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Abstract 
 
Angiotensin-converting enzyme 2 (ACE2) is the cell receptor that the coronavirus SARS-CoV-2 
binds to and uses to enter and infect human cells. COVID-19, the pandemic disease caused by 
the coronavirus, involves diverse pathologies beyond those of a respiratory disease, including 
micro-thrombosis (micro-clotting), cytokine storms, and inflammatory responses affecting many 
organ systems. Longer-term chronic illness can persist for many months, often well after the 
pathogen is no longer detected. A better understanding of the proteins that ACE2 interacts with 
can reveal information relevant to these disease manifestations and possible avenues for 
treatment. We have undertaken an approach to predict candidate ACE2 interacting proteins which 
uses evolutionary inference to identify a set of mammalian proteins that “coevolve” with ACE2. 
The approach, called evolutionary rate correlation (ERC), detects proteins that show highly 
correlated evolutionary rates during mammalian evolution. Such proteins are candidates for 
biological interactions with the ACE2 receptor. The approach has uncovered a number of key 
ACE2 protein interactions of potential relevance to COVID-19 pathologies. Some proteins have 
previously been reported to be associated with severe COVID-19, but are not currently known to 
interact directly with ACE2, while additional predicted novel ACE2 interactors are of potential 
relevance to the disease. Using reciprocal rankings of protein ERCs, we have identified strongly 
interconnected ACE2 associated protein networks relevant to COVID-19 pathologies. ACE2 has 
clear connections to coagulation pathway proteins, such as Coagulation Factor V and fibrinogen 
components FGG, FGB, and FGA, the latter possibly mediated through ACE2 connections to 
Clusterin (which clears misfolded extracellular proteins) and GPR141 (whose functions are 
relatively unknown). ACE2 also connects to proteins involved in cytokine signaling and immune 
response (e.g. IFNAR2, XCR1, and TLR8), and to Androgen Receptor (AR). The ERC 
prescreening approach has also elucidated possible functions for previously uncharacterized 
proteins and possible new functions for well-characterized ones. Suggestions are made for the 
validation of ERC predicted ACE2 protein interactions. We propose that ACE2 has novel protein 
interactions that are disrupted during SARS-CoV-2 infection, contributing to the spectrum of 
COVID-19 pathologies. 
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Introduction 
The coronavirus SARS-CoV-2 is causing severe pathologies and death among infected 
individuals across the planet. In addition to the symptoms expected from a respiratory disease, 
the infection can develop systemic manifestations (Gupta et al., 2020; Terpos et al., 2020; Siddiqi, 
Libby & Ridker, 2021). As a consequence, a wide range of pathologies are associated with 
COVID-19, including vascular system disruption, the extensive formation of blood clots 
(thrombosis) resulting in microvascular injury and stroke (Magro et al., 2020; Connors & Levy, 
2020), gastrointestinal complications (Luo, Zhang & Xu, 2020) cardiac and kidney pathologies, 
ocular and dermatological symptoms (Bouaziz et al., 2020), neurological manifestations (Niazkar 
et al., 2020; Taquet et al., 2021), male infertility (Khalili et al., 2020), and a Kawasaki-like blood 
and heart disorder in children (Jones et al., 2020; Morand, Urbina & Fabre, 2020). A severe and 
often lethal immunoreaction can occur from respiratory and other infection sites, termed a 
“cytokine storm” (Chen et al., 2020). Even after acute SARS-CoV-2 infection has passed, 
individuals can suffer a suite of complications for many months, termed “Long Haul” syndrome 
(López-León et al., 2021), and the causes of these syndromes are not well understood. 

Angiotensin-converting enzyme 2 (ACE2) is of obvious interest because it is a primary receptor 
for SARS-CoV-2 entry into human cells (Lan et al., 2020). However, ACE2 also plays a role in 
other important processes, such as regulation of blood pressure and vasodilation by the renin-
angiotensin system (RAS), and protein digestion in the gut (Kuba et al., 2010). SARS-CoV-2 
binding to ACE2 leads to a downregulation in ACE2 function (Verdecchia et al., 2020) which may 
be linked to the systemic damage by COVID-19 (Medina-Enríquez et al., 2020). It has been 
proposed that ACE2 receptor degradation during SARS-CoV-2 infection disrupts ACE2 protection 
from inflammatory processes through the RAS and bradykinin pathways, possibly explaining 
patterns of COVID-19 severity with age and sex (Bastolla, 2020; Bastolla et al., 2021). As well as 
being a cell receptor, a circulating soluble form of the ectodomain of ACE2 (sACE2) is shed from 
cells and found in blood plasma, but the biological function of circulating ACE2 remains relatively 
unknown. Elevated levels of sACE2 have been detected in critically ill COVID-19 patients (van 
Lier et al., 2021) which coincides with a reduced expression of membrane-bound ACE2 (Medina-
Enríquez et al., 2020), and a recent study indicates that sACE2 may assist SARS-CoV-2 entry 
into cells via other receptors (Yeung et al., 2021).  

In general, ACE2’s protein-protein interaction network is likely to contribute to COVID-19 
pathologies, due to ACE2’s role in systemic processes that are disrupted by the infection. 
Therefore, a fuller knowledge of ACE2 protein interactions is important to a better understanding 
of COVID-19 pathologies, including those that go beyond respiratory illness.  

Common methods to identify protein-protein interactions include protein co-localization and 
precipitation, genetic manipulation, and proteomic profiling (Rao et al., 2014). Evolutionary 
approaches have also been used to evaluate protein interactions (De Juan, Pazos & Valencia, 
2013), particularly to identify functional domains within proteins by sequence conservation. 
Another set of methods utilize evolutionary rate correlations (also called evolutionary rate 
covariance or evolutionary rate coevolution). The concept is that coevolving proteins will show 
correlated rates of change across evolution (Wolfe & Clark, 2015). The approach has been used 
to detect physical interactions within and among proteins, as well as shared functionality (Clark, 
Alani & Aquadro, 2012). For example, it has been employed to identify gene networks for post-
mating response (Findlay et al., 2014), ubiquitination (Böhm et al., 2016), and recombination 
(Godin et al., 2015), and more recently to identify DNA repair genes (Brunette et al., 2019), 
cadherin-associated proteins (Raza et al., 2019), and a mitochondrial associated zinc transporter 
(Kowalczyk et al., 2021), with subsequent experimental support. Evolutionary rate correlation 
(ERC) approaches are relatively inexpensive screening tools for detecting candidate protein 
interactions, and can also detect novel protein interactions that are not readily found in more 
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traditional proteomic and genetic approaches (Colgren & Nichols, 2019; Yan, Ye & Werren, 2019). 
As such, “the ERC method should be a part of the toolkit of any experimental cell or developmental 
biologist” (Colgren & Nichols, 2019). 

We have developed an evolutionary rate correlation (ERC) method that uses well-established 
phylogenies based on multiple lines of evidence (e.g. Misof et al. 2014 for insects and Kumar et 
al. 2017 for mammals) and calculates protein evolutionary rates for terminal branches for different 
proteins across a set of related species (Fig. 1). The approach is predicated on the idea that 
proteins that have strong evolutionary rate correlations are more likely to have functional 
interactions that are maintained by their coevolution, a conclusion supported by its predictive 
power in identifying known nuclear-mitochondrial encoded protein interactions in insects (Yan, Ye 
& Werren, 2019). The study also found that nuclear-encoded proteins and amino acids in contact 
with their mitochondrial-encoded components (e.g. oxidative phosphorylation proteins or 
mitochondrial ribosomal RNA) have significantly stronger ERCs than those not directly in contact. 
This result implicates physical interactions between proteins as one driver of evolutionary rate 
correlations, at least among nuclear-mitochondrial interactions.  

 

Figure 1. Evolutionary rate correlations. The Spearman rank correlations between two proteins are 
calculated based on rates of protein evolution on terminal branches of a phylogeny. The relative rates of 
two proteins (red and blue lines) are shown in the hypothetical phylogenetic trees. Correlated and 
uncorrelated protein rates are illustrated below using a larger number of terminal branches (data points) 
than presented in the phylogeny. 

We have developed a reciprocal rank approach to identify ACE2 associated networks and 
propose that these strongly coevolving proteins reveal ACE2 protein interactions that could be 
disrupted by COVID-19, thus contributing to its diverse pathologies. Particularly noteworthy are 
strong connections to coagulation pathway proteins, cytokine signaling, inflammation, immunity, 
and viral disease response. We recognize the importance of validation of these predicted ACE2 
protein interactions and therefore propose steps for investigating possible applications of these 
findings to COVID-19 disease and treatment. 
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Results 

A. Basic Approach 

The basic methods are outlined here to provide context for the results which follow (details are 
provided in Methods). To identify candidate protein interactions using evolutionary rate 
correlation, we utilized the consensus TimeTree phylogenetic reconstruction for mammalian 
species (Kumar et al., 2017). A total of 1,953 proteins (including ACE2) were aligned and 
evolutionary rates for each protein were then calculated for terminal branches of the tree (Fig. 1). 
This was determined by dividing the protein-specific branch length on each terminal branch by 
terminal branch time from the consensus tree (Yan, Ye & Werren, 2019). Maximum likelihood 
branch lengths were estimated in IQ-TREE (Minh et al., 2020) using an empirical amino acid 
substitution matrix (see methods for details). To investigate evolutionary rate correlations (ERCs) 
among proteins, Spearman rank correlations were calculated for every protein pair using terminal 
branch rates (Fig. 1). Due to the large number of comparisons, a Benjamini-Hochberg false 
discovery rate (FDR) correction was calculated for each protein’s ERC set (significance threshold 
α = 0.05). We subsequently found that many proteins show a positive correlation between 
terminal branch time and evolutionary rate, and observed that short branches in relatively 
oversampled taxa significantly contributed to this correlation (Supplementary Text). We, 
therefore, removed species that accounted for short branches, which eliminated the protein 
evolutionary rate to branch time correlation (see Methods and Supplementary Text for details). 
ERCs were then recalculated, and our ERC analyses are based on this set of 60 taxa.  

In addition, we tested whether the observed lower rates of protein evolution for shorter branches 
in the phylogeny are due to rates actually increasing over evolutionary time. This was 
accomplished by quantifying protein rates while sequentially extending branch lengths in different 
clades. The analysis shows that evolutionary rates for many proteins increase as branch length 
is increased (Supplementary Text, Supplementary Fig. S4). A likely explanation for the pattern is 
that protein coevolution is mostly episodic, and short branches in a phylogeny are less likely to 
capture such events. In additional analyses, we tested for but did not find significant confounding 
effects of taxon on the ERC results (Supplementary Text). 

Our analyses are focused on candidate protein interactions involving ACE2 using evidence of 
highly significant ERCs. For this purpose, we first examine proteins in ACE2’s highest 2% of 
ERCs (top 40 proteins), all of which are highly significant after FDR correction (Table 1). Some 
of these ACE2 ERC proteins have been previously implicated in severe COVID-19 or SARS-
CoV-2 gene expression effects on infected cells. However, while they have not been previously 
identified as having direct protein interactions with ACE2, this is predicted by our ERC analysis.  

X-C Motif Chemokine Receptor 1 (XCR1) provides an illustrative example. XCR1 is a cytokine 
signaling receptor and ACE2’s 2nd highest ranked ERC, with a highly significant evolutionary rate 
correlation suggestive of a protein-protein interaction. XCR1 is in a small genomic region that is 
implicated in severe COVID-19 by additional genome-wide association studies (Severe Covid-19 
GWAS Group, 2020; Fricke-Galindo & Falfán-Valencia, 2021). Another example is Interferon 
alpha/beta receptor 2 (IFNAR2) which, in a genome-wide association study (GWAS) and multi-
omic analysis by Pairo-Castineira et al. (2021), was implicated in severe COVID-19. We therefore 
added it to our analysis, and surprisingly found it to be highly ranked (5th) among ACE2 ERCs. 
Clusterin (CLU) is the 3rd strongest ERC of ACE2 and the ACE2-CLU pair show high reciprocal 
ranks to each other (3rd in ACE2’s set, 8th in CLU’s set). CLU prevents the aggregation of 
misfolded proteins in the blood and delivers them to cells for degradation in lysosomes (Sánchez-
Martín & Komatsu, 2020). CLU connects to key proteins in the coagulation pathway based on its 
reciprocal rank network (Section C, Fig. 2). CLU has been implicated in coronavirus infections, 
as one of only two proteins showing significant expression changes in cells infected by three 
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different coronaviruses tested, including SARS-CoV-2 (Singh et al., 2021). The examples above 
lend credence to the proposition that the ERC approach is detecting ACE2 protein interactions 
that have implications to COVID-19. 

Protein 
ACE2  
Rank 

ACE2's  
Partner 

Rank ρ P FDR Protein 
GEN1  
Rank 

GEN1's 
Partner 

Rank ρ P FDR 

GEN1 1 203 0.67 4.3E-08 4.2E-05 IFNLR1** 1 1 0.89 3.2E-20 6.2E-17 
XCR1 2 37 0.67 3.2E-08 4.2E-05 CC2D1B** 2 1 0.84 5.3E-16 5.2E-13 
CLU** 3 8 0.63 3.1E-07 1.5E-04 MUC15** 3 15 0.84 4.2E-15 2.7E-12 
TMEM63C** 4 11 0.63 2.0E-07 1.3E-04 SPZ1 4 30 0.82 5.0E-14 1.4E-11 
IFNAR2 5 392 0.62 2.5E-06 6.1E-04 SLC10A6** 5 2 0.82 1.2E-14 5.9E-12 
KIF3B 6 26 0.60 1.7E-06 4.9E-04 ARID4A** 6 9 0.81 2.0E-14 8.0E-12 
ITPRIPL2 7 364 0.59 1.7E-06 4.9E-04 RAD51AP2 7 22 0.81 6.7E-14 1.6E-11 
FAM227A 8 175 0.59 1.8E-06 4.9E-04 TESPA1** 8 2 0.81 3.9E-14 1.3E-11 
TLR8 9 243 0.58 3.7E-06 7.2E-04 IFNAR2** 9 9 0.80 3.4E-12 2.6E-10 
COL4A4 10 541 0.58 3.7E-06 7.2E-04 BCL6B** 10 1 0.80 1.6E-13 3.6E-11 
FAM3D** 11 2 0.57 5.8E-06 8.4E-04 RTL9 11 54 0.80 8.0E-13 1.1E-10 
F5 12 642 0.57 4.1E-06 7.2E-04 COL4A5** 12 8 0.80 4.9E-13 8.7E-11 
AR 13 22 0.57 7.7E-06 8.8E-04 APOBR 13 72 0.80 1.2E-12 1.3E-10 
TSGA13 14 423 0.57 7.1E-06 8.8E-04 COL4A6** 14 19 0.79 1.6E-12 1.6E-10 
PLA2G7 15 387 0.57 6.0E-06 8.4E-04 TRADD** 15 6 0.79 6.8E-13 1.0E-10 
MMS19 16 387 0.56 5.9E-06 8.4E-04 FANCG 16 69 0.79 4.2E-13 8.2E-11 
AMOT 17 124 0.56 8.1E-06 8.8E-04 CD180 17 27 0.78 8.4E-13 1.1E-10 
L1CAM** 18 14 0.56 8.6E-06 8.8E-04 TNFSF18** 18 7 0.78 2.6E-12 2.2E-10 
PDYN 19 428 0.56 7.3E-06 8.8E-04 APOB** 19 1 0.78 6.7E-13 1.0E-10 
IQCD 20 158 0.56 9.2E-06 8.9E-04 MKKS** 20 20 0.78 8.7E-13 1.1E-10 
SERPINA5 21 468 0.56 2.2E-05 1.4E-03 PIGV 21 8 0.78 1.6E-12 1.6E-10 
CERS4 22 67 0.55 2.9E-05 1.5E-03 CCDC17 22 30 0.78 1.2E-12 1.3E-10 
CC2D1B 23 467 0.55 1.1E-05 1.0E-03 DYTN 23 42 0.78 8.3E-12 5.1E-10 
GPR141 24 17 0.55 1.5E-05 1.2E-03 GNPTAB 24 36 0.77 1.7E-12 1.6E-10 
FSCB 25 817 0.55 2.8E-05 1.5E-03 MTMR11 25 13 0.77 2.9E-12 2.3E-10 
RGR 26 167 0.55 3.0E-05 1.5E-03 TNFRSF1A 26 25 0.77 2.0E-12 1.7E-10 
COL4A5 27 529 0.55 2.1E-05 1.4E-03 IFNAR1 27 5 0.77 2.7E-11 1.4E-09 
TNFSF8 28 410 0.55 1.2E-05 1.1E-03 F2RL2 28 5 0.77 1.9E-11 1.1E-09 
CCDC36 29 576 0.55 1.5E-05 1.2E-03 CXCR6 29 1 0.77 3.1E-11 1.5E-09 
MRC1 30 195 0.55 1.3E-05 1.1E-03 KLHL6 30 6 0.77 3.3E-12 2.6E-10 
CD27 31 550 0.54 3.0E-05 1.5E-03 SERPINA5 31 12 0.77 2.0E-11 1.1E-09 
ADCK4 32 28 0.54 2.1E-05 1.4E-03 PLA2R1 32 31 0.77 6.6E-12 4.6E-10 
SOWAHA 33 154 0.54 2.2E-05 1.4E-03 MYCBPAP 33 3 0.76 4.5E-12 3.3E-10 
F2RL2 34 436 0.54 3.7E-05 1.7E-03 BPIFB2 34 5 0.76 7.6E-12 4.8E-10 
WDR66 35 302 0.54 2.1E-05 1.4E-03 TLR7 35 114 0.76 1.4E-11 8.3E-10 
TRADD 36 596 0.54 2.6E-05 1.5E-03 CCDC190 36 19 0.76 2.4E-10 6.2E-09 
RELA 37 70 0.53 2.8E-05 1.5E-03 KMT2D 37 95 0.76 7.1E-12 4.8E-10 
SLC10A6 38 533 0.53 3.0E-05 1.5E-03 FSCB 38 130 0.76 6.5E-11 2.6E-09 
IL23A 39 383 0.53 4.7E-05 1.7E-03 CD27 39 19 0.76 2.7E-11 1.4E-09 
TNFSF18 40 656 0.53 5.8E-05 1.8E-03 SNX11 40 24 0.76 7.3E-12 4.8E-10 

Table 1. The top two percent (2%) of ERCs are shown for ACE2 and GEN1, ranked by descending ρ value. 
The table illustrates how reciprocal ranks can differ between proteins with significant evolutionary 
correlations, depending on how interconnected proteins are. GEN1 has many partners which rank GEN1 
highly in their respective ERCs. Also indicated in the table are examples of reciprocal rank correlations in 
which both partners rank the other in their top 20 (indicated by bold and asterisks). These are used to 
construct reciprocal rank protein interaction networks. 

Differences in ERC rank between protein pairs for the same correlation can occur because some 
proteins have higher and more extensive ERC connections than do. As a result, while two proteins 
can have a significant ERC with each other, each one’s rank may differ in their respective ERC 
lists, as illustrated for ACE2 and GEN1 (Table 1). GEN1 (Flap endonuclease GEN homolog 1) is 
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ACE2’s top-ranked ERC, and is a DNA nuclease whose primary functions are resolution of DNA 
Holliday junctions and DNA damage checkpoint signaling (Chan & West, 2015). This protein 
shows high ERCs and is ranked highly in the ERC sets for many other proteins, suggesting central 
connectivity. As described further in Section C2, GEN1 shows unexpected enrichments for 
immune functions, perhaps related to its role in DNA damage checkpoint signaling.  

Because our focus is on identifying strong candidate interactions involving ACE2 and its predicted 
partners, we utilize the rank information to identify proteins with high reciprocal ranks. Specifically, 
we focus on the strongest reciprocal ranks (RR) defined by ranks of less than or equal to 20 
(RR20), which is the highest one percent of each protein’s ERCs, and use these to develop 
reciprocal rank networks (Section C). Although speculative, we posit that protein pairs with high 
reciprocal ranks are likely to be strongly coevolving (i.e. both partners evolving reciprocally due 
to selective pressures acting on interacting domains between them). In contrast, protein pairs with 
a significant evolutionary rate correlation only one ranks highly (e.g. within the top two percent) in 
the ERC set of the other, are more likely to be due to “unidirectional” evolution. The rationale is 
that proteins with many significant ERC partners are under selective pressures primarily from their 
top evolutionary partners, whereas other interactors evolve primarily in response to the forces 
shaped by their stronger partner(s).  

The view that ERCs are detecting protein interactions relevant to COVID-19 is further supported 
by the analysis of ACE2 reciprocal rank ERC networks (Section C below). Noteworthy in this 
regard are additional proteins in the coagulation pathway, such as Coagulation Factor V (F5), 
Fibrinogen Alpha Chain (FGA), Fibrinogen Beta Chain (FGB), and Fibrinogen Gamma Chain 
(FGG). Thrombosis (blood clotting) is a major pathology of COVID-19 (Gupta et al., 2020). 
Connections of ACE2 with the proteins above could relate to severe blood clotting problems in 
COVID-19 infections. ACE2 networks also show strong enrichments of cytokine signaling, viral 
(and pathogen) infections, and inflammatory response terms (Supplementary File S3), which are 
clearly relevant to COVID-19 pathologies such as cytokine storms and systemic inflammation.  

In yet other cases, we have found proteins with significant ACE2 ERCs or ACE2 network 
connections, but for which there is little functional information. We can use their ERCs to suggest 
possible functions for future investigation. Examples of this are GPR141, C16orf78, and 
CCDC105. Finally, ERCs for proteins of known function (such as Coagulation Factor F5 and 
GEN1) indicate likely additional roles, suggesting these proteins have unrecognized 
“moonlighting” functions (Jeffery, 1999).  

Below, we first describe proteins of interest to which ACE2 has significant ERCs, summarize 
aspects of their known biological functions, and examine significantly enriched functional 
categories for these ERCs. We then build and evaluate two different networks for ACE2 
interacting proteins (Section C), one of which reveals connections to coagulation pathways and 
the other to cytokine-mediated signaling, viral response, and immunity. Finally, we discuss the 
potential implications of these predicted ACE2 interactions to COVID-19 pathologies and propose 
some specific hypotheses that emerge from this analysis.  

B. Top ERC Interactions Link ACE2 to COVID Pathologies 

To investigate protein associations of ACE2, we first determined the protein enrichment 
categories for its top 2% ERC proteins (based on Spearman rank correlation coefficients, ρ) using 
the gene set enrichment package Enrichr (Xie et al., 2021) (Table 2). The top two 
KEGG_2019_Human enrichments are for complement and coagulation cascade related (FDR = 
2.0E-03) and cytokine-cytokine receptor interaction related (FDR = 2.0E-03) terms. This finding 
is consistent with two hallmarks of COVID-19 pathology, abnormal systemic blood-clotting 
(thrombosis) and cytokine storms (Coperchini et al., 2020; Fei et al., 2020). Additionally, several 
terms related to viral/bacterial-specific infection are significantly enriched, such as Tuberculosis 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.05.24.445517doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445517
http://creativecommons.org/licenses/by-nc-nd/4.0/


(FDR = 1.4E-02), HPV infection (FDR = 1.4E-02), measles (FDR = 2.4E-02) and Hepatitis C (FDR 
= 3.1E-02). Gene Ontology Biological Process also shows enrichment for tumor necrosis factor 
(TNF) pathways, including the signaling pathway (FDR = 3.9E-03) and cellular responses (FDR 
= 1.6E-02). Additional terms are shown in Table 2.  

 

Table 2. Enrichment categories for ACE2’s top 2% proteins by ERC. Key enrichments include complement  
and coagulation cascades, cytokine-cytokine signaling, and different pathogen infections. 

Enrichr Gene set Term 
FDR  

P-value 
Odds  
Ratio Gene List 

KEGG_2019_Human Complement and coagulation cascades 2.03E-03 25.9 CLU, F2RL2, F5, SERPINA5 
KEGG_2019_Human Cytokine-cytokine receptor interaction 2.03E-03 10.5 TNFSF18, IFNAR2, XCR1, IL23A, CD27, 

TNFSF8 
KEGG_2019_Human Tuberculosis 1.38E-02 11.0 IL23A, TRADD, MRC1, RELA 
KEGG_2019_Human Human papillomavirus infection 1.38E-02 7.6 IFNAR2, COL4A4, TRADD, COL4A5, RELA 
KEGG_2019_Human Protein digestion and absorption 1.38E-02 16.3 ACE2, COL4A4, COL4A5 
KEGG_2019_Human Pathways in cancer 1.38E-02 5.7 IFNAR2, AR, IL23A, COL4A4, COL4A5, 

RELA 
KEGG_2019_Human Small cell lung cancer 1.38E-02 15.8 COL4A4, COL4A5, RELA 
KEGG_2019_Human Amoebiasis 1.38E-02 15.3 COL4A4, COL4A5, RELA 
KEGG_2019_Human AGE-RAGE signaling pathway in diabetic 

complications 
1.38E-02 14.6 COL4A4, COL4A5, RELA 

KEGG_2019_Human Toll-like receptor signaling pathway 1.39E-02 14.0 IFNAR2, TLR8, RELA 
KEGG_2019_Human Sphingolipid signaling pathway 1.85E-02 12.2 CERS4, TRADD, RELA 
KEGG_2019_Human Relaxin signaling pathway 2.18E-02 11.2 COL4A4, COL4A5, RELA 
KEGG_2019_Human Measles 2.38E-02 10.5 IFNAR2, TRADD, RELA 
KEGG_2019_Human Hepatitis C 3.05E-02 9.3 IFNAR2, TRADD, RELA 
KEGG_2019_Human Cocaine addiction 3.05E-02 19.7 PDYN, RELA 
KEGG_2019_Human PI3K-Akt signaling pathway 4.17E-02 5.5 IFNAR2, COL4A4, COL4A5, RELA 
KEGG_2019_Human Kaposi sarcoma-associated herpesvirus 

infection 
4.17E-02 7.7 IFNAR2, TRADD, RELA 

KEGG_2019_Human Inflammatory bowel disease (IBD) 4.34E-02 14.7 IL23A, RELA 
KEGG_2019_Human Epstein-Barr virus infection 4.34E-02 7.1 IFNAR2, TRADD, RELA 
KEGG_2019_Human Adipocytokine signaling pathway 4.34E-02 13.8 TRADD, RELA 
KEGG_2019_Human RIG-I-like receptor signaling pathway 4.34E-02 13.6 TRADD, RELA 
KEGG_2019_Human Pertussis 4.85E-02 12.5 IL23A, RELA 
GO_Biological_Process_2018 tumor necrosis factor-mediated signaling 

pathway (GO:0033209) 
3.86E-03 21.0 TNFSF18, TRADD, CD27, TNFSF8, RELA 

GO_Biological_Process_2018 cellular response to tumor necrosis factor 
(GO:0071356) 

1.63E-02 13.1 TNFSF18, TRADD, CD27, TNFSF8, RELA 

GO_Biological_Process_2018 immunoglobulin mediated immune 
response (GO:0016064) 

1.63E-02 154.6 CD27, TLR8 

GO_Biological_Process_2018 B cell mediated immunity (GO:0019724) 1.63E-02 154.6 CD27, TLR8 
GO_Biological_Process_2018 positive regulation of NF-kappaB 

transcription factor activity (GO:0051092) 
1.85E-02 15.6 TNFSF18, TRADD, CLU, RELA 

GO_Biological_Process_2018 I-kappaB kinase/NF-kappaB signaling 
(GO:0007249) 

2.26E-02 26.3 TRADD, TLR8, RELA 

GO_Biological_Process_2018 cytokine-mediated signaling pathway 
(GO:0019221) 

3.11E-02 5.7 TNFSF18, IFNAR2, IL23A, TRADD, CD27, 
TNFSF8, RELA 

GO_Biological_Process_2018 regulation of inflammatory response 
(GO:0050727) 

3.11E-02 11.9 ACE2, IL23A, PLA2G7, RELA 

GO_Biological_Process_2018 positive regulation of defense response 
(GO:0031349) 

3.26E-02 20.0 IL23A, TLR8, PLA2G7 

WikiPathways_2019_Human Complement and Coagulation Cascades 
WP558 

2.38E-02 25.8 CLU, F5, SERPINA5 

WikiPathways_2019_Human EBV LMP1 signaling WP262 4.24E-02 44.2 TRADD, RELA 
WikiPathways_2019_Human Toll-like Receptor Signaling Pathway 

WP75 
4.24E-02 14.2 IFNAR2, TLR8, RELA 

WikiPathways_2019_Human Toll-like Receptor Signaling WP3858 4.36E-02 32.0 TLR8, RELA 
WikiPathways_2019_Human miRNAs involvement in the immune 

response in sepsis WP4329 
4.95E-02 26.5 TLR8, RELA 

WikiPathways_2019_Human Regulation of toll-like receptor signaling 
pathway WP1449 

4.96E-02 10.4 IFNAR2, TLR8, RELA 
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The ACE2 ERC analysis indicates that ACE2 is “coevolving” with proteins involved in the 
complement and coagulation pathways, cytokine signaling, TNF, and pathogen response 
pathways. Here, we summarize results and background information on some of the key proteins 
among ACE2’s ERCs (more extended summaries of each protein are in the Supplementary Text).  

Among ACE2’s strongest ERCs are proteins involved in immunity. For example, XCR1 (X-C Motif 
Chemokine Receptor 1) is ACE2’s 2nd top-ranked ERC (ρ = 0.67, FDR = 6.18E-05). It is a 
chemokine XCL1 receptor involved in immune response to infection and inflammation (Lei & 
Takahama, 2012). Strikingly, the Severe Covid-19 GWAS Group (2020) detected a small genomic 
region containing six genes that significantly associate with severe COVID-19, one of which is 
XCR1. Our finding that XCR1 is ACE2’s 2nd highest ERC interactor lends independent support for 
a relationship between COVID-19 and XCR1. Furthermore, it suggests that a direct interaction 
between ACE2 and XCR1 could be involved in COVID-19 pathologies. To our knowledge, there 
are no other reports of interactions between these two proteins.  

Another striking connection of ACE2 ERC to immunity is through IFNAR2 (Interferon alpha/beta 
receptor 2), which has a highly significant ACE2 ERC correlation (ρ = 0.62, FDR = 6.1E-04). 
IFNAR2 forms part of an important receptor complex with IFNAR1 (Thomas et al., 2011) involved 
in interferon signaling through the JAK/STAT pathway to modulate immune responses. IFNAR2 
has been implicated in severe COVID-19, based on mendelian randomization, genome-wide 
associations, and gene expression changes (Zhang et al., 2020; Liu et al., 2021; Pairo-Castineira 
et al., 2021). Our data provide independent support for a role, possibly mediated through ACE2 
interactions. Interferon pathways are important in antiviral defense, but also can contribute to 
cytokine storms and COVID-19 pathologies (McKechnie & Blish, 2020). Other immune-related 
proteins with high ERC connections to ACE2 include TLR8 (Toll-like Receptor 8), FAM3D (FAM3 
metabolism regulating signaling molecule D), and PLA2G7 (phospholipase A2 group VII). 

Coagulation pathway proteins figure prominently in ACE2 ERC-predicted protein interactions 
(Table 3, Fig. 2). This is reflected both in significant enrichment for coagulation cascade proteins 
in the top 2% strongest ACE2 ERCs (Table 2) and the strong reciprocal rank network for ACE2 
(Section C, Fig. 3). The finding has obvious potential implications to a hallmark pathology of 
COVID-19, systemic coagulopathy (Wright et al., 2020; Medcalf, Keragala & Myles, 2020). A list 
of coagulation and blood-related proteins associated with ACE2 is presented in Table 3. Among 
ACE2’s top 2% ERCs associated with coagulation pathway are Coagulation Factor V (F5), Protein 
C inhibitor (SERPINA5 aka PCI), and Thrombin Receptor 2 (F2RL2) (Table 1). 

Also relevant to coagulopathy are Clusterin (CLU) and the orphan G protein-coupled receptor 141 
(GPR141). The chaperone protein CLU has a soluble form that circulates in the blood and is part 
of the “cleaning squad” that clears misfolded extracellular proteins for delivery to lysosomes and 
degradation (Itakura et al., 2020; Sánchez-Martín & Komatsu, 2020). It is the 3rd highest ACE2 
ERC (ρ = 0.63, FDR = 1.5E-04), and these two proteins show strong reciprocal ranks (3, 8), likely 
supporting biological interactions. Relevant to this point is that both ACE2 and CLU have soluble 
forms that circulate in the blood (Itakura et al., 2020). Of direct relevance to COVID-19 and 
possible ACE2-CLU protein interactions, Singh et al. (2021) found in cells infected with different 
coronaviruses (SARS-CoV-2, SARS-CoV, and MERS-CoV), only two genes were found to be 
differentially expressed in all three, with CLU being one.  

CLU’s top 2% strongest ERCs show highly significant enrichment for terms relating to coagulation 
cascades and clot formation (Supplementary File S3, e.g. “Complement and coagulation 
cascades”, FDR = 6.28E-12), as well as significant terms that are relevant to immunity, such as 
“Immune system” (FDR = 4.8E-03) and “activated immune cell type” (FDR = 3.4E-05). Among its 
top ERC proteins relevant to coagulation process are Coagulation Factor V (F5, ρ = 0.67, FDR = 
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9.1E-06, rank 3), Fibrinogen Gamma chain (FGG, ρ = 0.59, FDR = 1.7E-04, rank 18), Coagulation 
Factor XIII B chain (F13B, ρ = 0.63, FDR = 2.8E-05, rank 19), and Fibrinogen Alpha chain (FGA, 
ρ = 0.57, FDR = 2.9E-04, rank 27) (Fig. 3, Supplementary File S1). Notably, fibrinogen is a major 
binding “client” of Clusterin in stressed plasma (Wyatt & Wilson, 2010). Little is known about 
GPR141; however, the ERC analysis suggests an important role in blood coagulation. Among 
GPR141’s top ERC proteins relevant to coagulation process are Kininogen 1 (KNG1, ρ = 0.60, 
FDR = 9.3E-04, rank 5), Plasminogen Activator (PLAT, ρ = 0.58, FDR = 6.5E-04, rank 6), 
Thrombin (Coagulation Factor II or F2, ρ = 0.58, FDR = 6.5E-04, rank 7), Fibrinogen Beta chain 
(FGB, ρ = 0.57, FDR = 6.5E-04, RR 11, 11), Complement C1s (C1S, ρ = 0.54, FDR = 1.6E-03, 
rank 22), F2R-like thrombin (also called trypsin receptor 3; F2RL3, ρ = 0.52, FDR = 2.6E-03, rank 
37), and Coagulation Factor V (F5, ρ = 0.52, FDR = 1.7E-03, rank 39) (Fig. 2, Supplementary File 
S1).  

GPR141 has a highly significant ERC to CLU, with these two proteins being each other’s first 
ranking ERCs (ρ = 0.68, FDR = 9.06E-06, RR 1,1). The pattern suggests a strong biological 
interaction, although none is described in the literature. The result supports investigating 
functional interactions between CLU and GPR141, based upon their high ERC and reciprocal 
ranks. Our network analysis (Section C) further supports extensive interconnections among 
ACE2, Clusterin, GPR141, and coagulation pathway proteins, implicating the protein interaction 
pathway as a possibly significant contributor to disruption of coagulation in COVID-19 disease. 
Coagulation cascade proteins found in the ACE2’s top 2% ERCs, ACE2 reciprocal rank network, 
and Clusterin-GPR141 associated proteins are highlighted in Figure 2. 

Androgen Receptor (AR, ρ = 0.57, FDR = 8.8E-04, rank 13), the receptor for the male hormone 
androgen, plays a major role in reproductive system development, somatic differentiation, and 
behavior (Matsumoto et al., 2008). Androgen-AR signaling induces ACE2 (Wu et al., 2020), 
while knockdowns of AR result in downregulation of ACE2 (Samuel et al., 2020). AR agonists 
also reduce SARS-CoV-2 spike protein-mediated cellular entry (Deng et al., 2021). Additionally, 
AR is associated with COVID comorbidities (Dolan et al., 2020), and recently implicated in the 
severity of COVID-19 in women with polycystic ovarian syndrome, a disorder associate with 
high androgen levels and androgen sensitivity (Gotluru et al., 2021). Our ERC finding indicating 
ACE2 and AR coevolution suggests a regulatory feedback between these two proteins, which 
could be relevant to COVID-19 severity and other sex differential pathologies, such as 
cardiovascular disease (Viveiros et al., 2021).  
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Figure 2. KEGG Coagulation cascade pathway (Kanehisa & Goto, 2000), with ACE2-CLU-GPR141 
associated proteins (based on presence on any of their top 2% ERCs or in the ACE2 CRR network) 
indicated in red. The KEGG pathway has been supplemented to indicate the three fibrinogen proteins and 
clusterin associations previously discussed. Note the alternate protein names: PAR3,4 = F2RL2 & F2RL3 
= Thrombin receptors; α2AP = Alpha-2-antiplasmin = SERPINF2; PLAT = tPA, and PCI = SERPINA5 = 
Protein C Inhibitor. 

Other notable significant ACE2 ERCs (Table 1) include Metabolism regulating signaling molecule 
D (FAM3D), Transmembrane-protein 63C (TMEM63C); Collagen Type IV Alpha 4 (COL4A4), L1 
cell adhesion molecule (L1CAM), and ITPRIP-like 2 (ITPRIPL2). More detailed information on 
these and other proteins mentioned in this section is provided in Section C and the Supplementary 
Text. 
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C. ERC Reciprocal Rank Networks implicate coagulation pathways and immunity  

As mentioned previously, two proteins with a significant evolutionary rate correlation may often 
“rank” each other differently in their respective top ERC connections. This occurs because some 
proteins have more extensive ERC connections than others. High reciprocal ERC ranks between 
protein pairs may be more indicative that they are under strong coevolutionary pressure in their 
sequence and function. We have thus found it useful to evaluate these reciprocal rank 
connections as a network. The rationale is that such proteins are likely to be reciprocally evolving 
(“coevolving”). To build reciprocal rank networks, we use protein pairs that reciprocally share 
ranks less than or equal to 20 (RR20). 

A core ACE2 reciprocal rank network was generated by building reciprocal rank connections 
(RR20) outward of ACE2, to provide a backbone set of RR20 protein connections. The backbone 
was expanded on by adding the RR20 connections of the non-ACE2 backbone proteins. 
Unidirectional ERCs (≤ rank 20) were then added between proteins within the RR set to produce 
an ACE2 Core Reciprocal Rank (CRR) Network (Fig. 3). The network is designed to capture 
features of ACE2’s protein interactions as revealed by the strong reciprocal evolutionary 
correlations among proteins.  

ACE2 also has highly significant ERCs to proteins that do not rank ACE2 within their top 1% of 
ERCs, due to those proteins having more protein interactions with higher ERCs. A second 
network was therefore generated using ACE2’s top ten unidirectional ERCs, followed by 
calculating the RR20 associations for those proteins. This second network is referred to as the 
ACE2 Unidirectional Reciprocal Rank Network (URR).  

These are presented below. In general, the reciprocal ranks analysis lends credence to our 
proposition that ERCs reveal real biological interactions, as well as providing predictions for novel 
protein interactions possibly of importance to COVID-19 pathologies and protein-interaction 
networks. 

C1 The ACE2 Core Reciprocal Rank (CRR) Network  

The CRR network (Fig. 3) is designed to capture essential features of ACE2’s protein interactions 
as revealed by the strong reciprocal correlations among proteins. 

The most striking aspects of the ACE2 CRR Network are extensive connections to the coagulation 
pathway and blood-associated proteins (Fig. 3, Table 3). This is, of course, very relevant to 
COVID-19 due to extensive clotting pathologies and stroke associated with COVID-19 
(Bonaventura et al., 2021), as well as microvascular clotting and the apparent shut-down of 
fibrinolysis (Wright et al., 2020). Extensive blood coagulation of COVID-19 patients can even lead 
to clogging of dialysis equipment (Rabb, 2020). This hallmark pathology of COVID-19 indicates a 
disruption in coagulation and fibrinolysis pathways, and our findings of extensive network 
connections between ACE2 and coagulation-fibrinolysis pathway proteins could be relevant. 

ACE2 connects to coagulation pathway proteins through F5, CLU, FAM3D, and GPR141 (Fig. 2, 
Fig. 3). CLU-GPR141 form a high RR ERC (ranks 1,1), strongly suggesting coevolution of these 
proteins and physical/functional interactions. Both CLU and GPR141 then connect to the 
fibrinogen proteins FGB and FGGB. FGA, FGB, and FGG are the three protein components that 
make up fibrinogen, which during the clotting process are converted into fibrin monomers, which 
subsequently cross-link to form the fibrin clot (Mosesson, 2005). All three proteins form a RR20 
triad, indicating protein coevolution. FGG is a hub for RR ERCs to several other proteins (e.g. 
CD34, CPB2, C14or129, and ZBTB43). ZBTB43 is noteworthy, as it is associated with the blood 
diseases Diamond-Blackfan Anemia 4 and Hemochromatosis Type 2 (Stelzer et al., 2016). The 
former disrupts red blood cell formation in the bone marrow and the latter causes iron 
accumulation in the body. In terms of tissue distribution, ZBTB43 is enhanced in bone marrow 
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(Uhlén et al., 2015). Cellularly, it is found mainly in nucleoplasm and nucleoli, suggesting 
regulatory functions, as might be expected for a transcription factor-like zinc finger domain protein. 
Most noteworthy, Mamoor (2020) has shown that ZBTB43 is differentially expressed in human 
microvascular endothelial cells and human cell cultures infected with coronaviruses (e.g MERS-
CoV and human coronavirus 229E). So, this is yet another member of the ACE2 protein Network 
which is implicated in coronavirus infection. In turn, ZBTB43 has a RR connection with 
SERPINF2, which enhances clotting by inhibiting plasmin, an enzyme that degrades fibrin, the 
main component of clots. Mutations in SERPINF2 can cause severe bleeding disorders and 
upregulation of SERPINF2 is implicated in COVID-19 patient thrombosis (Jain et al., 2021; 
Lazzaroni et al., 2021). In turn, CPB2 (Carboxypeptidase B2) is a thrombin‐activated inhibitor of 
fibrinolysis, and therefore enhances clotting stability (Leenaerts et al., 2018), and also plays a role 
in activating the complement cascade (Morser et al., 2018; Leung & Morser, 2018).  

Figure 3. ACE2 Centric Reciprocal Rank Network (CRR). Proteins with ERC reciprocal ranks ≤ 20 are 
shown by double-headed arrows, and unidirectional ranks ≤ 20 connecting to the RR backbone are 
indicated by single-headed arrows. ACE2 has extensive connections to coagulation proteins mediated 
primarily through Clusterin (CLU) and GPR141. ACE2 is highlighted in purple, and blue shading intensity 
indicates the level of reciprocal connectivity for different proteins. 

FAM3D is a cytokine for neutrophils and monocytes in peripheral blood which may directly interact 
with ACE2 based on their reciprocal ranking. ACE2 is its 2nd ranking ERC. Although ACE2 does 
not have a significant ERC to F13B (also known as Coagulation Factor XIII B Chain), it is FAM3D’s 
top-ranking ERC. F13B functions to stabilize clotting through cross-linking of fibrin (Stelzer et al., 
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2016). Thus, connections of FAM3D to F13B, possibly through physical binding as implied by 
their high reciprocal ranks, could be important in modulating the dynamics of clot formation. 

Name Full Name Brief Description 
ACE2 Angiotensin Converting Enzyme 2 Catalyzes the cleavage of angiotensin I to angiotensin 1-9 and angiotensin 

II to angiotensin 1-7 (Burrell et al., 2004) 
FGA Fibrinogen alpha chain Bind to FGB and FGG to form fibrinogen, used to form blood clots 

(Mosesson, 2005) 
FGB Fibrinogen beta chain Bind to FGA and FGG to form fibrinogen, used to form blood clots 

(Mosesson, 2005) 
FGG Fibrinogen gamma chain Bind to FGA and FGB to form fibrinogen, used to form blood clots 

(Mosesson, 2005) 
CPB2 Carboxypeptidase B2 Inhibits fibrinolysis (Leenaerts et al., 2018) 

SERPINF2 Serpin family F member 2 
 (alpha-2-antiplasmin) 

Inhibits Plasmin, a protein involved in fibrinolysis (Kanehisa & Goto, 2000) 

CD34 CD34 molecule Associated with hematopoiesis and stem cells (Fina et al., 1990) 

CLU Clusterin Binds to Fibrinogen (Wyatt & Wilson, 2010) 

MAS1 MAS1 Proto-Oncogene,  
G Protein-Coupled Receptor 

Receptor for angiotensin-(1-7) (Burrell et al., 2004) 

FAM3D FAM3 Metabolism Regulating  
Signaling Molecule D 

Implicated in inflammatory responses in the gastrointestinal tract and is a 
chemoattractant for neutrophiles and monocytes (Peng et al., 2016) 

GPR141 G Protein-Coupled Receptor 141 High expression in blood, granulocytes, Kupfer cells, and macrophages 
(Stelzer et al., 2016) 

TMEM63C Transmembrane Protein 63C Interacts with angiotensin II (Eisenreich et al., 2020) 

LECT2 Leukocyte Cell-derived  
Chemotaxin 2 

Involved in macrophage activation, insulin resistance and diabetes, and 
neutrophil chemotaxis (Yamagoe et al., 1996; Zhang et al., 2018; Takata et 
al., 2021) 

ETS1 ETS proto-oncogene 1,  
transcription factor 

Transcription factor involved in cytokine/chemokine processes and 
angiogenesis (Stelzer et al., 2016) 

ZBTB43 Zinc Finger and BTB Domain 
containing 43 

Associated with Diamond-Blackfan Anemia 4, in which the bone marrow is 
unable to make enough red blood cells to carry oxygen (Stelzer et al., 
2016) 

COL4A4 Collagen Type IV Alpha 4 Subunit of Collagen Type 4, which are a part of the basement membrane 
which resides between epithelial cells (Stelzer et al., 2016) 

F13B Coagulation Factor XIII B chain Stabilizes F13A subunits, while it does not have enzymatic abilities it is 
thought to be a plasma carrier molecule (Stelzer et al., 2016) 

AMOT Angiomotin Associated with angiogenesis and endothelial cell movement (Bratt et al., 
2005; Aase et al., 2007) 

PDYN Prodynorphin  Inhibits vasopressin secretion (Yamada et al., 1988) 

Table 3. Coagulation and blood-related proteins in the ACE2 CRR and URR Networks as well as the top 

1% ACE2 ERC list. 

Blood pressure and vasoconstriction regulation also show functional enrichment in the CRR 
network. Naturally, ACE2 is a crucial component of the Renin-Angiotensin System (RAS), which 
converts angiotensin II to angiotensin (1-7). This, in turn, binds to the MAS1 receptor, promoting 
vasodilation and reduced blood pressure. As seen in Figure 2, MAS1 is part of the ACE2 CRR 
network. Although not significantly correlated with ACE2 directly, it has significant RR connection 
to TSHZ3 (ρ = 0.52, FDR = 7.8E-03, ranks 11, 4) and is FAM3D’s 19th ranking ERC (ρ = 0.49, 
FDR = 1.5E-02). Biologically MAS1 and ACE2 are key elements promoting vasodilation in the 
renin-angiotensin system (RAS) (Burrell et al., 2004). Thus, the ERC RR network detects 
biologically significant connections of ACE2 to RAS signaling via the MAS1 receptor of 
angiotensin-(1-7). Samavati & Uhal (2020) posit that the loss of ACE2 due to SARS-CoV-2 
infection reduces MAS1 signaling and increases AT1 & AT2 signaling via higher levels of 
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angiotensin 2, promoting vasoconstriction, fibrosis, coagulation, vascular and cardio injury, and 
ROS production. Similar arguments are made by Sriram & Insel (2020). ACE2 and MAS1 do not 
have a signature of protein coevolution, even though they interact indirectly biologically through 
the short seven amino acid signaling peptide Ang (1-7). This observation is consistent with our 
model that ERCs (particularly RR ERCs) are driven by direct binding between protein partners. 
In contrast, MAS1 has significant RR with TSHZ3 (mentioned above). A biological connection 
between these proteins is not obvious, although the high ERC reciprocal ranks suggest possible 
binding affinities worth further investigation. Additionally, TMEM63C is one of four proteins that 
form a direct reciprocal rank ERC association with ACE2 (Figure 2). It functions in osmolarity 
regulation and like ACE2, interacts with angiotensin II, possibly reducing damage to kidney 
podocytes (Eisenreich et al., 2020). 

FBXL3 has an RR20 connection to FGB and ranks GPR141 in its top 2%. This protein is a 
component of circadian rhythm regulation (Busino et al., 2007). Many aspects of the 
cardiovascular system have circadian cycling such as heart rate, blood pressure, and fibrinolysis 
(Reilly, Westgate & FitzGerald, 2007). Endogenous oscillators in the heart, endothelial cells, and 
smooth muscles may play significant roles in these cycles (Reilly, Westgate & FitzGerald, 2007), 
and the CRR network suggests that direct interactions between FBXL3 and FGB could play a role 
in circadian aspects of fibrinolysis.  

CD34 (Hematopoietic Progenitor Cell Antigen CD34) is believed to be an adhesion protein for 
hematopoietic stem cells in bone marrow and for endothelial cells (Fina et al., 1990). Our ERC 
analysis indicates connections to coagulation pathway proteins and lipoproteins. In addition to its 
RR association with FGG (ρ = 0.60, FDR = 2.2.0E-04, ranks 18,9), CD34 also forms significant 
reciprocal rank correlations with coagulation factor F2 (ρ = 0.69, FDR = 7.9E-06, ranks 1,6), 
lipoprotein APOE (ρ = 0.64, FDR = 6.0E-05), lipid droplet-associated protein PLIN1 (ρ = 0.64, 
FDR = 1.1E-04, ranks 8,7), and inflammation associated pentraxin protein PTX3 (ρ = 0.65, FDR 
= 6.8E-05, ranks 3,11) (Supplementary File S1). As expected from these protein associations, 
CD34's top enriched term is to complement and coagulation cascade (FDR = 1.4E-08). There is 
also enrichment for HUVEC cells (FDR = 3.1E-05) and Blood Plasma (FDR = 1.7E-04) 
(Supplementary File S3). 

Consistent with the descriptions above, the CRR network shows enrichment (full enrichment table 
in Supplementary File S3) for negative regulation of blood coagulation (FDR = 4.3E-08), platelet 
alpha granule-related terms (FDR = 1.7E-05), plasma cell (FDR = 8.3E-4) and blood clot (FDR = 
4.5E-02). These enrichments indicate that the network involves protein interactions related to 
blood clotting pathways. There are also several significantly enriched terms which are driven in 
part by ACE2, such as regulation of systemic arterial blood pressure by renin-angiotensin (FDR 
= 1.6E-03; members: ACE2 and SERPINF2), metabolism of angiotensinogen to angiotensin (FDR 
= 6.9E-03; members: ACE2 and CPB2), regulation of blood vessel diameter (FDR = 1.5E-02; 
members: ACE2 and SERPINF2), and renin-angiotensin system (FDR = 1.8E-02; members: 
ACE2 and MAS1). 

CRR Subnetworks: Here we briefly describe other subnetworks within the CRR network with 
implications to COVID-19. 

TMEM63C RR Subnetwork: TMEM63C is one of four proteins that form a direct reciprocal rank 
ERC association with ACE2 (RR20). It functions in osmolarity regulation. In addition to ACE2, 
TMEM63C has direct RR20 connections to three proteins, CCDC105, LECT2, and C16orf78, and 
through them forms a subnetwork also containing TMCO2, ARMC7, PAX4, ETS1, and SUV39H1 
(Fig. 3). LECT2 (Leukocyte Cell-derived Chemotaxin 2) is involved in macrophage activation, 
insulin resistance and diabetes, and neutrophil chemotaxis (Yamagoe et al., 1996; Zhang et al., 
2018; Takata et al., 2021). TMEM63C and LECT2 are significantly correlated (ρ = 0.64, FDR = 
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7.5E-04) with high reciprocal ranks (1,6). Thus, LECT2 is connected to ACE2 through reciprocal 
ranks between TMEM63C and ACE2.  

Little is known about C16orf78, except that it is enriched in testes, and specifically in spermatids 
(Uhlén et al., 2015). We, therefore, looked at its ERC protein associations as an exploratory tool 
for possible function. C16orf78 forms a strong RR association with TMEM63C (RR 1,4) and also 
has reciprocal ERCs with PAX4 (3,9), ETS1 (11,2), and SUV39H1 (10,15). ETS1 is a transcription 
factor involved in cytokine and chemokine processes. Whereas SUV39H1 is a suppressor of 
variegation protein whose function loss leads to chromosome instability. It has only 24 significant 
ERC proteins. These show enrichment for pri-miRNA transcription from RNA polymerase II 
promoter (FDR = 7.8E-03, members: ETS1;RELA), scavenging by class A receptors Homo 
sapiens (2.6E-02, members: COL4A1;APOB), endosomal part (FDR = 2.8E-02, members: 
WDR81;APOB) and striated muscle tissue development (FDR = 4.9E-02; members: 
IGSF8;BVES). Pri-miRNAs are processed into miRNAs, whereas scavenging class A receptors 
play a role in innate immunity as phagocytic receptors in macrophages and dendritic cells 
(Areschoug & Gordon, 2009), which ties to the endosome term enrichment. These observations 
may serve as a guide for further investigations into C16orf78 function.  

There is also little information on CCDC105, except an intriguing paper using phylogenetic 
profiling to implicate it as functioning in meiosis-specific chromatin and spermatogenesis (Tabach 
et al., 2013) and an association of a human variant with infertility (Handel & Schimenti, 2010). 
Consistent with those two studies, enrichment of the top 2% ERCs for CCDC105 has one 
significant term, from proteomicsDB for spermatozoon (members: UBXN11, CCDC105, 
C10orf62, MYCBPAP, PMFBP1). It forms strong RR ERCs with the transcription factor PAX4 
(3,9) and TMEM63C (1,4). 

These findings suggest that TMEM63C protein connections involve innate immunity and 
spermatogenesis and indicate possible avenues for elucidating interactions of its protein partners 
of relatively unknown function, such as C16orf78 and CCDC105. 

TSHZ3 Subnetwork: TSHZ3 does not have a significant ERC to ACE2, yet it connects to ACE2 
through FAM3D, with which it has significant reciprocal ranks (1,9). TSHZ3 is a key regulator of 
airflow and respiratory rhythm control (Caubit et al., 2010), phenotypes that could be important in 
COVID-19 respiratory distress. Therefore, potential signaling interactions between TSHZ3 and 
FAMD3, possibly mediated by physical binding, warrant further examination. Additionally, TSHZ3 
variants are associated with amyloid-β processing and Alzheimer’s disease (Louwersheimer et 
al., 2017), and it plays a role in smooth muscle development (Caubit et al., 2008). TSHZ3 is highly 
connected within the ACE2 CRR network, with 10 reciprocal rank connections (Fig. 3). One of 
these, BRINP3, connects back to coagulation through FGA and CPB2.  

L1CAM RR Subnetwork: L1CAM is the fourth protein with a direct RR20 connection to ACE2 
(Figure 2). It was originally discovered as an important protein in nervous system development 
(Moos et al., 1988; Samatov, Wicklein & Tonevitsky, 2016). Among its other functions may be 
stem cell differentiation to vascular endothelial cells (Rizvanov et al., 2008), and it also plays a 
role in tumor vascular development (Angiolini & Cavallaro, 2017). These functions may play a role 
in its protein coevolution with ACE2. Interestingly, BMX is an RR20 to L1CAM and is known as a 
tyrosine kinase that is present in endothelial and bone marrow cells and may play a role in 
inflammatory response (Chen et al., 2014). The BMX and ACE2 proteins are encoded by 
neighboring genes on the X chromosome (Navarro Gonzalez et al., 2021) and BMX has been 
shown to potentially have two SNPs with strong linkage disequilibrium to an ACE2 SNP 
associated with the lowered circulation of angiotensin (1-7) (Chen et al., 2018). L1CAM’s top 2% 
ERC enrichment analysis shows significant terms for coagulation pathway-related (FDR = 5.4E-
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04), tumor necrosis factor signaling (FDR = 6.4E-03), and gamma-carboxylation of proteins (FDR 
= 6.7E-03). It connects to FGA through CDKN2C and to FGB through Pfn4. 

C2 The ACE2 Unidirectional Reciprocal Rank (URR) Network 

ACE2 also has highly significant ERCs with interacting proteins that are unidirectional, meaning 
that ACE2 ranks these proteins in its top 2%, but the partner protein does not rank ACE2 within 
its top 2% due to higher ERC correlations with other partners (Table 1). Some of ACE2’s highest-
ranking proteins fall into this category, including GEN1 (rank 1), XCR1 (2), IFNAR2 (5) KIF3B (6), 
and ITPRIPL2 (7), FAM227A (8), TLR8 (9), COL4A4 (10), F5 (12), and AR (13). To focus on 
strong protein connections in this set, we took the top ten proteins with unidirectional ERCs for 
ACE2 and then added their reciprocal rank 20 (RR20) partners. The resulting ACE2 Unidirectional 
Reciprocal Rank (URR) Network contains 69 proteins (Fig. 4).  

 

Figure 4. ACE2 Unidirectional Reciprocal Rank (URR) Network. ACE2’s top 10 unidirectional ERC proteins 
for a web of reciprocal rank (RR20) connections. The network is particularly enriched for cytokine signaling 
and immunity. Highly interconnected proteins include COL4A5, F5, GEN1, and IFNAR2. ACE2 is 
highlighted in purple, and blue shading intensity indicates the level of reciprocal connectivity for different 
proteins. 

Notable in the network are many proteins involved in immunity and cytokine signaling, such as 
IFNAR2 (Interferon alpha/beta receptor 2), XCR1 (X-C Motif Chemokine Receptor 1), and ICOS 
(Inducible T Cell Costimulator). There are also Toll-Like Receptors TLR8 and TLR9, which 
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stimulate innate immune activity (Forsbach et al., 2011), and Tumor Necrosis Factor related 
proteins such as TNSFS18, TNTSF15, TNFRSF9, and TNRRSF1A. 

Enrichment analysis of the URR network generates 72 significant terms (Supplementary File S3). 
The network is highly enriched for cytokine-cytokine receptor interaction (FDR = 6.5E-06), I-
kappaB kinase/NF-kappaB signaling (FDR = 1.6E-06), necroptosis (FDR = 3.3E-03), viral 
infections, such as Human Papillomavirus (FDR = 5.7E-04) and Herpes virus (FDR = 3.5E-03), 
JAK-STAT and PI3K-AKT signaling pathways, Toll-like receptor signaling, and immune system 
Homo sapiens (FDR = 3.7E-03).  

XCR1 is the 2nd highest ACE2 ERC. It is the receptor for chemokine XCL1, which is produced in 
response to infection and inflammation, and during development of regulatory T cells (Lei & 
Takahama, 2012). Furthermore, XCR1 maps to a region implicated in severe COVID-19 by a 
genome-wide association study (Severe Covid-19 GWAS Group, 2020). As seen in Figure 4, 
XCR1 forms a RR subnetwork with six other proteins (ICOS, CCR5, WDR66, TNSFS15, PRSS38, 
and FAM227A), three of which are known to be involved in immunity. ICOS (Inducible T Cell 
Costimulator) is reciprocally evolving with XCR1 based on their ERC interaction. It is an inducible 
T Cell stimulator that is essential for T helper cell responses (Hutloff et al., 1999; Tafuri et al., 
2001). In addition, ICOS signaling is impaired in COVID-19 patients requiring hospitalization 
(Hanson et al., 2020). The high ERC between ACE2 and XCR1, RR of XCR1 to ICOS, and 
evidence that both are associated with ICOS pathologies, suggest that disruption of ACE2-XCR1 
interaction could have a contributory role. C-C Motif Chemokine Receptor 5 (CCR5) forms a 
significant RR ERC with XCR1 as well. Several studies have implicated CCR5 variation and 
expression to be associated with COVID-19 severity (Gómez et al., 2020; Hubacek et al., 2021; 
Kasela et al., 2021), while others have not (Bernas et al., 2021). TNFSF15 is a third immune 
response protein in the XCR1 RR subnetwork that shows elevated expression in patients with 
severe COVID-19 (Jain et al., 2021). We recognize that the involvement of these immune-related 
proteins does not require an effect mediated through ACE2; however, their protein evolutionary 
correlations suggest that ACE2 may be part of a signaling network (perhaps modulated through 
XCR1) that is contributory.  

IFNAR2 is another protein that is highly correlated with ACE2 (ρ = 0.62, FDR = 6.1E-04) and is 
also implicated in severe COVID-19 by GWAS and expression data (Zhang et al., 2020; Liu et al., 
2021; Pairo-Castineira et al., 2021). It has RR20 ERCs with ten other proteins and is embedded 
in a complex web of interactions with members of the ACE2 network. Here we draw attention to 
a few key features. Notably, IFNAR2 and IFNAR1 are RR partners, as expected given that they 
combine to form the IFN-alpha/beta receptor, which is the receptor for both alpha and beta 
interferons. IFNAR2 forms a high RR relationship with TNFRSF1A (ρ = 0.84, FDR = 4.8E-12, 1,1 
reciprocal ranks). This protein is the receptor for TNFα and the pathway affects apoptosis and 
inflammation regulation. Jin et al. (2015) found that ACE2 deletion increases inflammation through 
TNFRSF1A signaling, lending further support to a functional association between ACE2 and this 
protein.  

GEN1 is the highest-ranking ACE2 ERC protein (ρ = 0.67, FDR = 4.2E-05), and it functions as a 
resolvase of Holliday junctions and a DNA damage checkpoint signaling (Chan & West, 2015). 
Frankly, we are perplexed by the functional significance of ACE2-GEN1 correlated evolution. As 
observed in the ACE2 network, GEN1 is a highly interconnected protein, with 14 RR20 
connections in the network. This result suggests that GEN1 may have additional functions beyond 
DNA replication. Indeed, although its second-highest RR is to CC2D1B (2,1), a protein involved 
in mitosis, its highest RR is to Interferon Lambda Receptor 1 (IFNLR1), with an impressive 
Spearman correlation of ρ = 0.89 (FDR = 6.2E-17). As IFNLR1 binds cytokine ligands and 
stimulates antiviral response, this suggests some feedback mechanism between GEN1 and the 
immune system, possibly related to its functional role in DNA damage checkpoint signaling. 
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Indeed, its top 2% ERCs show enrichment for multiple viral infection terms (Supplementary File 
S3). Therefore, it appears that GEN1 has a “hidden life” that ERC analysis suggests warrants 
exploration.  

The Collagen Type IV A4 subnetwork (Fig. 4, Fig. 5) lends further credence to the view that ERCs 
can detect proteins with likely binding partners. COL4A4 is a component of the Collagen Type IV 
protein complexes in basement membranes in the extracellular matrix of various tissues, including 
the kidney glomerulus and vascular endothelial cells, and lung alveoli (Myllyharju & Kivirikko, 
2001). COL4A4, COL4A3, and COL4A5 complex with each other in the basement membranes of 
kidney glomeruli – mutations in these COL4A proteins are known to cause different kidney 
disorders (Torra et al., 2004; Wiradjaja, DiTommaso & Smyth, 2010). Consistent with their 
expected binding, COL4A4 and COL4A3 are each other’s reciprocal best partners (ranks 1,1) and 
highly correlated with each other (ρ = 0.88, FDR = 4.4E-16). Both show highly significant ERCs 
to COL4A6 (rank 6,5 for COL4A4 ρ = 0.83, FDR = 2.1E-12; rank 22,30 for COL4A3 ρ = 0.78, FDR 
= 1.6E-10). Thus, evolutionary rate correlations show highly significant ERCs among Collagen 
Type IV proteins known to physically interact. A future direction is to use ERCs to more precisely 
define predicted coevolving protein segments, which could be used to inform docking simulations 
and experimental studies.  

COL4A5 also has significant ERCs to COL4A3 (ρ = 0.71, FDR = 2.2E-08) and COL4A4 (ρ = 0.71, 
FDR = 1.7E-08), but these do not qualify as RR20 due to the large number of high ERCs for 
COL4A5. Interesting, COL4A5-MUC15 are top-ranking partners (ranks 1,1) with a very high ERC 
(ρ = 0.89, FDR = 3.2E-16). MUC15 is a cell surface protein that is believed to promote cell-
extracellular matrix adhesion and it is implicated in affecting influenza infection (Chen et al., 2019), 
which may increase its relevance in the context of COVID-19 infection. ERCs may help to inform 
candidate domains within each protein that are involved in their expected binding affinity.  

Figure 5. COL4A4-Centric RR20 Network. This network detects reciprocal ERCs of different proteins to 
COL4A4, including other COL4A proteins known to form complexes with COL4A4.  

Coagulation Factor V (F5) is known for its role in the coagulation cascade. However, F5 is a highly 
ERC-connected protein, with 43 proteins ranking it in their respective top 5 highest ERCs. This 
connectedness is also reflected in the RR20 network shown below (Fig. 6). F5 has 16 direct RR20 
connections out of 20 possible. Although F5 is a vital protein in the coagulation cascade, its top 
16 RR connections indicate immune functions, including Interferon λ receptor 1 (IFNLR1; RR 
4,10) and Oncostatin M Receptor (OSMR; RR 1,4). This is reflected in the enrichments among its 
16 RR proteins for the JAK-STAT signaling pathway (FDR = 8.7E-03) and response to cytokine 
(FDR = 2.5E-02). Similarly, the F5 top 2% ERC show enrichments for 54 terms (Supplementary 
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File S3); notably many related to inflammatory response (FDR = 1.1E-03) and the complement 
system (FDR = 8.4E-03). The functions of several of F5’s RR20 partners are not well known, such 
as C14orf140 and C5orf34. Their top 2% enrichment suggests cytokine receptor activity (FDR = 
2.7E-02) for C14orf140, and Human Complement System (FDR = 1.9E-03) and cytokine receptor 
activity (FDR = 2.1E-02) for C5orf34. In conclusion, F5 appears to have a “secret life” of strong 
protein interactions reflecting moonlighting functions with extensive signaling or modulation roles 
beyond coagulation regulation.  

Figure 6: Coagulation factor V-centric RR20 Network. The network captures strong reciprocal 
ERCs between F5 and proteins related to immune function such as IFNLR1.  

D. ERCs and Protein Interactions  

We postulate that ERCs detect proteins that are coevolving due to functional interactions. 
Furthermore, we propose that physical binding is an important mechanism contributing to 
significant ERCs between proteins. This is consistent with anecdotal observations from this study 
of high reciprocal rank ERCs among the fibrinogen components FGA, FGB, & FGG, the Collagen 
Type IVA proteins COL4A4, COL4A3, and COL4A6 proteins, and Interferon alpha/beta proteins 
IFNAR2 and IFNAR1.  

To further investigate the role of binding affinity, we examined the mammalian protein complex 
database CORUM (Giurgiu et al., 2019) to determine whether significantly higher Spearman rank 
correlations (ρ values) are found among proteins within known protein complexes. A set of 139 
protein complexes (excluding those with overlapping proteins) were identified which contain at 
least two members from our ERC data set, for a total of 258 pairwise comparisons. We compared 
the ρ values of within complex proteins to the median values for proteins outside the complex and 
found that Spearman rank correlations of within complex proteins were significantly higher than 
its between complex values according to Wilcoxon matched signs rank tests (WMRST) under a 
significance level of α = 0.05 (p = 5.2E-04), with a median increase of 6.3% (Supplementary File 
S11). Many of the complexes contain large numbers of proteins, reducing the probability of direct 
physical contact between individual members. We therefore also analyzed only proteins from 
complexes with 5 or fewer members (96 pairs). In this case, the median ρ value increase is 15.8% 
(WMSRT p = 6.2E-03). The results support the view that proteins within known complexes show 
higher ERCs than between complexes, and further implicate physical contact as a contributor to 
ERCs. However, more detailed studies are warranted. 
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Discussion  

In this paper, we take an exploratory approach to ACE2 protein interactions using evolutionary 
rate correlations. Our key findings are that the ERC analysis predicts ACE2 to have previously 
unidentified protein partners, and to be part of interaction networks relevant to COVID-19 
pathologies. Most notably, ACE2 forms strong ERC networks relevant to coagulation and 
immunity. These networks suggest that disruptions in ACE2 function may contribute to COVID-
19 pathologies. A potential mechanism for this is a reduced abundance of membrane-bound 
ACE2 that can disrupt signaling networks. Additionally, the presence of the soluble ACE2 
ectodomain may explain the systemic pathologies of COVID-19 infection as its circulation in the 
blood can affect pathways throughout the body.  

An overwhelmingly strong pattern is an association between ACE2, its partners, and the 
coagulation pathway. This is exemplified by the enrichment for terms related to coagulation 
pathways in the CRR network, and the presence of the three proteins that form fibrinogen (FGA, 
FGB, FGG) which constitutes the clotting molecule fibrin. Abnormal clotting and coagulation such 
as “hypercoagulability” has been observed as a major symptom of COVID-19 infection (Fei et al., 
2020). Additionally, disseminated intravascular coagulation (DIC) due to COVID-19 has been 
found more frequently in fatal cases of COVID-19 than non-fatal cases (Seitz & Schramm, 2020). 
Levi et al. (2020) have noted that low-grade DIC often seen in COVID-19 is associated with a 
sudden decrease in plasma fibrinogen before death. This makes the connection with the various 
fibrinogen subcomponents even more striking. Our network data suggest that ACE2’s connection 
to fibrinogen is mediated through Clusterin and GPR141 (Fig. 3). The chaperone protein 
Clusterin’s role in removing misfolded proteins in the blood and its common association with 
fibrinogen in blood plasma (Wyatt & Wilson, 2010) lend credence to these ERC findings. What 
remains unclear is the nature of potential functional interactions between ACE2 and Clusterin, but 
the ERC results suggest that this warrants further attention. The discovery of a strong ERC 
association of Clusterin and GPR141 is a novel finding, as functional information on GPR141 is 
largely lacking. ERC analysis indicates that these proteins functionally interact, likely involving 
coagulation processes.  

Another mechanism for ACE2’s influence on the coagulation effects of COVID-19, based on 
ERCs, is through F5. F5 canonically is activated by the same enzyme (Thrombin) that converts 
fibrinogen into fibrin for clotting (Omarova et al., 2013). Omarova et al. (2013) further report that 
inhibition of F5 can enhance an anticoagulant ability of an alternate fibrinogen that utilizes a 
different isoform of FGG, fibrinogen γ′. Thus, we hypothesize that abnormal coagulation activity 
may (in part) be driven by disruptions in ACE2-F5 protein interactions, which could reduce 
anticoagulant feedback mechanisms. F5 is also found to have many significant ERCs outside of 
the coagulation pathway, connecting to various immunity-related pathways (Fig. 4, 
Supplementary File S1). The ERC results for GPR141 and F5 reveal how ERC analysis may be 
useful in providing testable hypotheses for functions of understudied proteins, and to investigate 
additional functional roles on well-studied proteins.  

A second major finding is ACE2 protein-protein interactions that connect to immunity. “Cytokine 
storms”, an overreaction of the immune system which can lead to inflammation and organ failure, 
is a second major hallmark of severe COVID-19, and its management is a major target of medical 
treatment research (Luo et al., 2020; Mangalmurti & Hunter, 2020). Chemokines are a class of 
cytokines that act as immune cell attractants (Coperchini et al., 2020), and an increase in 
chemokine production may be characteristic of COVID-19 infection (Coperchini et al., 2020). 
XCR1 is a receptor of XCL1 chemokines, mostly expressed in dendritic cells, and plays a role in 
cytotoxic immune responses (Lei & Takahama, 2012). The XCR1 protein, strikingly, is the second-
highest ERC to ACE2 and has already been implicated in severe COVID-19 infection (Severe 
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Covid-19 GWAS Group, 2020). While the specific mechanism by which XCR1 might play a role 
in severe COVID-19 is not yet known, ERC results indicate its role may be mediated by ACE2 
with XCR1’s ERCs also possibly indicating a broader functional role in coagulation. Excessive 
Inflammatory response, particularly as a consequence of cytokine storms, is a clear pathology or 
COVID-19.  

Type 1 interferons are among the first types of cytokines produced after viral infection (García-
Sastre & Biron, 2006; Sallard et al., 2020). A component of the type 1 interferon receptor, IFNAR2, 
is among the strongest ACE2 ERCs, possibly linking ACE2 to the type 1 interferon immunity 
response. Notably, IFNAR2 has been implicated in severe COVID-19 infection (Pairo-Castineira 
et al., 2021). Since type 1 interferons have shown some initial efficacy in treating COVID-19 
infection (Sallard et al., 2020), it is possible that the SARS-CoV-2 virus interaction with both 
receptor and soluble ACE2 interferes with type 1 interferon response, as low levels of type 1 
interferons have been found in COVID-19 patients (Salman et al., 2021). Another connection of 
ACE2 with immunity may be mediated by the toll-like receptor TLR8 (a strong ACE2 ERC), among 
TLRs believed to regulate platelet circulation in response to inflammation (Beaulieu & Freedman, 
2010) providing possible avenues for interaction with soluble ACE2 in blood. Genetic variants in 
TLRs (including TLR8) may affect COVID-19 susceptibility (Lee, Lee & Kong, 2020). Thus, there 
are many potential avenues for ACE2 protein interactions contributing to immune dysregulation 
in COVID-19 disease, which may warrant further investigation given the strong ERC associations 
of ACE2 with proteins relevant to immunity, although the functional bases of such interactions are 
unknown. Other ACE2 network ERCs of interest are relevant to kidney disease, cardiovascular 
disease, male fertility, Alzheimer’s disease, and DNA damage checkpoint signaling. These are 
discussed further in the Supplementary Text.  

Overall, the underlying concept behind the evolutionary rate correlation approach (also called 
evolutionary rate covariance or evolutionary rate coevolution) is that coevolving proteins will show 
correlated rates of change across evolution and that this reflects functional interactions (Clark, 
Alani & Aquadro, 2012; Wolfe & Clark, 2015). Clark and colleagues have developed a web 
interface (https://csb.pitt.edu/erc_analysis/) to screen for ERC interactions for Drosophila, yeast, 
and mammals. Their mammalian data set is based on 33 mammalian species (Priedigkeit, Wolfe 
& Clark, 2015; Wolfe & Clark, 2015). We have compared their output for ACE2 to our analyses 
and found only one overlapping protein (XCR1) between their significant ERCs (p < 0.05) and our 
top 2% ACE2 ERCs. There are many methodological differences between our approaches, 
including the number and specific mammalian taxa used, the method for calculating protein rates, 
and the phylogeny used for calculating branch lengths. In addition, their dataset includes 17,487 
proteins, whereas our analysis is currently restricted to 1,953 proteins for which we were confident 
about 1:1 orthology and therefore for which there are minimal paralogy complications. 
Furthermore, we are uncertain how their database dealt with potential short branch artifacts on 
ERC calculations. In our case, we found that short branches in the phylogeny resulted in 
significant correlations between branch time and protein rate, thus both inflating estimated ERCs 
and introducing branch time as a confounding factor which can lead to spurious correlations, and 
we removed these by branch trimming.  
 
In another study, Braun et al. (2020) applied a “phylogenetic profiling” approach to identify ACE2 
interacting proteins relevant to possible drug targets for COVID-19. Phylogenetic profiling 
generally screens multiple genomes for presence-absence correlations of protein combinations, 
as a method to detect candidate protein interactions (Pellegrini et al., 1999). However, Braun et 
al. (2020) use a modification of the method that also incorporates a BLAST-based distance metric 
from human ACE2 across taxa ranging from humans to fungi. We find no overlap in our findings 
and their results, and suggest that our direct measures of protein evolutionary rates may be a 
more sensitive approach for finding evolutionary interactions among proteins in mammals. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.05.24.445517doi: bioRxiv preprint 

https://csb.pitt.edu/erc_analysis/
https://doi.org/10.1101/2021.05.24.445517
http://creativecommons.org/licenses/by-nc-nd/4.0/


Obviously, future validation studies are needed to reveal which approaches are most effective at 
detecting candidate protein interactions, or whether each has its own merits for detection of 
different interactions.  
 
Experimental validations of novel ACE2 protein associations predicted by our ERC approach are 
clearly needed. A necessary first step is to establish whether ACE2 has binding affinities in vitro 
and in vivo with proteins showing high evolutionary correlation to it, in particular CLU, XCR1, 
GEN1, and IFNAR2. Similar binding affinity is predicted between CLU and GPR141 based on 
their high reciprocal rank ERCs. CLU-FGG and GPR141-FGB provide connections to fibrinogen 
based on their evolutionary correlations, suggesting binding affinities. Applicable methods could 
include protein complex immunoprecipitation, tagged protein analysis, and yeast-two-hybrid 
analysis (Rao et al., 2014).  
 
We have begun preliminary analyses using short (10mer) amino acid sequences to identify 
predicted sites of interaction among protein partners. These data may be able to inform protein-
protein docking simulations for protein pairs using software that allows for the incorporation of a 
priori predicted interfaces (Van Zundert et al., 2016; Pagadala, Syed & Tuszynski, 2017). For 
example, these 10mer analyses can be used to determine likely regions of binding affinity 
between ACE2 and Clusterin, for experimental validation through mutational analysis. Similarly, 
coagulation factor V shows high ERCs for non-canonical proteins, which can be investigated to 
determine whether F5 has novel functions outside of the coagulation pathway.  
 
Further computational analyses of ERCs are needed to better understand their relationship to 
protein function and evolution. For instance, machine learning and simulation approaches can be 
used to determine which aspects of protein structure, amino acid properties, and rates of protein 
evolution improve ERC predictive power. We are currently expanding the mammalian protein set 
for such analyses. Finally, if evidence mounts that ERCs can be informative in predicting protein 
interactions, the approach can be applied more broadly as an additional tool for detecting protein 
interaction networks involved in biological processes and disease. 
 

Methods  
 
Taxon Selection and Data Collection 

Our evolutionary rate correlation (ERC) approach requires orthologous protein sequence data 
across a large number of taxa with well-defined phylogenetic relationships. Calculation of 
evolutionary rates requires a resolved phylogeny of the taxa analyzed that is scaled to 
evolutionary time. ERC calculations utilize the TimeTree (Kumar et al., 2017) service to generate 
a time-scaled phylogenetic tree using the mammalian taxa that are represented in OrthoDB 
sequence data (Supplementary Fig. S1). The tree generated is in units of millions of years and is 
based on a compilation of thousands of phylogenetic-dating related studies. The tree is utilized 
as a base topology in phylogenetic analysis and its branch lengths are used to measure time for 
calculating evolutionary rates from the resultant protein trees (Supplementary Fig. S2).  

Well-defined orthologous sequence data is sourced from OrthoDB (Kriventseva et al., 2019) at 
the “mammalia” (taxonomic id: 40674) taxonomic level. Since OrthoDB sequence data is gathered 
from a variety of sources and clustered algorithmically (unsupervised), primarily based on 
sequence similarity (Kriventseva et al., 2015), related paralogous proteins are often clustered with 
each other even if canonically annotated as functionally distinct proteins. Additionally, since the 
data sources for sequences can have varying levels of completeness, most ortholog groups on 
OrthoDB are missing sequence data for one or more taxa represented in the database. So, a 
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majority of the data we selected is from single-copy ortholog groups with at least 90 of the 108 
possible mammalian taxa present. This set is fairly restrictive, however, so proteins with a possibly 
relevant function in COVID-19 pathologies (such as XCR1, and IFNAR2) in ortholog groups that 
do not meet the initial criteria (but with minimal paralogy issues) were included with paralogous 
sequences manually disambiguated based on published protein annotations. If a taxon in a given 
sequence has duplicate sequences that cannot be disambiguated, the taxon is excluded in 
phylogenetic and ERC calculations for the specific proteins involved. In total, 1,953 orthologous 
protein groups are used in analyses. Additional details on the data set are provided in the 
Supplementary Text. 

Phylogenetic Calculations and Protein Alignments 

To prepare orthologous sequence data for ERC calculation, each set of protein sequences are 
first aligned using the MAFFT software package (Katoh & Standley, 2013) using the following 
arguments: “--maxiterate 1000 --localpair --anysymbol”. Since the sequences come from data 
sources with varying levels of quality and multiple alignment programs can be imperfect, the 
aligned sequences must then be trimmed. The alignments are trimmed using the trimAl software 
package (Capella-Gutiérrez, Silla-Martínez & Gabaldón, 2009) using the “-automated1” argument 
to remove poorly aligned regions. These final prepared alignments are then used to generate 
maximum-likelihood phylogenies. The IQ-TREE software package (Minh et al., 2020) is used to 
estimate protein branch lengths (equivalent to average substitution counts per site). Specifically, 
the “LG+F+G+I” model (which utilizes an empirically derived amino acid substitution matrix) is 
used with the following additional parameters: “-B 1000 -st AA -seed 1234567890” and the 
TimeTree phylogeny is provided to constrain output tree topology to reduce possible branch 
length estimation errors with the “-g” option. These trees are the basis of ERC calculations. Protein 
branch lengths are based on the average number of changes in amino acids at each residue in 
the alignment. The resultant branch lengths are paired with corresponding branches in the 
TimeTree to quantify branch-specific rates to be used for ERC calculations (described below). 

 

Calculation of ERCs 

Our evolutionary rate correlation (ERC) method is designed to predict protein-protein interactions 
using evolutionary data (Yan, Ye & Werren, 2019), and is based on protein evolutionary rates on 
terminal branches of the mammalian phylogeny (Fig. 1). Specifically, we use a reduced 
mammalian phylogeny consisting of 60 taxa for the final ERC. This is because ERCs calculated 
with a more complete phylogeny (108 species) had short branch problems that inflate ERC 
spearman rank correlations (discussed in Supplementary Text). Most notably, there was an 
association between branch time and protein rate for many proteins, with taxonomic oversampling 
(e.g. in Primates and Rodentia) leading to many ERCs being driven by relatively short branches 
(Supplementary Text). We attempted to control for these effects initially by using a partial 
correlation method, but found that it was not sufficient (Supplementary Text). We then removed 
taxa that contributed short branches in our phylogeny based on either a 20MY or 30MY 
divergence time threshold and recalculated branch rates for all proteins. We found that the 30MY 
threshold short branch removal eliminated significant branch time to protein rate correlations for 
the majority of proteins (96%). The resultant rate data no longer has branch time to branch rate 
as a confounding cofactor, and the ERCs themselves are no longer biased by extremely short 
branches and taxonomic oversampling (Supplementary Text). Using the adjusted data set, ERCs 
are calculated for every possible combination of protein pairs for which a tree has been generated. 
Every protein pair for which an ERC is calculated has each respective tree and the TimeTree 
topology is pruned to only include the intersection of shared taxa between the two, using the 
“ETE3” Python package (Huerta-Cepas, Serra & Bork, 2016). ETE3 is also used to extract the 
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terminal branch lengths of each pruned protein tree and the TimeTree. Evolutionary rates are 
calculated by dividing the terminal protein-tree branch lengths (average substitutions per site) by 
the corresponding branch in the TimeTree (measured in millions of years). Terminal branches are 
used for calculations as they do not have shared evolutionary histories and are therefore 
independent. The resulting rates have the unit of average substitution per site per millions of 
years. Given the resultant rates, evolutionary rate correlations can then be calculated by 
performing a Spearman’s rank correlation test (Yan, Ye & Werren, 2019) using the Python 
package “SciPy” (Virtanen et al., 2020). 

Multiple Test Corrections 

P-values are corrected using the Benjamini-Hochberg FDR multiple-test correction procedure 
implemented in the Python package “statsmodels” (Seabold & Perktold, 2010). The FDR 
correction is applied to each respective protein’s set of ERCs. Correlation test results are non-
directional, but FDR corrections are dependent on the rank of each correlation’s p-values. Since 
the rank of each correlation test value on respective protein lists vary, the FDR-corrected p-values 
of a given protein pair can differ depending on the specific ERC set. An ERC is considered 
significant if the FDR-corrected p-value is less than 0.05.  

ERC Set Enrichment Analysis 

To summarize the common biological function of proteins that tend to have strong ERCs to a 
protein(s) of interest, gene set enrichment analysis is performed on the top 2% of ERCs (by ρ) of 
each protein(s) of interest (including the protein itself), including only proteins with ERCs that are 
significant following an FDR correction at a significance level of 0.05. At most, a protein of interest 
will have 41 proteins included for enrichment analysis (including itself) (2% of the total 1953 
proteins plus self). Protein set enrichment analyses are performed using the Enrichr service (Xie 
et al., 2021) via the Python bindings provided by the “GSEApy” Python package (Fang et al., 
2021) given the background of the full set of 1,953 proteins. We calculate enrichment results for 
ACE2 and all of its top 20 ERC partners. Additional enrichment analyses were also performed on 
a case-by-case basis based on relevance, including the reciprocal rank networks. Enrichments 
are performed using selected relevant term databases: KEGG_2019_Human, 
GO_Biological_Process_2018, GO_Cellular_Component_2018, GO_Molecular_Function_2018, 
Reactome_2016,WikiPathways_2019_Human, 
Tissue_Protein_Expr_from_Human_Proteome_Map, 
Tissue_Protein_Expr_from_ProteomicsDB, and Jensen_TISSUES.  

All enrichment results for terms that are significant at FDR-adjusted p < 0.05 for all analyses are 
placed into a single table, organized by the enrichment analysis focus (Supplementary File S3). 
The outputs from different databases can contain redundant terms to each other, so only the most 
significant of the redundant terms are reported for any enrichment analysis in the main text. 

Reciprocal Rank Network (RRN) Generation 

To evaluate and visualize the strongest ERCs centered around proteins of interest, “reciprocal 
rank networks” (RRNs) are produced. Reciprocal ranks refer to the fact that a significant ERC 
between two proteins can have different ranks in the two respective protein ERC lists because 
some proteins have more and higher ERCs than others. To focus on networks of proteins with 
strong reciprocal rank correlations, we have constructed networks based on proteins with 
reciprocal ranks of 20 or less (RR20), which is the top 1% in each protein's highest ERCs based 
on ρ values. Specifically, we have developed an ACE2 centric reciprocal rank network by the 
following steps (1) for ACE2, select its top 1% (20) proteins, (2) for each of those proteins, select 
additional proteins in their ERC list with reciprocal rank 20 or less, and then (3) Given the core 
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set of proteins generated in the previous two steps, connect proteins which have a unidirectional 
rank of 20 or less. 

The resultant network represents the strongest ERCs centered around a protein of interest (in 
this case ACE2), along with the immediate neighborhood of the strongest ERCs surrounding the 

protein of interest. The ACE2 Core Reciprocal Rank (CRR) was initiated with four proteins to 
which it has RR20 ERCs: CLU, TMEM63C, FAM3D, and L1CAM), with GPR141 add due to its 
RR1 strong connection to CLU and unidirectional connection to ACE2. A similar approach has 
been used to generate an ACE2 reciprocal network, initiated with the top 10 proteins to which 
ACE2 has highly significant ERCs, but that are not RR20, because the partner ranks other 
proteins higher in its ERC list, with subsequent one cycle of RR20 built upon these. This ACE2 
Unidirectional Reciprocal Rank Network” (URR) indicates strong network connections to ACE2 
through initial non-reciprocal ranking. Steps 2-3 were omitted as the network becomes extremely 
large following just the first step, and our focus is on close connections to ACE2 based on ERC 
analysis. 

 ERCs Within and Between Protein Complexes 

To compare whether calculated ERCs are stronger between known interactions versus non-
interactions, the protein complex database, CORUM (Giurgiu et al., 2019), was used to retrieve 
known complexes. The “Core Complex” dataset was downloaded and filtered for human 
complexes to eliminate redundancy, resulting in 233 protein complexes from this CORUM data 
set which have two or more components present in our 1,953 protein ERC set, representing 258 
pairwise ERC comparisons. As these protein complexes have redundancy (i.e. some complexes 
contain overlapping protein pairs), the set was further restricted to complexes containing unique 
protein components—resulting in 139 effective unique complexes considered. To test whether 
ERCs within complexes are higher than between complexes, all pairwise ERCs within complexes 
were compared to the median ρ value for each pair to proteins present in non-redundant CORUM 
set that are not in complex with either of these proteins. A Wilcoxon matched signed-rank test 
was performed using the “wilcox.test” function in base R (version 3.6.1; with parameters “paired” 
and “exact” set to “TRUE”) on the in-complex ρ values and the median out-of-complex ρ values, 
to test if the in-complex ρ values were significantly greater than the median out-of-complex ρ 
values. In addition, as there were many complexes with a majority of subcomponents not present 
in our 1,953 datasets, the likelihood of individual pairs directly interacting within the complex 
decreases with the increasing number of proteins in a complex. Therefore, an additional Wilcoxon 
matched signed-rank test was performed on members of protein complexes composed of five or 
fewer proteins.  
 
Testing Whether Branch Rates Increase When Extending Branch Time Within Clades 

To test whether increasing branch length results in increasing protein evolutionary rate, we 
selected separate phylogenetic groups (clades) from the full phylogeny (Supplementary Fig. S1) 
that contain short branch lengths. Protein evolutionary rate was calculated for each protein on the 
short branch, and then sequentially extended and recalculated after removing adjacent taxa to 
extend the branch internally (Supplementary Fig. S5). In this way, the protein evolutionary rate 
was examined as branches are extended internally in independent clades within the tree. 
Comparing original branches to the 20MY correction resulted in 14 taxa for which time scales 
would change, there are 12 taxa for which time scales change between 20MY and 30MY 
corrections, and there are 16 taxa for which time scales change between 0MY and 30MY. Tests 
on each branch’s rate against the respective adjusted rate were performed using two-tailed 
Wilcoxon Matched Signed Rank Tests (Base R v3.6.1), first for proteins of interest (e.g. ACE2) 
and then for the full protein set. Results are described in the Supplementary text. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.05.24.445517doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445517
http://creativecommons.org/licenses/by-nc-nd/4.0/


Data Availability 
Additional text, figures, and tables are available in the Supplementary Text, as are links to large 
tables and files deposited at FigShare (https://doi.org/10.6084/m9.figshare.14637450). Code for 
the ERC pipeline and additional R analyses are available on GitHub: 
https://github.com/austinv11/ERC-Pipeline. 
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