mutations in CR-9114 exhibit a nested structure: mutations 144 
beneficial for H1 are required for H3, and mutations required for H3 are required for influenza B, 145 
giving rise to the hierarchical structure of the binding landscape (Fig. 1c). 146 

147 
Beyond these exceptionally synergistic interactions between required mutations, we find that 148 
epistasis is widespread, accounting for 18–33 percent of explained variance depending on the 149 
antibody-antigen pair (except influenza B, see SI). Pairwise interactions are dominated by a few 150 
mutations (e.g. F30S for CR-9114 and S35R for CR-6261) that exhibit many interactions, both 151 
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positive and negative, with other mutations (Fig. 2d,e). Overall, mutations with strong pairwise 152 
interactions tend to be close in the crystal structure (Fig. 2f, ED Fig. 5)4,5. 153 
 154 
Our dataset also allows us to resolve higher-order epistasis. In addition to the required mutations, 155 
our models identify numerous strong third to fifth order interactions, with a subset of mutations 156 
participating in many mutual interactions at all orders. For CR-9114 binding to H1, this subset 157 
consists of five mutations, distributed across three different regions of the heavy chain (Fig. 3a,b). 158 
Some of these mutations likely generate (K82I, S83F) or abrogate (F30S) contacts to HA, and 159 
others (I57S, A65T) may indirectly impact HA binding by reorienting contact residues in CDR24. 160 
Within this set of five residues, we first illustrate two examples of third-order epistasis by grouping 161 
all sequences by their genotypes only at these five sites (Fig. 3c). Intriguingly, some mutations 162 
that are deleterious in the germline background (‘–’ annotations) are beneficial in doubly-mutated 163 
backgrounds (‘+’ annotations). For example, mutation F30S is significantly less deleterious in 164 
backgrounds with S83F than in the germline background, suggesting that new hydrophobic 165 
contacts in FW3 may be able to compensate for the potential loss of contacts in CDR1. Yet F30S 166 
unexpectedly becomes beneficial after an additional mutation I57S in CDR2, indicating more 167 
complex interactions between flexible CDR and FW loop regions (Fig. 3b,c)4.  168 
 169 
To see how these high-order interactions drive the overall structure of the binding affinity 170 
landscape, we return to the force-directed graph, now colored by genotype at these five key sites 171 
(Fig. 3d; only points corresponding to genotypes shown in Fig. 3c are colored). We see that these 172 
five sites largely determine the overall structure of the map: points of the same color tend to cluster 173 
together, despite varying in their genotypes at the other 11 sites. However, we observe that 174 
interactions with other mutations do exist, as evidenced by separate clusters with the same color 175 
(e.g. the two clusters in teal for 57,65 are distinguished by a positive third-order interaction with 176 
site 64, Fig. 3e). These patterns are not confined to the genotypes shown in Fig. 3c; if we color 177 
all 32 possible genotypes at the five key sites, we observe the same general patterns (ED Fig. 6; 178 
an interactive data browser for exploring these patterns of epistasis is available here). Interactions 179 
between these five sites are also enriched for significant epistatic coefficients (p < 10-3; 26 of 31 180 
possible terms are significant, compared to an average of 4 terms among all sets of five sites, ED 181 
Fig. 6), including the 5th order interaction between all five residues (Fig. 3f). Remarkably, these 182 
five mutations underlie significant high-order epistasis for other antigens as well: all five are either 183 
required for binding or participate extensively in interactions for H3 and influenza B (ED Fig. 6f).  184 
 185 
Higher-order epistasis in CR-6261 is similarly dominated by a subset of mutations in CDR1 and 186 
FW3, at identical or neighboring positions as some key sites for CR-9114 (Fig. 3g). These 187 
mutations exhibit strong diminishing returns epistasis at third and fourth order, counteracting their 188 
synergistic pairwise effects, in a similar manner across both antigens (Fig. 3h, ED Fig. 7). Many 189 
fourth-order combinations of these mutations display interaction coefficients of similar magnitude 190 
(ED Fig. 7b), though they may be signatures of even higher-order interactions that we are 191 
underpowered to infer. 192 
 193 
A common approach to quantify how epistasis constrains mutational trajectories is to count the 194 
number of “uphill” paths (i.e. where affinity improves at every mutational step from the germline 195 
to the somatic sequence). We find that only a small fraction of potential paths are uphill (0.00005% 196 
+/- 0.00004% for CR-9114 binding H1, and 0.2% +/- 0.04% for CR-6261 binding H1, as estimated 197 
by bootstrap, see SI). However, we note that for all antibody-antigen combinations, the somatic 198 
sequence is not the global maximum of the landscape (the best-binding sequence) and some 199 
mutations have deleterious effects on average. Hence, strictly uphill paths are only possible due 200 
to sign epistasis, where normally deleterious mutations have beneficial effects in specific genetic 201 
backgrounds.  202 
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Overall, we see that mutational effects and interactions between them explain the affinity 203 
landscapes we observe. For CR-9114, binding affinity to H1 can be achieved through different 204 
sets of few mutations with complex interactions. In contrast, a specific set of many mutations with 205 
strong synergistic interactions is required to bind H3, and to an even greater extent, influenza B, 206 
giving rise to the landscape’s hierarchical structure (Fig. 1c). For CR-6261, the higher-order 207 
interactions are more similar between H1 and H9, which is consistent with the more correlated 208 
patterns of binding affinities between these two antigens (Fig. 1e). 209 
 210 
The hierarchical nature of the CR-9114 landscape suggests that this lineage developed affinity to 211 
each antigen sequentially. Considering the maximum –logKD achieved by sequences with a given 212 
number of mutations (a proxy for time), we see that improvements in H1 binding can be realized 213 
early on, whereas improvements in H3 binding are not possible until later, and even later for 214 
influenza B (Fig. 4a). In fact, the nested structure of affinity-enhancing mutations forces 215 
improvements in binding affinity to occur sequentially. If selection pressures were also 216 
experienced in this sequence, mutations that improve binding to the current antigen would lead 217 
to the genotypes required to begin improving binding to the next. Indeed, we find that for CR-218 
9114, there are more uphill paths leading to the somatic sequence if selection acts first on binding 219 
to H1 and later to H3 and influenza B (Fig. 4c). In contrast, for CR-6261, improvements in binding 220 
can occur early on for both antigens (Fig. 4b) and the number of uphill paths is more similar across 221 
single-antigen and sequential selection pressures (Fig. 4d).   222 
 223 
To compare antigen selection scenarios more generally, we developed a framework that 224 
evaluates the total probability of all possible mutational pathways from germline to somatic, under 225 
an array of antigen selection scenarios (individual, sequential, and mixed). Our framework 226 
assumes that the probability of any mutational step is higher if –logKD increases, but does not 227 
necessarily forbid neutral or deleterious steps; we evaluate a variety of specific forms of this step 228 
probability and find that our major results are consistent (ED Fig. 8a, see SI). Mixed antigen 229 
regimes approximate exposure to a cocktail of antigens. We model these with two approaches: 230 
(1) “average”, using the average –logKD across all antigens, and (2) “random,” using –logKD for a 231 
randomly selected antigen at each step (note that using the maximum –logKD across antigens 232 
would always be trivially favored)6. While these models simplify the complexities of affinity 233 
maturation in vivo12, especially in how affinity relates to B cell lineage dynamics, they provide 234 
insight into the relative probabilities of mutational paths under distinct antigen selection scenarios. 235 
 236 
Again we find that the vast majority of likely antigen selection scenarios for CR-9114 involve first 237 
H1, followed by H3, followed by influenza B (Fig. 4e, ED Fig. 8b). These results are underscored 238 
by examining improvement in –logKD along the most likely mutational paths for each scenario 239 
(Fig. 4g): in the optimal sequential scenario, –logKD can improve substantially for each antigen in 240 
turn, while in an H1-only scenario, the improvements in H1 binding at each step are much more 241 
gradual, reducing the likelihood. The average mixed scenario shows qualitatively similar paths to 242 
the optimal sequential scenario, although with lower overall probability. In the random mixed 243 
scenario, even the best pathways are often unable to improve affinity to the randomly selected 244 
antigen, and affinity to antigens not under selection often declines, making these scenarios much 245 
less likely.  246 
 247 
Given the optimal sequential selection scenario, the vast majority of genotypes are unlikely 248 
evolutionary intermediates to the somatic sequence (ED Fig. 8d). We visualize the impact of 249 
epistasis on mutational order by considering the probability of each mutation to occur at each 250 
mutational step (Fig. 4i; ED Fig. 8e,f). The three antigen exposure epochs exhibit clear differences 251 
in favored mutations. Mutations I57S, K82I, and S83F must occur early, due to their strong 252 
synergistic interactions for all three antigens. In addition, we see that F30S is unlikely to happen 253 
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very early (due to its sign epistasis under H1 selection) as well as unlikely to happen very late 254 
(due to its strong benefit under influenza B selection).  255 
 256 
In contrast, for CR-6261, all selection scenarios have relatively similar likelihood (Fig. 4f, ED Fig. 257 
8c). Among sequential scenarios, however, those beginning with H1 are more likely than those 258 
beginning with H9, as the first two mutational steps can improve affinity to H1 more than H9, and 259 
mutations late in maturation can improve affinity to H9 more than H1 (Figs. 1f, 4b). Still, unlike 260 
CR-9114, in both single antigen and mixed scenarios, there are many likely paths that continually 261 
improve in binding to both antigens (Fig. 4h).  Initially the order of mutations is highly constrained 262 
due to strong synergistic epistasis, and differences between selection scenarios reflect 263 
differences in mutational effects between antigens (Fig. 4h, ED Fig. 8g,h). 264 
 265 
Overall, we find that evolutionary pathways to bnAbs can be highly contingent on epistatic and 266 
pleiotropic effects of mutations. Specifically, the acquisition of breadth for CR-9114 is extremely 267 
constrained and is likely to have occurred through exposure to diverse antigens in a specific order, 268 
due to the structure of correlations and interactions between mutational effects. In contrast, CR-269 
6261 could have acquired affinity to H1 and H9 in a continuous and simultaneous manner, 270 
perhaps because these antigens are more similar; since H9 is not a commonly circulating strain, 271 
this breadth may well have been acquired by chance24. Though we cannot conclusively determine 272 
which antigens were involved in the selection of these antibodies in vivo, the diverse HA subtypes 273 
discussed here capture variation representative of circulating influenza strains and thus serve as 274 
useful probes of varying levels of breadth1. Further, we note that the likelihood of pathways is 275 
conditioned on ending at the exact somatic sequence. Indeed, we observe that not all of the 276 
observed mutations are required to confer broad affinity, and future work is needed to explore 277 
what alternative pathways to breadth might be accessible through other mutations.  278 
 279 
The landscapes characterized here are among the largest combinatorially complete collections 280 
of mutations published to date. In some respects, our observations of high-order interactions are 281 
consistent with earlier work in other proteins. In particular, epistasis has been found to affect 282 
function and constrain evolutionarily accessible pathways across functionally and structurally 283 
distinct proteins14-22. Further, pairwise and high-order epistasis appear to be common features of 284 
binding interfaces, such as enzyme-substrate and receptor-ligand interactions14-17,19,20, and 285 
interacting mutations are often spaced in both sequence and structure, underscoring the 286 
complexity of protein-protein interfaces17,23,25,45,46. On the other hand, the strongly synergistic, 287 
nested mutations crucial for CR-9114 breadth are unusual, perhaps due to the nature of antibody-288 
antigen interfaces or to the unique dynamics of affinity maturation12. Together, these observations 289 
suggest that interactions between multiple mutations, such as those we characterize here, could 290 
play a substantial role in affinity maturation and may contribute to the rarity of bnAbs in natural 291 
repertoires. 292 
 293 
Our findings provide molecular insight into the emerging picture of how selection can elicit broad 294 
affinity, illustrated by a substantial recent body of work ranging from in vivo experimental 295 
approaches7,8 to quantitative modeling of immune system dynamics6,47-50. These diverse studies 296 
often find that mixed-antigen regimens are less effective than sequential regimens at eliciting 297 
bnAbs. Our results demonstrate that, at least in part, this may be due to the intrinsic structure of 298 
the mutational landscape, defined by the complex interactions of mutational effects across 299 
antigens. With more studies of binding landscapes for diverse antibodies, we could better 300 
understand how such features generalize between different germline sequences, somatic 301 
mutation profiles, and antigen molecules. These insights will be essential for leveraging germline 302 
sequence data and antigen exposure information to predict, design, and elicit bnAbs for 303 
therapeutic and immunization applications.  304 
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Figure 1: Binding landscapes. a, Sequence alignment comparing somatic heavy chains to reconstructed 
germline sequences. Mutations under study (purple, numbered) and excluded mutations (black) are indicated. 
b, Influenza hemagglutinin phylogenetic tree with selected antigens and breadth of CR-9114 (black box) and 
CR-6261 (gray box) indicated. c, e, Scatterplots of the (c) CR-9114 library binding affinities against three 
antigens, with 2D planes shown below, and (e) CR-6261 library binding affinities against two antigens. d, f, 
Distributions of library binding affinities for (d) CR-9114 and (f) CR-6261 for each antigen (grey histogram, right) 
separated by number of somatic mutations (boxplots, left). Numbers and percentages of variants with 
measurable binding are indicated at right. g, Force-directed graph of CR-9114 H1 –logKD. Each variant (node) 
is connected to its 16 single-mutation neighbors (edges not shown for clarity); edges are weighted such that 
variants with similar genotypes and –logKD tend to cluster. Nodes are colored by binding affinity to H1 (top), H3 
(middle inset), and Flu B (bottom inset). See ED Fig. 4 for an equivalent graph for CR-6261 binding to H1 and 
H9. 
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Figure 2: Linear effects and pairwise epistasis. a, b First order effects inferred in best-fitting 
epistatic interaction models for (a) CR-9114 and (b) CR-6261. Mutations required for binding 
(present at over 90% frequency in binding sequences) have effect sizes denoted as “R” and 
are removed from inference. Error bars indicate standard error.   c, First order effects for 
each site plotted against the number of HA residues within 6 Å (left, CR-9114; right, CR-
6261). Top three sites are labeled. Cocrystal structures are also shown; mutations are 
colored by first-order effect size. See ED Fig. 5a for equivalent plot for CR-9114 with H3 and 
CR-6261 with H9. d, Significant second-order epistatic interaction coefficients for CR-9114 
mutations (bottom left, H3; top right, H1). Interactions involving required mutations are shown 
in dark red. e, Significant second order coefficients for CR-6261 mutations (bottom left, H9; 
top right, H1). f, Second-order coefficients for H1 –logKD plotted against the distance between 
the respective a-carbons in the crystal structures. See ED Fig. 5b for equivalent plot for CR-
9114 with H3 and CR-6261 with H9. Significance in d, e indicates Bonferroni-corrected p-
value < 0.05, see SI. 
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Figure 3: High-order epistasis. a, Total higher-order epistatic contributions of CR-9114 mutation pairs for 
binding H1. Color bar indicates the sum of absolute values of significant higher-order interaction coefficients 
involving each pair of mutations; key epistatic residues indicated by arrows. See ED Fig. 6f for equivalent figure 
with H3. b, Location of key epistatic residues in the CR-9114–HA co-crystal structure colored by region. c, –
logKD distributions for genotypes grouped by their identity at the five residues indicated in a, b, with means 
indicated as white dots (N=8,192 genotypes per violin). Annotations indicate notable deleterious (‘-’) and 
beneficial (‘+’) mutational effects. d, CR-9114 force-directed graph from Fig. 1g, colored as in c by the genotype 
at the five sites indicated in a, b. Genotypes not shown in c are shown in light grey. See ED Fig. 6a for graph 
colored by all 32 5-site genotypes. e, Third-order interaction involving site 64 accounts for distinct clusters (teal) 
corresponding to genotypes with mutations 57 and 65 in d. Colors correspond to mutation groups in c, d 
(N=4,096 genotypes per violin).  
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Figure 3, continued: f, Epistatic interaction coefficients among the five key sites from a, b. Colors for certain 
groups as in c, d; other groups denoted in gray, with notable terms labeled. g, Total significant epistatic 
contributions of CR-6261 mutation pairs for binding H1, as in a. h, Third-order interaction for CR-6261 H1 
binding between mutations T29P, S35R, and S83F (N=256 genotypes per violin). Significance in a, g indicates 
Bonferroni-corrected p-value < 0.05, see SI. 
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Figure 4: Antigen selection scenarios and likely mutational pathways. a, b, Maximum binding affinity 
achievable for sequences with a given number of mutations. For each antigen for (a) CR-9114 and (b) CR-
6261, the maximum observed (circles) and model-predicted (triangles) affinity for each number of somatic 
mutations is shown. c, d, Total number of ‘uphill’ paths for select antigen selection scenarios (colored bars) 
for (c) CR-9114 and (d) CR-6261. Error bars indicate standard error obtained through bootstrap. e, f, Total 
log probability (in arbitrary units) of mutational trajectories from germline to somatic sequence under different 
antigen selection scenarios, in a moderate selection model (see ED Fig 8a,b for other models). Error bars 
indicate standard error obtained through bootstrap. g, h, 25 most likely paths for (g) CR-9114 and (h) CR-
6261, from select scenarios in e, f; –logKD plotted for each antigen. For the random mixed scenario (‘R’), a 
representative case is shown. i, j, Probability of mutation order under antigen selection scenario ‘O’ for CR-
9114 (i) and ‘H1’ for CR-6261 (j). Selection scenarios are as in e, f and shown in colored bar at top; the total 
probability (through all possible paths) for each mutation to occur at each mutational step is shown as stacked 
colored bars. See ED Fig. 8 for additional selection scenarios.  
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ED Figure 1: Co-crystal structures. a, Alignment of co-crystal structure of CR-
9114 with H5 (light hues; PDB ID 4FQI4) and CR-9114 with H3 (dark hues; PDB 
ID 4FQY4). Mutated residues shown as gray spheres. b, Co-crystal structure of 
CR-6261 with H1 (PDB ID 3GBN5); mutated residues shown as gray spheres. 
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 ED Figure 2: Data quality. a, Experimental design. b, Tite-Seq assay. Surface display 

single-chain variable fragment (scFv) libraries are transformed into yeast and labeled with 
fluorescent antigen, followed by FACS into bins and sequencing. Dissociation constants are 
inferred from changes in mean bin fluorescence across 12 antigen concentrations, see 
SI. c, e, Correlation of (c) CR-9114 and (e) CR-6261 KD measurements between biological 
replicates. d, f, Validation of (d) CR-9114 and (f) CR-6261 Tite-Seq KD measurements by 
isogenic flow cytometry measurements for a subset of variants and antigens.  
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ED Figure 3: Expression of antibody libraries. a, Expression gates were drawn such that each of 8 bins 
included 12.5% of the antibody library. Expression is calculated as mean log fluorescence of each sequence 
across bins (see SI). b, Correlation of expression across biological replicates for CR-9114 library (left, red) 
and CR-6261 library (right, blue). c, Correlation between Tite-Seq mean expression and isogenic 
expression fluorescence for select CR-9114 (left, red) and CR-6261 (right, blue) variants. d, Change in 
expression upon mutation for a given number of background somatic mutations. e, Correlation 
between mean expression and –logKD. Average values across biological replicates (N–logKD = 3; Nexp ≥ 6) 
are plotted. f, Change in expression upon mutation at a specific site. Violin plots (left) and residues in co-
crystal structure (right) are colored by mean change in expression for each site. Asterisks above violins 
indicate p-values for two-sided t-test between the distribution means and zero (p < 0.01 (*), < 0.001 (**), < 
0.0001 (***)). g, Correlation between mean change in expression and mean change in –logKD (summed 
across all antigens) by mutation position. Select mutations with large impacts on expression and –logKD are 
labeled; all points are colored by mean change in expression, as in f.  Dark gray line indicates best-fit linear 
regression (95% confidence intervals in light gray).  
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ED Figure 4: Force-directed graphs. a, b, Force-directed graph for CR-6261 H1 –
logKD, as in Fig. 1g. Nodes are colored by binding affinity to (a) H1 and (b) H9. 
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ED Figure 5: Structural context of first and second order 
effects. a, Left: first order effects for each site, colored by effect 
size and plotted against the number of antigen residues within 6 
Å (top, CR-9114 with H3; bottom, CR-6261 with H9); Right: 
cocrystal structures with mutation sites colored by first order 
effects, as in Fig. 2c. b, Second-order coefficients for CR-9114 
(top) and CR-6261 (bottom) plotted against the distance between 
the respective a-carbons in the crystal structures, as in Fig. 2f.  
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ED Figure 6: High-order interactions for CR-9114. a, CR-9114 force-directed graph, as in Fig. 3d, colored 
by mutation groups of sites 30, 57, 65, 82, and 83 (32 total groups). The dashed line emphasizes the 
observed separation of genotypes with S83 (upper left) from those with S83F (lower right). b, Coefficients 
for terms in the epistatic interaction model corresponding to mutation groups of sites 30, 57, 65, 82, and 
83 (31 total groups, excluding the germline), colored according to a and grouped by order. Error 
bars indicate standard error.  
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ED Figure 6, continued: c, Distribution of the number of significant coefficients for mutation groups in 
every possible set of 5 sites chosen from the 16 sites (up to 31 terms for each group, for 4,368 groups). 
The group illustrated in a, b is shown in red (26 significant terms, empirical p-value < 10-3). d, CR-
9114 force-directed graph, colored by mutation groups of a different set of 5 sites with fewer strong 
epistatic interactions (35, 36, 64, 66, and 85). e, CR-9114 force-directed graph, colored by mutation 
groups of a different set of 5 sites with no strong linear contributions or epistatic interactions (79, 84, 92, 
95, and 103). f, Higher-order significant epistatic contributions of CR-9114 mutation pairs, as in Fig. 3b, 
for binding H3. Light yellow columns indicate required mutations (sites 57, 82, and 83). Significance 
in c, f indicates Bonferroni-corrected p-value < 0.05, see SI.  
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ED Figure 7: High-order interactions for CR-6261. a, CR-6261 force-directed graph, as in ED Fig. 4, colored 
by mutation groups of sites 29, 35, 82, and 83 (16 total groups). b, Top, coefficients for terms in the epistatic 
interaction model corresponding to the mutation groups illustrated in a (15 total groups, excluding the 
germline), colored according to a and grouped by order. Bottom, the largest fourth-order coefficients observed 
in the epistatic interaction model, with sites indicated. In both, error bars indicate standard error. c, CR-
6261 force-directed graph, colored by a different set of 4 sites with the fewest strong linear effects and 
epistatic interactions (65, 66, 69, and 112.1). d, Higher-order significant epistatic contributions of CR-6261 
mutation pairs, as in Fig. 3g, for binding H9. e, Scatterplot of significant epistatic interaction model coefficients 
for binding to H1 and H9. Terms at different orders are colored and sized as indicated. Selected coefficients 
are annotated. Significance in d, e indicates Bonferroni-corrected p-value < 0.05, see SI.  
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ED Figure 8: Likelihood of antigen selection scenarios and corresponding mutational 
pathways. a, Functional form of mutation step probability, illustrated for parameters chosen to 
represent strong, moderate, and weak selection models. b, c, Total log probability of the mutational 
trajectories between germline and somatic sequences for (b) CR-9114 and (c) CR-6261 under 
different antigen selection scenarios, assuming strong (left) or weak (right) selection, as shown for 
moderate selection in Fig. 4e,f. Strong selection scenarios are shown on a linear scale, as total 
probability is equal to the number of uphill paths. The “average” mixed scenario is not evaluated for 
strong selection, as the quantitative effect of averaging is undone by the binarizing effect of 
the transition probability. 
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ED Figure 8, continued: d, Total log probability of each variant in the optimal sequential selection 
scenario. Top, histogram of the total probability of all pathways passing through each variant in the 
optimal selection scenario, divided by the total probability in a model with no selection, transformed 
to log10 scale. Dotted line indicates the 11% of variants favored in the selective model (log probability 
ratio greater than zero). Bottom, these favored variants are shown on the force-directed graph for 
CR-9114 H1 –logKd, as in Fig. 1g, with darker color according to the log probability ratio. Other 
variants with log probability ratio less than zero are shown in light yellow. e–h, Probability of mutation 
order assuming moderate selection, under antigen selection scenarios ‘H1’ (e) and ‘R’ (f) for CR-
9114 and ‘O’ (g) and ‘R’ (h) for CR-6261, as in Fig. 4i,j.  
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