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Abstract

The occurrence of natural variation in human microRNAs has been the focus of numerous
studies during the last twenty years. Most of them have been dedicated to study the role of
specific mutations in diseases, like cancer, while a minor fraction seek to analyse the
diversity profiles of microRNAs in the genomes of human populations. In the present study
we analyse the latest human microRNA annotations in the light of the most updated catalog
of genetic variation provided by the 1000 Genomes Project. We show by means of the in
silico analysis of noncoding variation of microRNAs that the level of evolutionary constraint
of these sequences is governed by the interplay of different factors, like their evolutionary
age or the genomic location where they emerged. The role of mutations in the shaping of
microRNA-driven regulatory interactions is emphasized with the acknowledgement that,
while the whole microRNA sequence is highly conserved, the seed region shows a pattern of
higher genetic diversity that appears to be caused by the dramatic frequency shifts of a
fraction of human microRNAs. We highlight the participation of these microRNAs in
population-specific processes by identifying that not only the seed, but also the loop, are
particularly differentiated regions among human populations. The quantitative computational
comparison of signatures of population differentiation showed that candidate microRNAs
with the largest differences are enriched in variants implicated in gene expression levels
(eQTLs), selective sweeps and pathological processes. We explore the implication of these
evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of
cancer, and discuss their role in population-specific disease risk.

Keywords: microRNA, human populations, positive selection, cancer, post-transcriptional
regulation
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Introduction

MicroRNAs (miRNAs) are short (~22 nucleotides) single-stranded regulatory
non-protein-coding RNAs that perform a post-transcriptional negative control of the
expression of more than 60% of the whole human genome (Friedman et al. 2009). They are
involved in the control of almost every cellular process, including development,
differentiation, proliferation and apoptosis, and present important roles in diseases. They are
transcribed by RNA polymerase II as primary sequences, which are later processed by the
proteins Drosha and Dicer into a miRNA duplex formed by two mature miRNA strands, 5p
and 3p (Ha et al. 2014). This mature molecule is then loaded onto an AGO protein forming
the RNA-induced silencing complex (RISC), promoting the RNA silencing by translation
repression or mRNA degradation. Target gene repression is accomplished by the partial
sequence complementarity between the target mRNA and the miRNA. In this interaction, a
perfect match between the miRNA seed region, expanded across nucleotides 2-8 of the 5’
extreme, and the target site, usually located within the mRNA 3’ untranslated region, is
needed (Lewis et al. 2005; Grimson et al. 2007; Bartel et al. 2009; Berezikov 2011). Other
positions of the mature sequence may interfere in the mRNA binding, like the 3’
supplementary and compensatory sites, that enhance the seed-matched binding efficiency
(Grimson et al. 2007; Friedman et al. 2009; Bartel 2018).

miRNAs have experienced multiple periods of fast turn over and lineage-specific expansions
through their evolutionary trajectory (Lu et al. 2008; Iwama et al. 2012). Most of the current
human miRNAs originated in two accelerated peaks of miRNA expansion that are reported
during mammalian evolution: the first peak of new miRNAs was located at the initial phase
of the placental radiation, while the second and highest peak was observed at the beginning of
the simian lineage, that originated more than a half of the current repertoire (Iwama et al.
2012; Santpere et al. 2016). These miRNA expansions were implicated in the acquisition of
new regulatory tools that have been directly linked with animal complexity and evolutionary
innovations across all lineages (Hertel et al. 2006; Heimberg et al. 2008; Wheeler et al.
2009).

miRNAs can be found either in intergenic regions or being hosted by other elements, like
protein-coding and non-coding genes or repetitive elements like transposons. These are the
genomic contexts where hairpin-like transcripts initially emerge and are gradually shaped by
evolution until they become functional miRNAs (Berezikov 2011). Differences in the
genomic environment and location of miRNAs are associated with different evolutionary
properties. For example, in França et al. 2016 the authors show the association of the age of
the host gene with the breadth expression and evolutionary trajectory of recently emerged
hosted miRNAs. Duplication events are one of the main sources of new miRNAs. These can
be found close to each other when the duplication is local, forming clusters that are found to
be evolutionary related and functionally implicated in similar regulatory pathways (Wang et
al. 2016). The origin of miRNAs and their target sites are tightly related to the dynamics of
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transposable elements (TE). These are sequences that jump, replicate and insert in other parts
of the genome, generating mutations. However, apart from the damaging consequences of
these changes, they can also incorporate new functional regions in other genomic
environments (like miRNA target sites) and modify regulatory networks (Feschotte 2008;
Chuong et al. 2017). According to some authors (Piriyapongsa et al. 2007; Qin et al. 2015;
Petri et al. 2019), the expansion of new miRNAs in the primate lineage gave birth to a great
number of TE-derived miRNAs, highlighting the importance of transposons as a source of
genomic innovation.

The computational analysis of human genetic variation has traditionally been focused on
protein-coding genes, being non-protein coding sequences neglected from this kind of
studies. However, in recent years, several reports have paid more attention to the
consequences of naturally occurring variation in miRNAs (Cammaerts et al. 2015). A
signature of purifying selection shapes the miRNA diversity worldwide, revealing that human
miRNAs are highly conserved sequences that rarely accept changes in their sequences
(Quach et al. 2009), indeed miRNA expression and functionality are usually tightly subjected
to the presence of variants within (Quach et al. 2009) and outside (Borel et al. 2011) their
hairpin. Sequence changes in the premature and loop regions might generate distorsions in
their folding and affect the expression and maturation of the primary sequences (Fernandez et
al. 2017). Moreover, the occurrence of changes in the mature region and the seed (Gong et al.
2012; Hill et al. 2014; Gallego et al. 2016; He et al. 2018), which outstands as the most
conserved region of the hairpin, can dramatically affect the recognition of their target genes,
which is also affected by the presence of variants in their target sites (Li et al. 2012). All
these changes might induce massive rewirings of the miRNA regulatory networks and alter
the downstream processes, inducing gene expression changes and phenotypic variation that
might degenerate in pathogenic processes (Sethupathy and Collins 2008; Rawlings-Goss et
al. 2014; Ghanbari et al. 2017; Grigelioniene et al. 2019), but also be the origin of genetic
innovations responsible for phenotypic adaptations (Lu et al. 2012). Several authors have
reported population-specific variants that affect different dimensions of the miRNA
functionality (Saunders et al. 2007; Torruella-Loran et al. 2016) and their target sites (Li et al.
2012) and might be involved in adaptation processes. More recently, it has been reported a
clear signal of adaptive evolution in a metabolic-related miRNA responsible for adaptations
to past famine periods (Wang et al. 2020).

In this study we revisited the hosting and conservation patterns of the most complete human
miRNA catalog to date. We also performed a comprehensive computational analysis of their
diversity patterns worldwide, considering the factors that might contribute the most to the
configuration of this variation. We finally studied the population differences and putative
positive selection signals of the variable miRNAs, and looked at the potential consequences
of this variation in terms of human diseases and recent adaptation.

Results
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The genomic context of miRNAs is associated with their evolutionary age

To study the recent evolutionary history of human miRNA genes a total of 1918 precursor
miRNAs (miRBase v.22, March 2018) were considered, from which 1904 remained after
liftOver conversion to the hg19 assembly (Supplementary Table S1). From these miRNA
precursors, 50.3% presented a complete annotation of their mature sequences (5p and 3p),
while the other half presented only a single mature sequence identified in one of their arms
(Fig. 1a and Supplementary Fig. S1). First, we classified these 1904 miRNAs in groups of
conservation, according to their evolutionary age, by adapting the categories from Iwama et
al. (2013) and Santpere et al. (2016) (see Methods). In total, 1623 (85.2%) miRNAs were
classified in four different conservation categories: Primates (985, 51.7%), Eutherians (421,
22.1%), Metatheria-Prototheria (63, 3.3%) and conserved beyond mammals (154, 8%). The
remaining miRNAs (281, 14.8%) could not be classified due to the absence of data or
discrepancies between studies and were excluded from the subsequent analyses
(Supplementary Table S1).

Next, we classified miRNAs in different genomic contexts by identifying the different
elements that overlap their precursor sequences. According to GENCODE 19 (v.29) we found
that 483 (25%) miRNAs fell in intergenic regions (Intg), while 1421 were located within
protein coding genes (PC) (1217, 63.9%) and long non-coding RNAs (LNC) (204, 10.7%),
either presenting a single or multiple overlapping host genes. In our dataset we found that 856
(60%) intragenic miRNAs (protein coding and lncRNA) overlapped introns of the host
sequence, while 545 (38%) were located within exonic regions. The remaining 20 (~1%)
showed a mixture of intronic/exonic locations (Supplementary Table S1). Further, we used
the last release of the RepeatMasker database (Smit et al. 2013-2015) to identify the different
forms of transposable elements (TEs) and repetitive sequences that host miRNAs. We found
660 (35%) miRNAs overlapping TEs alone or in combination with other genes, while the
remaining 1244 (65%) were either unmasked or overlapping other forms of repetitive
sequences and genes. Interestingly, we found a strong correlation between the frequencies of
the TE-hosting miRNAs and their evolutionary age, being the primate-specific group the one
with the highest presence of miRNAs in this context (440, 23.1%; Fig. 1b). Alu (67, 6.8%),
L1 (54, 5.4%), TcMar (42, 4.2%) and the LTR elements ERV1 and ERVL (36, 3.6%) were
found mainly among the primate-specific miRNAs, while hAT (3.3%) and L2 (28, 6.6%)
elements were also present in the eutherian group (Supplementary Table S2). It is of interest
to note that the contribution of MIR (15.3%) and DNA elements like TcMar (14.8%) and hAT
(12.8%) families to the miRNA context is higher than to the whole genome (Supplementary
Fig. S2a).

We found that the genomic context increased in complexity when different elements appeared
hosting the same miRNA simultaneously. We studied the integrated hosting of miRNAs
across the conservation groups considering the different combinations of elements (Fig. 1c,
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Supplementary Table S3). This shared hosting evidences the two main sources of miRNAs:
protein coding genes (796; 41.8%) and TEs (196; 10.2%), with 401 miRNAs presenting a
combination of both (21%). As expected, the genomic context is associated with the age of
miRNAs (Chi square test = 238.25, p = 2.2e-16). This association shows that primate-specific
miRNAs present a dominance of overlapping TEs in comparison with non-primate miRNAs,
with the TE and TE + PC hosting categories being the major contributors across
environments. On the other hand, lncRNAs are highly associated with the miRNA context
among the non-primate groups, mainly in the group of miRNAs conserved beyond mammals
(Supplementary Fig. S2b).

We made use of the miRNA expression levels in 16 different human tissues extracted from
Panwar et al. (2017) (see Methods) to study their correlation across groups of conservation.
As seen in Fig. 1d, the tissue specificity is higher at lower evolutionary ages, which indicates
the limited expression breadth of young miRNAs. Also, the expression levels were correlated
with age, having the more conserved miRNAs an overall higher expression due to their
consolidated role in regulatory networks (Fig. 1e).

Due to the evolutionary relevance of the miRNA organization in the genome, we revisited the
clustering patterns of the miRBase annotations. When studying the closeness between
miRNAs, an increment of distances ranging 1-10kb was found (Supplementary Fig. S2c),
which indicates a high accumulation of close miRNAs in certain regions. According to this,
we defined that two miRNAs belong to the same cluster when they are located 10kb or closer
from each other. A total of 100 clusters were identified in the whole genome (Fig. 1f and
Supplementary Fig. S3), represented by 352 miRNA members. Two thirds of these clusters
(64) were constituted only by two genes, while 36 clusters presented more than two. Two
main clustering hotspots were observed in the chromosomes 14 (42) and 19 (46), as
previously reported by Guo et al. (2014), while the X chromosome presented a similar
amount of clustered miRNAs (57) but more widespread in different smaller groups (Fig. 1f).
A total of 1552 miRNAs were located in isolated regions. We also found a strong correlation
between the clustering patterns of miRNAs and groups of conservation (Fig. 1g). The more
conserved miRNAs tend to be found in clusters rather than in isolated regions, something
likely related to the conserved role of clustered miRNAs in similar biological processes
(Berezikov 2011; Wang et al. 2016).

Nucleotide diversity of miRNAs is strongly shaped by their age, genomic context and
localization

The genetic variation of the miRNA dataset was analysed in the different miRNA functional
regions using human genetic variation from the 1000 Genomes project (Fig. 1a; Auton A et
al. 2015). A total of 569 single nucleotide polymorphisms (SNPs) were located in 466
miRNA precursors (26.1%), but when considering a region of the same size at both sides of
the precursor sequence (5’ and 3’ flanking regions) the number of SNPs increased to 1994 in
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1026 miRNAs (55.9%). Therefore, more than half of the variability found in our miRNAs
comes from the neutral-like flanking regions. The mature sequence is considered the most
conserved and important functional region of the miRNA, since it regulates the target gene by
binding to the 3’UTR mainly through the seed region. In our dataset, 212 SNPs were present
in 194 mature sequences (7.5%), while 79 SNPs were present only in the seed region of 75
miRNAs (2.9%).

To study the sequence variation of human miRNAs we analysed the nucleotide diversity of
1904 miRNA precursor sequences described in miRBase in the pooled population sample
from the 1000 Genomes project. The genomic context refers to the environment where
miRNAs originally emerged, which might be determinant to their level of variation. We
calculated the global nucleotide diversity (Pi) in the whole precursor sequence by considering
the age, location and clustering of the miRNAs (Fig. 2). We found significant differences
when comparing the Pi of miRNAs in the different contexts (Kruskal-Wallis p = 0.013). Fig.
2a shows that miRNAs harboured by TEs exhibit a significantly higher Pi than in other
genomic contexts. Next, we examined the TE-family specific diversity of the hosted miRNAs
and wondered which TE families contribute more to this high diversity (Supplementary Fig.
S3a). We performed a multiple linear regression analysis with the different families as
predictors and found that Alu and ERVL are significantly associated with the increase of
nucleotide diversity (Alu, p = 0.013; ERVL, p = 5.11e-04).

As expected, the evolutionary age is another determinant factor in the miRNA sequence
diversity. We found that Pi presents a clear correlation with the miRNA conservation (Fig.
2b; see Methods), with significant differences among the different groups (Kruskal-Wallis p =
2.373e-11). The highest diversity was seen in the miRNAs classified as primate specific
(group 1) and the lowest in those conserved beyond mammals (group 4).

Regarding the clustering patterns of miRNAs, we found that diversity differences between
clustered and isolated miRNAs reached significant levels (Wilcoxon p = 3.663e-10) (Fig. 2c)
which, as seen before, it might be a reflection of the higher conservation of clusters due to
their functionality in cooperative processes (Wang et al. 2016; Kabekkodu et al. 2018) and
also the fact that most of the clustered miRNAs have originated after common duplication
events (Hertel et al. 2006).

Considering the above, sequence diversity levels of human miRNAs seem to be driven by
their location, age and genomic context. These factors might also determine the presence of
mutations in miRNA sequences that could affect their expression, hairpin folding and even
their ability to bind their target genes and, therefore, be determinant for their evolutionary
trajectory. Because of that, we wanted to study the integrated contribution of these factors to
the observed diversity differences. We applied a multiple linear regression model to the
diversity data and the different miRNA categories (genomic context, evolutionary age and
clustering). The regression model showed that age (being primate specific, p = 3.3e-03),
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clustering (being isolated, p = 3.6e-04) and genomic context (not being intergenic, p = 0.015)
are predictors significantly associated with the increase of Pi in human miRNAs.

An excess of diversity in the seed region is driven by a reduced number of miRNAs

The analysis of the nucleotide diversity (Pi) across different miRNA regions indicated an
overall higher diversity in the precursor and flanking regions compared to the rest of regions
(Wilcoxon test p < 0.05). Surprisingly the loop region presented the lowest diversity of the
whole miRNA hairpin (Fig. 2d). This might reflect the importance of this region in the
hairpin folding, which is determinant for the processing of the primary sequence. Previous
studies (Torruella-Loran et al. 2016) showed that the seed is the most conserved region of the
miRNA, which has been associated with its functional relevance due its central role in target
binding. However, our results showed a higher Pi in the seed than in other conserved regions,
like the mature (outside seed) and the loop (Wilcoxon pairwise comparisons p = 0.0011 and p
= 0.0056, respectively). It is worth noting that this level of diversity in the seed comes from
the variation of a small set of miRNAs (75, 2.9%), showing that, indeed, most of the human
miRNAs are conserved in their seed. On the other hand, the seed region presented values of
SNP density similar to those in the mature outside the seed (Supplementary Fig. S4b), which
suggests that, considering the values of nucleotide diversity, the seed region is more
populated by high frequency variants than the mature region. The region-specific levels of
diversity were studied in the whole range of minor allele frequency (MAF), where the seed
region was consistently found with diversity levels below the mature region until a frequency
~ 50% (Supplementary Fig. S4c). This shows that no bias in the variant content is
confounding these results. Overall, these data suggest that the high diversity observed in this
set of miRNAs might be a consequence of the specific targeting of positive selection
processes, as discussed below.

Previous reports on miRNA targeting (Grimson et al. 2007; Wheeler et al. 2009) show that
not only the seed region but also certain positions in the mature sequence are involved in
target binding. To further analyse the variation in the miRNAs, nucleotide diversity was
studied at position basis in the whole precursor sequence (Fig. 2e). As expected, the general
pattern shows that the mature sequences are located in a valley of diversity, which confirms
their overall conservation. Different levels of diversity are seen in the mature sequence. More
specifically a decrease in diversity is seen at the 3’ end, corresponding to the region known as
participating in the complementary binding of mRNAs.

Highly differentiated miRNA SNPs are enriched in signals of positive selection and
expression variation

The excess of diversity found in the seed region may respond to particular processes of
positive selection that generate frequency shifts at population level. These population-specific
changes could affect the miRNA binding to the target gene and change the targeting profiles.
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In this line, we wanted to study the population-specific patterns of diversity found within the
miRNA seed regions. In Supplementary Fig. S5 we show the Pi values of the seed regions
from a total of 60 miRNAs presenting genetic variants (DAF >= 5%) calculated in each of
the 26 populations of our study. The clustering pattern of diversity sharing among populations
reflects the similarities of demographic and potential evolutionary histories in the same
continental group. As expected, African populations (AFR) are clustered separately from the
other populations, showing the highest differentiation probably due to the Out-of-Africa
event. A higher diversity sharing is seen among the non-African populations. There are some
clear continental-specific groups of miRNAs that might be the result of demographic
dynamics and/or genetic drift, but also of local processes of positive selection on certain
alleles. Considering the group-specific membership of miRNA alleles we found that 37%
(22) are exclusively present in AFR, while 13% (8) are found in non-Africans, private or
shared among other groups (European (EUR), American (AMR), EastAsian (EAS) and South
Asian (SAS)). The other alleles are shared between African and non-African populations
(50%, 30), being 21 (35%) present in all continents.

Next, mean population differentiation (Fst) values across all possible population comparisons
were calculated for the different miRNA regions (Fig. 3a). As shown, the seed presents an
overall Fst score higher than the rest of the mature sequence in almost all the compared
groups. This tendency is stronger in comparisons including AFR populations than
non-African ones. Although demographic dynamics are generally the main cause in the
existing differentiation between populations, the high Fst values in the seed, compared to
other conserved regions like the mature (outside seed) and the loop, suggest that this region
could have been particularly targeted by processes of positive selection. Surprisingly, in
contrast with the overall low diversity values seen before, the loop region also exhibits
particularly high Fst scores in some comparisons, especially in the AFR vs SAS populations.

Further, we evaluated the potential functionality of the precursor region-specific SNPs by
contrasting their overall Combined Annotation Dependent Depletion (CADD) score
distributions, a statistic designed to measure the deleteriousness of human variants (Rentzsch
et al. 2019). As shown in Fig. 3b, the CADD scores associated with the loop and seed regions
are slightly higher than the rest of the precursor sequence, although non-significant. This
evidence reinforces the idea that these regions are specifically implicated in processes
potentially involved in adaptive selection.

We wanted to examine the extent to which the top Fst scoring SNPs participate in putative
signatures of recent positive selection. We focused on signals characterized by the presence
of long haplotypes at high (ongoing hard sweeps) and moderate frequencies (soft sweeps) in
individual populations, detected by the statistics integrated haplotype score (iHS) (Voight et
al. 2006) and the number of segregating sites by length (nSL) (Ferrer-Admetlla et al. 2014)
(see Methods). We pooled the SNP set (100, 16%) that showed extreme Fst values (>99%) in
the whole miRNA precursor sequence in all population comparisons, and explored their
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involvement in selective sweeps. Among these top SNPs we found that 23% and 18% present
extreme iHS and nSL scores (≥ 2), respectively, in at least one population, while the
proportion of highly scoring SNPs in the whole dataset is only 13.8% (iHS) and 11.5% (nSL).
This result suggests that highly differentiated SNPs in the precursor miRNA sequence are
more likely to be found in genomic regions that hold signatures consistent with recent
positive selection signatures (iHS Chi square test = 11.29, p = 7.77e-04; nSL Chi square test
= 6.74, p = 9.38e-03).

Nucleotide changes in regions involved in miRNA sequence processing (pre, loop) and target
binding (mature, seed) might affect the regulation of their target genes and, therefore,
generate expression variation that could lead to genetic disorders, but also to phenotypic
adaptations. We used the Genotype-Tissue Expression (GTEx) Project catalog (v7) of
associated eQTL-eGene pairs to study the potential impact of our miRNA-harbouring top
SNPs in gene expression variation (Aguet F et al. 2017). Among the top 100 SNPs in the
precursor sequences, 54% (54) are reported as significant expression Quantitative Trait Loci
(eQTLs) by GTEx, while the 24.7% (154) are found in the whole SNP dataset. Also, we used
the most recent release of the genome-wide association studies (GWAS) catalog (v1.0)
(Buniello et al. 2019) to evaluate the extent to which these highly differentiated SNPs are
associated with genetic diseases and traits. In this case, 5% (5) of the top SNPs present
significant associations in GWAS studies, while only 1.7% (11) are found in the whole SNP
dataset. These results indicate that highly differentiated miRNA-harbouring SNPs are more
likely to be reported as significant eQTLs (Chi-square test = 33.994, p = 5.528e-09) and
GWAS associated SNPs (Chi square test = 6.7841, p = 9.19e-03), which suggests their
implication in expression variation and human diseases.

miRNA recent evolution might be driven by targeted processes in their seed  related to
positive selection and disease

In order to identify potential miRNA candidates under the selection pressures of local
adaptations, we calculated mean Fst values in the whole mature sequence. Fig. 3c shows the
genome wide distribution of mature-specific Fst values in the three comparisons of reference
(Utah Europeans (CEU) vs Han Chinese (CHB), CEU vs Yoruba (YRI) and CHB vs YRI),
where three miRNAs are found in the top 1% (hsa-miR-1269b, hsa-miR-412-3p,
hsa-miR-4707-3p) and 22 above the 5% (Table 1). Surprisingly the three most divergent
miRNAs belong to conservation groups older than primate specific, which suggests that these
population-specific changes might respond to potential adaptations that affect
well-established regulatory pathways. These candidate miRNAs harbour 10 SNPs within
their seed regions (10 miRNAs) and 14 SNPs in other positions of the mature sequence (14
miRNAs). As seen in Fig. 3d, seed-harboring SNPs like rs2273626 (hsa-miR-4707-3p)
present the most extreme Fst scores in the candidate mature sequences and reach top values
(>99.98%) in the whole miRNA distribution. Among these, seven SNPs in both seed
(rs6771809, rs77651740, rs28655823, rs2273626, rs2168518, rs7210937, rs3745198) and
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mature regions (rs56790095, rs73239138, rs404337, rs2155248, rs61992671, rs12451747,
rs73410309) were reported by GTEx as significantly associated to gene expression variation.

As seen before, the presence of SNPs in the seed region might lead to variations of the
miRNA targeting profiles. In order to evaluate the degree of change that a single SNP might
generate, we adapted the TargetScanHuman (Agarwal et al. 2015) pipeline to predict the
allele-specific targets of the seed-variant candidates. When comparing the sets of target genes
due to the ancestral and derived alleles we observed that, among the top ten miRNAs with
SNPs in their seed, only two present a cosine similarity (see Methods) above 70%
(hsa-miR-10524-5p and hsa-miR-4513), while the other candidates fall below 23%. This
indicates the dramatic target shift that a single SNP generates and might be involved in
regulatory adaptations (Table 2).

Next, we wanted to examine these candidate miRNAs with SNPs showing the highest
population differentiation more in depth. We reviewed the literature looking for particular
phenotypes in human populations and potential regulatory processes where these variants
might be associated with. Among the ten miRNA candidates with SNPs located in the seed,
all except one (hsa-miR-10524-5p) have been related to disease and, specially, with different
types of cancers (Table 1), showing some of them differences among populations attributable
to genetic risk factors, like in breast cancer (BC), colorectal cancer (CRC) and gastric cancer
(GC) (Sung et al. 2021). Particularly, three of these miRNAs (hsa-miR-4472, hsa-miR-4513
and hsa-miR-6826-5p) were associated with BC, two (hsa-miR-4472 and hsa-miR-4741)
with CRC and two (hsa-miR-938, hsa-miR-4513) with GC. In four out of the nine miRNAs
related to disease the miRNA association was linked to the presence of the variant
(rs12416605 in hsa-miR-938, rs7210937 in hsa-miR-1269b, rs2168518 in hsa-miR-4513 and
rs2273626 in hsa-miR-4707-3p) (Table 1). When considering the 14 miRNAs candidates with
SNPs located in the mature regions we observed that, all except one, for which no previous
data have been reported (hsa-miR-6811), have been previously related to disease (Table 1).
Among the associations with cancers showing differences on their risk among populations,
five (hsa-miR-196a-3p, hsa-miR-646, hsa-miR-1269a, hsa-miR-6826-5p and hsa-miR-8084)
have been associated with BC, five (hsa-miR-196a-3p, hsa-miR-646, hsa-miR-1269a,
hsa-miR-6071 and hsa-miR-6826-5p) with CRC, and four (hsa-miR-196a-3p, hsa-miR-646,
hsa-miR-1269a and hsa-miR-1304-3p) with GC. In four out of the 13 miRNAs related to
disease the miRNAs association was linked to the presence of the variant (rs11614913 in
hsa-miR-196a-3p, rs61992671 in hsa-miR-412-3p, rs6513497 in hsa-miR-646 and
rs73239138 in hsa-miR-1269a) (Table 1).

In particular, for rs11614913 in hsa-miR-196a-3p (Fst = 0.24) the derived T allele has been
associated with a decreased risk of different types of cancers, including breast and
gastrointestinal cancers, principally in Asian populations. The frequency of the derived T
allele is higher in East Asians (~ 54%) than in Europeans (CEU ~ 44%) and remarkably
higher than in Africans (~13%) which may explain differences in the presentation of these
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types of cancer among populations and would agree with selective processes in this SNP.
Similarly, for rs12416605 in hsa-miR-938 (Fst = 0.21), the derived T allele has been reported
as a protective factor for the susceptibility to suffer a diffuse subtype of gastric cancer with
the finding of a higher frequency of the T allele in Europeans compared with Asians (~29%
vs. ~2%), which would agree with the reported higher predisposition to gastric cancer in
Asian populations (Torruella-Loran et al. 2019). In this regard, also the T allele of
rs73239138 in hsa-miR-1269a (Fst = 0.22) has been significantly associated with a decreased
risk of gastric cancer in a chinese population (Table 1).

Although most of the literature is centered on cancer diseases, other pathologies showing
population differences worldwide have been linked to some of these miRNA candidates and
SNPs. The T allele of rs11614913 in hsa-miR-196a-3p (highest frequency in Asian
populations: 54%) shows a pleiotropic effect being not only associated with cancer but also
with the risk of developing coronary artery disease (CAD) (Fragoso et al. 2019), as well as
the T allele of rs2168518 in hsa-miR-4513 (highest frequency in European populations:
61%), which has been strongly associated with increased susceptibility to CAD and other
related pathologies and physiological states showing risk differences among populations such
as glucose homeostasis, blood pressure, and age-related macular degeneration (Mir et al.
2019; Ghanbari et al. 2014 and 2017; Li et al. 2015).

Additionally, among the SNP candidates with the highest Fst scores in the top 1% is
rs2273626 (Fst = 0.57), located in the seed region of hsa-miR-4707-3p. A neuroprotective role
for the derived T allele in the progression of glaucoma has been reported (Ghanbari et al.
2017), which goes in line with the negative association of rs2273626 with the disease
(Springelkamp et al. 2017). This SNP shows a derived allele frequency of ~3% in African
populations and more than 50% in non-Africans (Fig. 4a), which would be in agreement with
the higher incidence of glaucoma in Africans (Abu-Amero et al. 2015). Furthermore, the
extended haplotype homozygosity (EHH) decay on this variant indicates the presence of
longer haplotypes harbouring the derived allele in non-African populations (Fig. 4b), which is
consistent with the occurrence of positive selection processes favouring the neuroprotective
allele since the Out-of-Africa event.

Discussion

The increasing discovery of naturally occurring variation in the human genome, together with
the improvement in annotation strategies of non-protein coding genes, has made it possible to
study the potential consequences of mutations in the human miRNAs. As a dense layer of
post-transcriptional regulation, miRNAs are expected to be highly susceptible to the
occurrence of mutations in their sequences. However, in this analysis, along with previous
studies (Carbonell et al. 2012), we discuss the unexpected level of variation in the critical
regions of these regulatory molecules and its possible relationship with evolutionary
processes associated with disease.
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We implemented a computational pipeline to annotate and analyse the nucleotide diversity
and selection signatures of the most updated catalog of genetic variation from 1000 Genomes
Project (phase III), in the most complete collection of annotated human miRNAs to date
(miRBase, v.22). We integrated the analysis of miRNA variation with the most sophisticated
software for target prediction to date, TargetScanHuman, which was adapted to predict
allele-specific target genes in seed-harbouring SNP miRNAs. This method, unlike others
previously published (Riffo-Campos et al. 2016), incorporates multiple features from target
conservation to sequence context to generate more accurate prediction scores. As a result, this
provided a robust approach to compare the allele-driven targeting and estimate the extent of
the shift generated in the gene target profiles of seed-harbouring SNP miRNAs. We also
integrated novedous statistical methods sensitive to different modes of selective sweeps (hard
and soft) to capture a wider range of selection signatures than previously reported for human
miRNAs.

Until now very few studies have considered the integrated role of the different genomic
factors that might have shaped the global diversity of the human microRNAome (Gallego et
al. 2016). Here we show that the expansion of new miRNAs in the primate lineage, their
location in the genome and the role of hosting transposable elements are significantly
associated with the increase in miRNA diversity, something that might be related with the
evolutionary boost of the miRNA system in the human genome. Furthermore, against the
common belief, here we report a global excess of variation in the seed, which appears as the
most diverse among the traditionally conserved functional regions of miRNAs. This is in
contrast with the low diversity found in the loop, which evidences the evolutionary
constraints due to its role in hairpin folding. This evidence stresses the importance of the
secondary structure in maintaining the stability of the RNA molecule and determining the
balance between miRNA biogenesis, particularly binding of the miRNA with the
Drosha-DGCR8 complex, and miRNA turnover (Han et al. 2006; Guo et al. 2015). Moreover,
the population differences found in these two regions are among the highest in the whole
precursor sequence, something compatible with targeted evolutionary-driven processes that
might be implicated in regulatory advantages. These processes are evaluated in the present
study by identifying a global enrichment in positive selection signals (selective sweeps)
among the highest differentiated SNPs across populations, showing the potential of these
miRNAs and their regulatory networks to drive population-specific adaptations in agreement
with some previously reported works (Quach et al., 2009; Li et al. 2012; Torruella-Loran et
al. 2016).

Either by changing their targeting profiles or modifying their expression levels, it is clear that
miRNA networks are more versatile to sequence changes than reported until now. We show
that a significant fraction of human miRNAs participate in gene expression variation driven
by the presence of eQTLs in their sequences. This goes in line with the regulatory plasticity
that miRNAs have proven to hold and that might be determinant in adaptive changes at
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regulatory level. However, the phenotypic consequences of adaptive changes in these
molecules are far to be properly understood. The great target breadth of miRNAs and the
massive complexity of their regulatory networks make changes in their sequences affect
multiple pathways simultaneously. Therefore, selective forces that rewire these networks
might also be behind population-specific susceptibilities to different disorders. In this line,
here we show that human miRNAs are also enriched in variants associated with specific
human traits and diseases reported by GWAS studies. In this paper we provide a collection of
miRNA alleles that were reported to affect individuals differently depending on their genetic
ancestries.

In this regard, some of the miRNAs with SNPs showing the highest population differentiation
have been found associated with diseases that show different population prevalence
worldwide. One of the clearest examples is the case of rs12416605 in hsa-miR-938, whose
derived T allele has been reported to confer protection against the diffuse subtype of gastric
cancer (GC) through one of its targets, the chemokine CXCL12 (Torruella-Loran et al. 2019),
reported as playing a critical role in cell migration and invasion (Izumi et al. 2016). This
cancer seems to be promoted by the amplified repression of CXCL12, mediated by the
rs12416605 ancestral C allele (Torruella-Loran et al. 2019), which makes C-allele carriers
more susceptible to develop GC metastasis. This would be in agreement with the finding of a
higher frequency of the T allele in European compared with Asian populations, which is
reflected by a high‐global fixation index (Fst), and may influence the existing geographical
clinical differences between Asian and non-Asian populations (Lin et al. 2015).

Among non-cancer diseases we found the T alleles of rs11614913 in hsa-miR-196a-3p and
rs2168518 in hsa-miR-4513, associated with increased susceptibility to coronary artery
disease (CAD). Although this disease seems to be highly dependent on environmental factors,
with over 60% of current cases occurring in developing countries (Beltrame et al. 2012),
population differences in CAD susceptibility are envisaged. In that context, the most striking
finding is for primary open-angle glaucoma (POAG), a complex neurodegenerative disorder,
dependent on environmental and genetic factors, that causes irreversible blindness and affects
approximately 70 million people worldwide. Recent studies report a highly biased prevalence
of the disease towards individuals with African ancestry, followed by Asians and Europeans
(Abu-Amero et al. 2015). Several genes have been found associated with the progression of
the disease by diverse GWAS studies. Among them, the caspase recruitment domain family
member 10 (CARD10) seems to confer a neuroprotective role by increasing the survival and
proliferation of retinal ganglion cells (Khor et al. 2011), whose apoptosis is enhanced in
POAG. In Ghanbari et al. (2017), the authors demonstrated by allele-specific in vitro
validation that the rs2273626 derived T-allele generates a lower repression of CARD10. A
weaker binding to the target seems to be behind this expression change, which we further
validated with TargetScanHuman, reporting a greater repression score by the ancestral allele
(0.632) than the derived allele (0.124). The authors suggest that the neuroprotective role of
CARD10 in the progression of glaucoma is associated with this lower repression, supported
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by the negative association of rs2273626 with the disease (Springelkamp et al. 2017). Here
we report that the allele-specific regulation of CARD10 through hsa-miR-4707-3p might
contribute to the ethnic disparities prevalence of POAG and that this differential regulation is
driven by processes of positive selection that promote the neuroprotective role of rs2273626
derived T-allele in non-African populations.

Here we show that, despite the strong selective pressures that maintain miRNA conservation,
several miRNA variants might have suffered the effect of positive selection and may account
for phenotypic diversity among human populations being, in some cases, related to disease.
Even though we identify some of these miRNA variants and, in certain cases, functional data
shows allele-specific regulation of specific target genes, the extent to which most of these
miRNA mutations contribute to differences in disease risk among populations remains to be
investigated. One of the main limitations of the analysis of positive selection in miRNAs is
their small size. Haplotype-based statistics like iHS and nSL rely on the detection of long
unbroken haplotypes that might span thousands of base pairs on both sides of the selected
locus, which hinder the identification of the true target of selection. The intronic origin of a
substantial number of human miRNAs also makes difficult the identification of the causal
genomic locus of the selection signature, potentially being originated either by the miRNA or
the hosting gene. The conclusive evidence to understand the contribution of miRNAs to the
recent evolutionary history of humans is the experimental validation of the
genotype-phenotype association. However, the multiple potential targets of miRNAs and the
side effects generated by sequence changes in the non-selected cellular processes makes this
validation a difficult task. New methods and more data are needed to fill this gap between the
genetic change and the phenotypic adaptation.

Materials and Methods

Human miRNA coordinates and functional region annotation

The human miRNA genomic coordinates were downloaded from the last release of the
miRBase annotation database (v.22, March 2018) (Kozomara et al. 2019,
http://www.mirbase.org/). This dataset contains the coordinates of 1918 human miRNA
precursor transcripts and their mature sequences that were converted to hg19 genome
assembly with liftOver (Hinrichs et al. 2006). From this conversion, four miRNA genes were
dropped from the original dataset, and 10 were not able to be located in any chromosome,
being also removed and leaving a total of 1904 precursor sequences. A custom script was
designed to extract the individual functional regions of each miRNA. As shown in Fig. 1a we
differentiated the “seed” region (positions 2-8), the mature (“mat”) region outside the seed,
the “loop” (region between two mature sequences) and the precursor regions (5’ and 3’ sides)
outside the mature and loop. We also considered precursor flanking regions on both sides (5’
and 3’) of each miRNA hairpin, having the same length as the whole precursor sequences. An
additional category was created in order to accommodate the regions that overlap between
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different miRNAs (“ovlp”), these miRNAs are treated differently due to the difficulty of
analysing the overlapping regions. In the analysis of region-specific diversity the miRNAs
with “ovlp” regions (71) were discarded. A different degree of mature annotation is seen in
the miRBase transcripts: 959 transcripts out of the 1904 (50.3%) present both mature
sequences annotated (5p and 3p arms), allowing to completely describe the different regions
of the precursor sequences. However, in 945 transcripts (49.7%) only one mature sequence is
reported. In these cases, the description of the whole precursor sequence is limited to the
boundaries of the single mature described (the specific boundaries of the loop region are not
able to be defined). Therefore, when extracting the functional regions of the miRNA genes,
the precursor region is considered as the whole portion that encompasses from the end of the
given mature sequence to the start of the opposite flanking region (this would retain as
"precursor" the "loop" region, the unannotated mature region and the actual premature region
of that arm). The "loop" region is only extracted when the two mature sequence coordinates
are given. These inconsistencies in the annotation of the miRNA transcripts are taken into
account throughout the analysis (Fig. 1a).

Computational analyses of genomic context, evolutionary age and clustering annotation

A computational pipeline was used to integrate the tools to annotate miRNAs, locate variants
in the miRNA sequences and perform the statistical calculations for the analysis of diversity,
positive selection and target prediction. This pipeline was adapted to work in a high
performance computing (HPC) environment based on the cluster management and job
scheduling system SLURM. In order to obtain the genomic context of miRNAs, we
intersected the GENCODE 19 protein coding gene and lncRNA gene annotations (v.29)
(Frankish et al. 2019) with the miRNA coordinates with the multipurpose software Bedtools
(Quinlan et al. 2010), which allow us to find coordinate overlaps between two or more sets of
genomic regions with a minimum overlap of 1bp (Bedtools intersect functionality). The
RepeatMasker open-4.0.5 database (repeat library 20140131) (Smit et al. 2013-2015), which
looks for interspersed repeats and low-complexity DNA (simple repeats, microsatelites), was
also used in order to define the overlap of miRNAs with repetitive elements. miRNAs were
classified based on their evolutionary age by merging the classifications obtained in Iwama et
al. (2013) and Santpere et al. (2016). We grouped the miRNAs in the following categories:
Primate-specific (group 1, previous 5 to 12 groups in Iwama et al. (2013)); Eutherians (group
2, previous 1 to 4); Metatheria and prototheria (group 3, previous -1 to 0) and Conserved
beyond mammals (group 4, previous -2 to -3). The remaining 281 miRNAs were
non-classified due to absence of data or discrepancies between the two studies in their
evolutionary age. In order to obtain the miRNA clusters, a python-based custom script was
designed to calculate the closest distance of each miRNA to any other in the same strand and
chromosome. We defined miRNA clusters as groups of two or more miRNA genes separated
by 10000 bp or less (Guo et al. 2014). The contributions of the genomic context, evolutionary
age and clustering to the nucleotide diversity were obtained by applying a multiple linear
regression model (lm), which is based on the programming language R (R Core Team 2020)

16

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445417doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445417
http://creativecommons.org/licenses/by-nd/4.0/


and seeks to estimate the relationships between these factors (predictors) and the response
variable (diversity).

miRNA genetic variation and nucleotide diversity

Human variation data from The 1000 Genomes project (third phase) (Auton A et al. 2015)
was used to annotate the human miRNA dataset. 26 different human populations accounting
for a total of 2504 individuals were considered in the analysis, including the admixed
populations from South Asia (SAS) and the Americas (AMR). We used the last version of the
program BCFtools (v.1.11) (Danecek et al. 2021), for processing and analysing
high-throughput sequencing data, to extract the variants located within the miRNA
sequences. Only biallelic SNPs with a MAF greater or equal than 1% in individual
populations and 0.5% in the global population were taken into account. In the case of
unnamed variants, these were kept and corrected by using the physical position preceded by
"rs_" as provisional SNP ID. When computing the derived allele frequency and
haplotype-based statistics, the human ancestral alleles annotated in the original VCF files
were used to format the REF and ALT fields and the corresponding genotypes of the
individuals. Any SNP whose ancestral status was unknown or did not match with the
reference or alternative alleles were removed from the dataset. The overall pairwise
mismatches per SNP (pi) were calculated with BCFtools in the whole miRNA SNP dataset,
after that the nucleotide diversity (Pi) per region was computed by obtaining the diversity per
nucleotide in the whole length (L) of each functional region (Pi = pi/L). In this way we
consider each category of region (flank, pre, mat, seed, loop) as a single sequence instead of
calculating the nucleotide diversity in the regions of the individual miRNAs. The nucleotide
diversity per position was calculated by aligning the precursor transcripts of the whole
miRNA dataset and obtaining the mean pi value at each site. In this analysis, the “ovlp”
regions were not taken into account due to the difficulty of interpreting the diversity
properties of such overlaps.

Pathogenicity and disease associations of miRNA variants

The catalog of Combined Annotation Dependent Depletion (CADD) scores (Rentzsch et al.
2019) provides a quantitative way to measure the deleteriousness of single nucleotide
polymorphisms (SNPs) in the human genome by prioritizing the functionality and diseases
causing variants. This catalog was used to assess the level of pathogenicity of
miRNA-harbouring SNPs as aproxy of their functionality. According to Kircher et al. (2014)
a threshold of PHRED-scaled CADD score ≥ 10 is normally used to discern the 1% most
deleterious SNPs of the whole human genome. We also leveraged the GWAS (v1.0) catalog
(Buniello et al. 2019) to evaluate the participation of miRNA-harbouring SNPs in human
traits.

Calculation of Fst, iHS and nSL scores
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Population fixation indexes (Fst) were computed by using the Hudson estimator of the Fst

statistic, which is not affected by the sample size and does not overestimate the Fst scores in
comparison with others (Bhatia et al. 2013), in all the variant miRNAs. The calculations were
performed by pairwise comparison between the 26 populations used from the 1000 Genome
project dataset. These Fst scores were normalized by frequency by performing a linear
regression of the estimator values and the global MAF, the residual values were used as the
final Fst scores. We extended the analysis of selection with two haplotype-based statistics:
iHS (Voight et al. 2006) and nSL (Ferrer-Admetlla et al. 2014). These tests rely on the
detection of blocks of homozygosity by the EHH statistic (Extended Haplotype
Homozygosity) introduced by (Sabeti et al. 2002). A recent positive selection signal is found
when these blocks present moderately high or intermediate frequency of derived alleles. The
iHS test is designed to detect ongoing hard sweep signals, signatures characterized by the
presence of a single sweeping haplotype at high frequency in their way to fixation. On the
other hand, nSL was designed to detect either ongoing hard and soft sweep signatures with a
greater power than iHS. In the case of soft sweeps, these are signatures of selection on
standing variation, where more than one haplotype is sweeping at intermediate frequencies.
The calculations of iHS and nSL were computed with the software selscan (Szpiech et al.
2014), an application that implements different haplotype-based statistics in a multithreaded
framework. We allowed for a maximum gap of 20kb and kept only SNPs with a minor allele
frequency (MAF) higher than 5%. This statistic is standardized (mean 0, variance 1) by the
distribution of observed scores over a range of SNPs with similar derived allele frequencies.
The standardization was performed in each population separately by using the norm function,
also contained in the selscan package (Voight et al. 2006).

Target predictions

The program TargetScanHuman (TSH, release 7.2) (Agarwal et al. 2015) was used to
perform the miRNA target predictions. The perl-based pipeline used by the authors
(http://www.targetscan.org/cgi-bin/targetscan/data_download.vert72.cgi), together with the
ViennaRNA package (Lorenz et al. 2011), were implemented locally and adapted to our
needs of performing predictions from a custom miRNA dataset. This pipeline is composed by
three different steps: (i) target site identification across the set of 3’UTR regions of the human
genome, (ii) the probability of conserved targeting (Pct) calculations and (iii) the calculations
of the context++ scores, which integrates different genomic features implicated in targeting
efficiency. miRNA families and species information were downloaded from the
targetscan.org Data Download page. In order to calculate the Pct parameters, the 3’UTR
dataset from the GENCODE version 19 (Ensembl 75) was obtained as a 84-way alignment
from the same download page. As described in Agarwal et al. (2015), only the longest 3’UTR
isoform of each gene was used as representative transcripts. In order to account for the
miRNA variation in the target predictions, the variable positions in the miRNA seed regions
(ancestral and derived states) were considered and incorporated into the TSH pipeline. Two
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different miRNA datasets were obtained when accounting for the ancestral and derived
alleles of the SNPs found in the seed regions. As described in Agarwal et al. (2015), the
accumulated weighted-scores per target gene were calculated as the sum of the individual
target site weighted-scores, which is the final score associated with each target gene. As
suggested by the authors, in order to remove the potential false positives we applied a custom
per-site-based filtering strategy. Since negative weighted scores are associated with mRNA
repression, only the per-site weighted scores below zero are considered and, from these, the
per-miRNA 50th percentile was used as threshold to obtain the putative true target sites in
each miRNA. In order to analyse the overlap between the predicted targets of the derived and
ancestral miRNA alleles we used the cosine similarity (Hill et al. 2014), which is calculated
by the total number of overlapping genes divided by the square root of the product of the
number of targets of both alleles.

Analysis of expression levels and expression variation

The catalogue of expression Quantitative Trait Loci (eQTLs) provided by the
Genotype-Tissue Expression (GTEx) Project (Aguet F et al. 2017) was used to assess the
implication of miRNA-harbouring variants in expression variation. Expression data from 16
different human tissues (bladder, blood, brain, breast, hair follicle, liver, lung, nasopharynx,
pancreas, placenta, plasma, saliva, semen, serum, sperm and testis) was taken from Panwar et
al. (2017). We used 2085 mature miRNAs from this dataset for which evolutionary age was
available. Reads per million (RPM) values were analyzed for each mature miRNA separately,
whose conservation status were determined by the precursor molecule following the
classification criteria described before. A miRNA was considered to be expressed in a
specific tissue when its reads were unequal to zero in at least one sample from that tissue. For
the comparative analyses of the expression levels among conservation groups we took the
total number of reads in the 16 tissues for all the miRNAs within each group.
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Fig. 1 Description of human miRNAs in terms of genomic context, evolutionary age groups
(see Methods), expression levels and clustering. (a) Description of the miRNA hairpin
regions identified and analysed in the study. Not all the primary sequences present two
mature sequences annotated by miRbase. When the two mature sequences are not given
(incomplete annotation), the precursor region is extended from the first mature to the other
flanking region. (b) TE-derived miRNA frequencies across conservation groups (Primates, 1;
Eutherians, 2; Metatheria and Prototheria, 3; Conserved beyond mammals, 4). (c) Integrated
hosting of miRNAs that shows the combination of the different hosting elements that overlap
with miRNA sequences. The “Other” group is made with the minor categories (PC+LNC and
PC+LNC+TE) that represent less than 1% of the total dataset (Supplementary Table S2). (d)
Number of tissues where the miRNA is expressed across evolutionary ages (e) Mean
expression level (Reads per million mapped reads; RPM) of miRNAs across evolutionary
ages (f) Whole genome clustering patterns of miRNAs. The upper plot represents the
frequency of miRNAs that belong to a certain cluster in each chromosome (Members) and the
frequency of clusters in the whole genome (Clusters). The lower plot represents the miRNA
clusters per chromosome, according to the number of members and their frequency among
the clustered miRNAs. (g) Fraction of clustered and isolated miRNAs across evolutionary
ages
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Fig. 2 Mean nucleotide diversity differences between miRNAs in different annotation
categories and functional regions. (a) Differences between the genomic contexts where the
human miRNAs are found. Wilcoxon pairwise comparisons (Bonferroni corrected) show that
transposable elements (TE) present a significantly higher diversity than other environments
(TE vs LNC, p = 0.022; TE vs Intg, p = 0.022. (b) Differences across miRNA conservation
groups (see Methods). Primate-specific miRNAs (group 1) show a significantly higher
diversity in comparison with the others (1 vs 2, p = 0.00057; 1 vs 3, p = 0.0178; 1 vs 4, p =
3.93e.10; Wilcoxon pairwise comparisons, Bonferroni corrected). Significant differences are
also seen for the miRNAs conserved beyond mammals (group 4) (4 vs 3, p = 0.0178; 4 vs 2,
p = 2.6e-05; Wilcoxon pairwise comparisons, Bonferroni corrected). (c) Differences between
miRNAs found isolated and organised in clusters. Isolated miRNAs are associated with a
significantly higher diversity than the members of clusters (Wilcoxon test, p = 3.663e-10). (d)
Diversity comparison between the different functional regions identified in the miRNA
hairpins. The seed region (2-8 nucleotides) presents a significantly higher diversity than other
conserved regions (seed vs loop, p = 0.0011 and seed vs mat, p = 0.0056; Wilcoxon pairwise
comparisons, Bonferroni corrected). (e) Mean nucleotide diversity calculated in each relative
position of the precursor miRNA. The zoomed region correspond to the diversity per position
found in the mature sequence
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Fig. 3 Analysis of Fst values across miRNA regions and candidates. (a) Mean Fst values per
miRNA region across all population comparison groups. The Fst values were calculated in all
the variant regions. (b) Combined Annotation Dependent Depletion (CADD) scores
distributions, as a measure of the predicted level of deleteriousness of the variants, across
miRNA regions (c) Manhattan plot showing the mean Fst values per miRNA mature sequence
in the three comparisons of reference. Two Fst thresholds were used to extract the potential
miRNA candidates under positive selection (1% and 5%). (d) Heatmap showing the per-SNP
Fst values of the variants found in the mature outside seed (14) and seed (10) region of the top
5% miRNA candidates, where the columns correspond to SNPs and rows to all possible
population comparisons (243)
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Fig. 4 Analysis of signatures of positive selection in the candidate SNP rs2273626. (a) World
wide MAF distribution of rs2273626. (b) Extended haplotype homozygosity (EHH) decay in
both ancestral and derived alleles of rs2273626 (upper plot) and haplotype patterns around
the ancestral and derived alleles (bottom plot) in Utah Europeans (CEU), Han Chinese (CHB)
and Peruvian (PEL) populations
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TABLES

Chr Mature ID Mature SNP Seed SNP Evolutionar
y Age

Genomic
Context

Max.
Fst

Max.
iHS

Max.
nSL CADD Disease association

1 hsa-miR-4781-3p -
rs7408514

3
Primate PC;TE 0.21 - / 1.51

- /
1.28

- / 7.85 PD1, AD2

2 hsa-miR-6071 rs56790095 - Primate PC;TE 0.21 0.67 / -
0.37 /

-
5.64 / - GB3, CRC4,5

2 hsa-miR-6811-3p rs2292879 - Primate PC;TE 0.26 2.73 / -
1.73 /

-
2.71 / - -

3 hsa-miR-6826-5p
rs11569326

6
rs6771809 Primate PC 0.27

0.22 /
1.80

0.88 /
2.22

2.92 /
1.01

CRC6, BC7

4 hsa-miR-1269a rs73239138 - Primate TE 0.22 1.84 / -
2.12 /

-
0.70 / -

GC8, HC9,10,16, CC11, BC12,
LC13,14, CRC15

6 hsa-miR-10524-5p -
rs7765174

0
Non-classifi

ed
TE 0.30 - / 1.69

- /
1.40

- / NA -

8 hsa-miR-1322 rs59878596 -
Non-classifi

ed
PC 0.23 1.33 / -

2.25 /
-

NA / - HC17, ESC18

8 hsa-miR-4472 -
rs2865582

3
Primate Intg 0.36 - / 2.02

- /
1.38

- / 2.87 BC19,20,21, PC21, CC21

8 hsa-miR-8084 rs404337 -
Non-classifi

ed
TE 0.27 1.45 / -

1.89 /
-

NA / - BC22, OC23

10 hsa-miR-938 -
rs1241660

5
Primate PC 0.21 - / 0.93

- /
1.78

- / 7.68 GC24,25

11 hsa-miR-1304-3p rs2155248 - Primate PC;TE 0.23 1.72 / -
1.13 /

-
4.44 / -

GC26, HC27, HNC28,
EM29,LC30

12 hsa-miR-196a-3p rs11614913 - Eutherians PC 0.24 1.74 / -
1.21 /

-
18.77 / -

LC31,38, HC31,33, HNC31,
GM32, OC33, BC33,35,37,81,
DM134, CAD36, CRC76,

GC77,78,79,80

14 hsa-miR-412-3p rs61992671 - Eutherians LNC 0.43 1.44 / -
1.33 /

-
15.52 / - OS39, CC40

14 hsa-miR-4707-3p - rs2273626 Eutherians PC 0.57 - / 2.33
- /

1.22
- / 10.85 POAG41, ESC42

15 hsa-miR-4513 - rs2168518
Meta/Protot

heria
PC 0.59 - / 2.09

- /
1.40

- / 5.01
CAD43,46, LC44,45, GC47,

BC48,  OSCC49

17 hsa-miR-548h-5p rs9913045 - Primate PC;TE 0.24 2.56 / -
3.28 /

-
1.31 / - GM50

17 hsa-miR-1269b rs12451747 rs7210937 Primate PC;TE 0.33
1.67 /
1.11

2.23 /
1.27

0.31 /
0.39

OPSCC51, LC52

17 hsa-miR-4739 rs73410309 - Primate LNC;TE 0.37 2.01 / -
3.08 /

-
12.73 / -

PF53, PC54, DM155,56, GC57,
AML58

18 hsa-miR-4741 - rs7227168 Eutherians PC 0.27 - / 3.37
- /

1.74
- / 13.31 MY59, HC60, CRC61, CC61

19 hsa-miR-6796-3p - rs3745198 Primate PC 0.35 - / 2.39
- /

1.63
- / 3.67 UR62

20 hsa-miR-646 rs6513497 - Primate LNC;TE 0.22 2.99 / -
3.06 /

-
6.33 / -

GC63,68, HC64, LAC65,
LC66,71, BC67, CRC69, RC70,

OS72

22 hsa-miR-3928-5p rs5997893 -
Non-classifi

ed
TE 0.23 1.36 / -

2.01 /
-

NA / - HD73, HNC74, OS75
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Table 1. Top 5% miRNA candidates of different ages and genomic contexts under putative
positive selection. The Max. Fst value represents the maximum mean Fst of the mature
sequence among the three comparisons of reference. The selection test values (iHS and nSL)
correspond to the population that exhibit the maximum value of the mature (left) and seed
SNP (right). The CADD column provides the predicted deleteriousness scores (see Methods)
of the mature (left) and seed SNP (right). Disease association for most of the candidates are
indicated in the disease column and some examples are described in the main text: AD
(Alzheimer 's disease; (2) Satoh et al. 2015), AML (acute myeloid leukemia; (58) Cattaneo et
al. 2015), BC (breast cancer; (7) Danková et al. 2020, (12) Sarabandi et al. 2021, (19) Li et al.
2020, (20) Wang et al. 2018, (21) Kim et al. 2012, (22) Gao et al. 2018, (33) Choupani et al.
2019, (35) Ahmad and Shah 2020, (37) Zhao et al. 2016, (48) Li et al. 2019, (67) Darvishi et
al. 2020), CAD (coronary artery disease; (36) Fragoso et al. 2019, (43) Mir et al. 2019, (46)
Li et al. 2015), CC (colon cancer; (11) Mao et al. 2017, (21) Kim et al. 2012, (40) Zhu et al.
2020), CRC (colorectal cancer; (4,5) Slattery et al. 2018, (6) Kijima et al. 2017; (15) Bu et al.
2015, (61) Cojocneanu et al. 2020, (69) Dai et al. 2017), DM1 (type 1 diabetes mellitus; (34)
Ibrahim et al. 2019, (55) Delić et al. 2016, (56) Li et al. 2018), EM (endometriosis; (29) Xu et
al. 2017), ESC (esophageal squamous cell carcinoma; (18) Zhang et al. 2013, (42) Bi et al.
2020), GB (glioblastoma; (3) Zhou et al. 2020), GC (gastric cancer; (8) Li et al. 2017, (24)
Torruella‐Loran et al. 2019, (25) Arisawa et al. 2012, (26) Kurata and Lin 2018, (47) Ding et
al. 2019, (57) Dong et al. 2015, (63) Cai et al. 2016, (68) Zhang et al. 2017), GM (glioma;
(32) Yang et al 2020, (50) Ji et al. 2020), HC (hepatocellular carcinoma; (9) Min et al. 2017,
(10) Xiong et al. 2015, (16) Wang et al. 2019, (17) Zhao et al. 2020, (27) Oura et al. 2019,
(60) Liu et al. 2019, (64) Wang et al. 2014), HD (Huntington disease; (73) Reed et al. 2018),
HNC (head and neck squamous cell carcinoma; (28) Petronacci et al. 2020, (74) Fadhil et al.
2020), LAC (laryngeal carcinoma; (65) Yuan et al. 2020), LC (lung cancer; (13) Jin et al.
2018, (14) Wang et al. 2020; (30) Othman et al. 2013, (31) Liu et al. 2018, (38) Wang et al.
2017, (44) Ghanbari M et al. 2014, (45) Ghanbari M et al. 2017, (52) Yang et al. 2020, (66)
Wang et al. 2020, (71) Pan et al. 2016), MY (myeloma; (59) Zhang et al. 2019), OC (ovarian
cancer; (23) Chong et al. 2015, (33) Choupani et al. 2019), OPSCC (oral and pharyngeal
squamous carcinoma; (51) Chen et al. 2016), OS (osteosarcoma; (39) Martin-Guerrero et al.
2018, (72) Sun et al. 2015, (75) Xu et al. 2014), OSCC (oral squamous cell carcinoma; (49)
Xu et al. 2019), PC (prostate cancer; (21) Kim et al. 2012, (54) Wang et al. 2020), PD
(Parkinson disease; (1) Beecham et al. 2015), PF (pleural fibrosis; (53) Wang et al. 2019),
POAG (open-angle glaucoma; (41) Ghanbari, et al. 2017), RC (renal carcinoma; (70) Li et al.
2014), UR (urolithiasis; (62) Liang et al. 2019).
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Mature ID SNP AA DA Targets (AA) Targets (DA) Overlapping
targets

hsa-miR-938 rs12416605 C T 2678 2594 573
hsa-miR-4472 rs28655823 G C 3257 835 322
hsa-miR-4513 rs2168518 G A 2532 2693 2118
hsa-miR-1269b rs7210937 G C 2437 3167 626

hsa-miR-4707-3p rs2273626 C A 1167 2592 356
hsa-miR-4741 rs7227168 C T 3665 2231 676

hsa-miR-4781-3p rs74085143 A G 2339 2724 558
hsa-miR-6796-3p rs3745198 C G 2331 2855 484
hsa-miR-6826-5p rs6771809 C T 3191 2032 517
hsa-miR-10524-5p rs77651740 G T 2853 3332 2234

Table 2. TargetScanHuman predicted target genes of the seed-variant miRNA candidates.
Two sets of target genes were predicted for each candidate holding both ancestral (AA) and
derived alleles (DA). The overlap between these two lists of target genes is provided and the
similarity is estimated with the cosine similarity (see Methods)
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SUPPLEMENTARY MATERIAL

See supplementary figures and tables in separated files. Titles and captions are provided
below.

Supplementary File 1: File including supplementary figures. Fig. S1: Number of annotated
miRNAs in miRBase and their completeness. Fig. S2: (a) Frequencies of transposable
elements whole genome and hosting miRNAs. (b) Chi square residuals of the association
between genomic context categories and evolutionary ages of miRNAs. (c) Cumulative
frequencies of distances between closely located miRNAs in the human genome. Fig. S3:
Genomic location of human miRNA clusters. Fig. S4: (a) Nucleotide diversity (Pi)
distributions of transposable elements hosting miRNAs. (b) SNP density in human miRNA
regions. (c) Mean nucleotide diversity (Pi) of miRNA regions across the whole range of SNP
MAF. Fig. S5: Mean nucleotide diversity (Pi) of miRNA seed regions in the 26 analysed
populations from 1000 Genomes Project.

Supplementary File 2: File including supplementary tables. Table S1: Annotation of the
human miRNA dataset (miRBase, v.22). Table S2: Number of miRNAs hosted by the
different transposable element families. Table S3: Number of miRNAs found in the different
genomic context categories.
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