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ABSTRACT

Dynamic properties of resting-state functional connectivity (FC) provide rich information on brain-
behavior relationships. Dynamic mode decomposition (DMD) has been used as a method to charac-
terize FC dynamics. However, it remains unclear whether dynamic modes (DMs), spatial-temporal
coherent patterns computed by DMD, provide information about individual behavioral differences.
This study established a methodological approach to predict individual differences in behavior using
DMs. Furthermore, we investigated the contribution of DMs within each of seven specific frequency
bands (0–0.1,. . . ,0.6–0.7 Hz) for prediction. To validate our approach, we confirmed whether each
of 59 behavioral measures could be predicted by performing multivariate pattern analysis on a gram
matrix, which was created using subject-specific DMs computed from resting-state functional mag-
netic resonance imaging (rs-fMRI) data of individuals. The prediction was successful, and DMD
outperformed temporal independent component analysis, a conventional data decomposition method
for extracting spatial activity patterns. Most of the behavioral measures that showed significant predic-
tion accuracies in a permutation test were cognitive-behavioral measures. Our results suggested that
DMs within frequency bands <0.2 Hz primarily contributed to prediction. In addition, we found that
DMs <0.2 Hz had spatial structures similar to several common resting-state networks. We demon-
strated the effectiveness of DMs, indicating that DMD is a key approach for extracting spatiotemporal
features from rs-fMRI data.

1. Introduction
Resting-state brain activity is formed by spatially and

temporally organized cortical networks (Greicius et al., 2003;
Ven et al., 2004; Damoiseaux et al., 2006). Functional con-
nectivity (FC) has been used extensively as a quantitative
measure for characterizing the nature of interactions between
cortical networks. It represents a temporal correlation be-
tween brain activities (Friston et al., 1993; Biswal et al., 1995).
Previous studies have reported associations between FC and
individual differences in behavior, e.g., intelligence (Song
et al., 2008), emotional intelligence (Takeuchi et al., 2013),
and personality (Adelstein et al., 2011), using large behav-
ioral datasets (Smith et al., 2015). In addition to behavior,
FC has been known to be associated with several psychiatric
diseases, e.g., Alzheimer’s disease (Wang et al., 2007), ma-
jor depression (Greicius et al., 2007), schizophrenia (Lynall
et al., 2010; Skudlarski et al., 2010), and autism (Kennedy
and Courchesne, 2008). FC provides useful information, but
it is a static measure, invariant to temporal re-ordering of
data points (Liégeois et al., 2017). Therefore, a new ap-
proach for characterizing dynamic FC has gained significant
interest.

A sliding window approach has frequently been used to
characterize dynamic FC (or time-varying FC) (Chang and
Glover, 2010; Sakoğlu et al., 2010; Kiviniemi et al., 2011;
Hutchison et al., 2013; Leonardi et al., 2013; Allen et al.,
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2014). In this approach, a temporal window with a constant
length is prepared, and dynamic FC can be assessed by cal-
culating FC over a time series of windowed segments. In
addition, consistent spatial patterns can be extracted from
dynamic FC using exploratory methods, such as clustering
or principal component analysis, and these spatial patterns
have been associated with behavior and neurodegenerative
and psychiatric diseases (Wang et al., 2016; Leonardi et al.,
2013; Damaraju et al., 2014). However, the choice of the
window length remains amatter of debate (Preti et al., 2017).
As an alternative to using a sliding window approach, a hid-
denMarkov model (HMM) has also been used (Eavani et al.,
2013; Baker et al., 2014), and consistent spatial patterns ob-
tained by HMM have been reported to be associated with
behavior (Vidaurre et al., 2017). However, there are no well-
established methods for determining the number of hidden
states for an HMM. Furthermore, because individual states
are described using spatial patterns only, the HMM does
not provide information about the temporal behavior of each
spatial pattern. HMMwith amultivariate autoregressivemodel
(HMM-MAR) has been used to describe both spatial pat-
terns that appear consistently in time and their temporal be-
havior, i.e., spectral properties (Vidaurre et al., 2016). HMM-
MAR has two drawbacks: the number of MAR parameters
escalates rapidly with an increase in hidden states; it is diffi-
cult to interpret the temporal behavior of individual hidden
states because their spectral properties consist of many fre-
quency components.

Dynamicmode decomposition (DMD), an algorithm orig-
inally developed in the field of fluid dynamics (Rowley et al.,
2009; Schmid, 2010), has gained much attention as a method
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to characterize temporal behavior of brain activity. Because
DMD can compute consistent spatial patterns that fluctuate
with a single frequency, the temporal behavior of each spatial
pattern is easily interpretable. Furthermore, DMD has al-
most no parameters that should be tuned. Pioneering studies
have demonstrated the effectiveness of the method on elec-
trocorticographic (ECoG) data and functional magnetic res-
onance imaging (fMRI) data (Brunton et al., 2016; Casorso
et al., 2019; Shiraishi et al., 2020). Features computed by
DMD can be expressed by both spatial and temporal charac-
teristics inherent in the data. Specifically, DMD computes
eigenvectors and corresponding eigenvalues of the approxi-
mate linear transformation expressing the time evolution of
multidimensional time-series data. Eigenvectors (i.e., spa-
tial characteristics) represent dynamic modes (DMs), which
are coherent spatial structures, and the corresponding eigen-
values (i.e., temporal characteristics) represent the frequency
and growth/decay rate in time. A previous study had applied
DMD to resting-state brain activity measured by means of
fMRI and investigated associations between temporal char-
acteristics of DMDand human behavioral data (Casorso et al.,
2019). Nevertheless, associations between the spatial char-
acteristics of DMD and human behavioral data remain un-
clear because a quantitative method to assess associations
between individual spatial characteristics and behavioral data
has yet to be established.

The present study had three purposes: first, establishing
a methodological approach in which individual differences
of behavioral measures can be predicted using DMs com-
puted by applying DMD to the resting-state fMRI data (rs-
fMRI) of individuals; second, investigating which frequency
band’s DMs contribute to prediction; and third, investigat-
ing whether computed DMs have spatial structures similar
to common resting-state networks (RSNs).

As input features for predicting behavioral measures, we
sought to compute a gram matrix representing the similar-
ity between individuals using subject-specific DMs. How-
ever, the similarity cannot be computed by directly compar-
ing DMs due to the lack of natural correspondence between
subject-level DMs. Therefore, we employed the Grassmann
manifold, on which a subspace spanned by a set of DMs can
be represented as a point. The similarity between two sets
of DMs is defined as the Frobenius norm between the two
points on the Grassmann manifold (Hamm and Lee, 2008).
In order to investigate the contribution of specific frequency
bands to prediction, we computed a gram matrix using DMs
within each of seven specific frequency bands (0–0.1,. . . ,0.6–
0.7 Hz). After computing gram matrices, Gaussian process
regression (GPR) was performed on the gram matrices to
predict each of the 59 behavioral measures. These behav-
ioral measures can cover seven behavioral categories (e.g.,
cognition). To validate our prediction method, we used be-
havioral and rs-fMRI data of theHumanConnectome Project
(HCP) dataset (Van Essen et al., 2013). Taken together, the
present study demonstrated that behavioral measures could
be predicted by our predictionmethodwith spatial character-
istics of DMD. Furthermore, we confirmed that DMD out-

performs temporal independent component analysis (ICA),
a conventional method to extract spatial activity patterns.
Our results emphasize the effectiveness of DMD and sug-
gest that DMD will become a promising approach to extract
spatiotemporal features from rs-fMRI data.

2. Material and methods
2.1. Dataset

We used rs-fMRI data of the HCP 1200-subjects release
(https://www.humanconnectome.org/study/hcp-young-adult/).
After consulting with the Safety Management Division at
RIKEN, we confirmed that institutional approval was not re-
quired for the use of the HCP dataset. Each functional im-
age was acquired with a temporal resolution of 0.72 s and
a 2-mm isotropic spatial resolution using a customized 3-T
Siemens Skyra scanner (Smith et al., 2013). Individual sub-
jects underwent four rs-fMRI runs of 14.4 min each (1200
frames per run), with eyes open, with a relaxed fixation on
a projected bright cross-hair on a dark background. The rs-
fMRI data were preprocessed with the HCP spatial and tem-
poral preprocessing pipelines. Briefly, spatial preprocess-
ing included spatial distortion correction, motion correction,
and transformation to the Montreal Neurological Institute
template space (Glasser et al., 2013). Temporal preprocess-
ing included high-pass temporal filtering, ICA-FIX cleanup,
andmotion-related time-course removal (Smith et al., 2013).
Details on the ICA-FIX cleanup have previously been de-
scribed (Salimi-Khorshidi et al., 2014; Griffanti et al., 2014).
Our analysis began with the preprocessed rs-fMRI data (e.g.,
rfMRI_REST1_LR_hp2000_clean.nii.gz).

We selected 59 behavioralmeasures from theHCP dataset,
which cover seven behavioral categories, i.e., cognition, alert-
ness, motor, sensory, in-scanner task performance, personal-
ity, and emotion (Supplementary Table 1). These behavioral
measures were comprised of 58 measures used in a previous
study (Liégeois et al., 2019) and a measure (i.e., CogFluid-
Comp_Unadj). In addition to the 59 measures, we used five
subject demographics, i.e., age (Age_in_Yrs), gender (Gen-
der), race (Race), education (SSAGA_Educ), and percentage
of rs-fMRI scan completion (3T_RS-fMRI_PctCompl).

The HCP 1200-subjects release includes data on 1206
healthy young adult subjects. For our analysis, we selected
subjects who met the following conditions: (i) Subjects with
no missing data for the 59 behavioral measures and five sub-
ject demographics; (ii) Subjects who completed all the rs-
fMRI runs (i.e., 3T_RS-fMRI_PctCompl); (iii) Subjects who
scored≥27 on theMini-Mental State Examination (i.e.,MMSE_Score)
(O’Bryant et al., 2008); (iv) Subjects who clearly reported
their race (i.e., we excluded subjects with "Unknown or Not
Reported"); and (v) Subjects with head motion ≤0.15 in all
the rs-fMRI runs (i.e., Movement_RelativeRMS_mean.txt).
Consequently, 829 subjects (388 men, 441 women, mean
age: 28.6± 3.7 years) were selected based on the above con-
ditions.
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Figure 1: Graphical overview of the analysis procedure. Data for individual subjects were
acquired in four resting-state fMRI runs. Using a functional atlas previously defined (Shen
et al., 2013; Finn et al., 2015), each functional image was parcellated into 268 nodes
and a time course for each node was calculated. The data for each run (i.e., R1,. . . ,R4)
were decomposed into dynamic modes (i.e., DMs: �R1,… ,�R4) using dynamic mode
decomposition (DMD). A gram matrix (i.e., KR1,… ,KR4) was created using DMs within
each specific frequency band (i.e., 0–0.1,. . . ,0.6–0.7 Hz). Note that "all" includes all
frequency bands. A Kmean was calculated by averaging all the gram matrices in each
specific frequency band. Each of the 59 behavioral measures was predicted using a mean
gram matrix and Gaussian process regression (GPR).

2.2. Data preprocessing
To remove confounding factors, age, gender, race, edu-

cation, and head motion, averaged across all the runs, were
regressed out from each behavioral measure using ordinary
least-squares regression (Liégeois et al., 2019).

For each run for each subject, a mean functional image
was computed by averaging all functional images, whichwas
subtracted from individual functional images. Each of the
subsequent functional images was parcellated into 268 nodes
based on a predefined functional atlas (Shen et al., 2013;
Finn et al., 2015). A time series for each node was calculated
by averaging the voxel-wise time series within each node, re-
sulting in a 268 × 1200 data matrix (i.e., R1,. . . ,R4 in Figure
1).

2.3. DMD
Here, we outlined the exact DMD used in the present

study. For more details, please refer to the previous study
(Tu et al., 2014).

The fMRI time series from n nodes sampled every kΔt
can be described as follows: (x1,x2,… ,xm ∈ ℝn), where
Δt represents the temporal resolution of rs-fMRI (= 0.72 s)
and m represents the number of frames (= 1200). For exam-
ple, xk is a spatial activity pattern sampled at kΔt.

Now, two (n ×m− 1) data matrices are created from the
rs-fMRI data for each run for each subject (e.g., R1 in Figure

1):

X1 =
[

x1 x2 ⋯ xm−1
]

,

X2 =
[

x2 x3 ⋯ xm
]

.

Suppose that we have an unknown linear transformation A,
such that

X2 = AX1.

In general, xk can be enormously high-dimensional. The
exact DMD of the pair X1 and X2 is given by computing
the low-rank eigen-decomposition ofA, resulting in an exact
eigenvector �i (∈ ℂn) and eigenvalue �i (∈ ℂ). Each eigen-
vector �i represents a DM (i.e., a coherent spatial structure)
and the corresponding eigenvalue �i represents its temporal
characterization (i.e., frequency and growth/decay). Conse-
quently, an approximation of the measured rs-fMRI data can
be described as an underlying dynamic model:

x(t) ≈
M
∑

i=1
�i exp(!it)bi,

where M is the number of eigenvectors (or eigenvalues),
!i = ln

(

�i
)

∕Δt, t is time, and b = �†x1.
The number of DMs given by DMD is the smaller of n

and m − 1. If DMD is performed on the pair X1 and X2,
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we obtain n DMs because of n < m − 1. Generally, there
are too few to capture the dynamics over the entire sampling
time. To avoid this problem, we increased the rank ofX1 and
X2 by constructing a new augmented data matrix (Brunton
et al., 2016)

X1aug =
⎡

⎢

⎢

⎢

⎣

x1 x2 ⋯ xm−ℎ
x2 x3 ⋯ xm−ℎ+1

⋮
xℎ xℎ+1 ⋯ xm−1

⎤

⎥

⎥

⎥

⎦

,

X2aug =
⎡

⎢

⎢

⎢

⎣

x2 x3 ⋯ xm−ℎ+1
x3 x4 ⋯ xm−ℎ+2

⋮
xℎ+1 xℎ+2 ⋯ xm

⎤

⎥

⎥

⎥

⎦

,

where ℎ is the number of times that xk is stacked vertically.
We chose ℎ = 5, which is the smallest value, such that ℎn
exceeds m − ℎ. Consequently, DMD was performed on the
pair X1aug and X2aug in the present study. In this way, we
obtained a set of DMs and corresponding temporal charac-
teristics for each run for each subject (Figure 1):

� =
[

�1 �2 ⋯ �m−ℎ
] (

�i ∈ ℂℎn
)

,

� =
[

�1 �2 ⋯ �m−ℎ
] (

�i ∈ ℂ
)

.

2.4. Construction of a gram matrix
As input features for prediction, we constructed a gram

matrix representing the similarity of DMs between subjects.
However, we could not simply compute the similarity ofDMs
using a common similarity index, such as the cosine simi-
larity, because there is no natural correspondence between
subject-level DMs. To overcome this problem, we devel-
oped a positive definite kernel k

(

�i, �j
)

referring to the
projection kernel (HammandLee, 2008), which corresponds
to the metric on the Grassmann manifold:

k
(

�i, �j
)

= ‖�∗
i �j‖

2
F (i, j = 1, 2,… , 829) , (1)

where� represents a set of DMs of individual subjects, ‖⋅‖F
represents the Frobenius norm, and the asterisk denotes Her-
mitian transpose. A subspace spanned by �i can be rep-
resented as a point on the Grassmann manifold. As such,
similarity between two subspaces (i.e., �i and �j) can be
computed by Eq. 1. Note that although the original projec-
tion kernel requires orthonormalization of �, each � is not
orthonormalized in our kernel. Our kernel was designed to
reflect the magnitudes of DMs to the projection kernel by
weighting axes in the subspaces. Using the kernel, a gram
matrix was computed from each run (e.g., KR1 in Figure 1).
Subsequently, a mean gram matrix (e.g., Kmean) was com-
puted by averaging four gram matrices.

To investigate which frequency band’s DMs are impor-
tant for prediction, we constructed a grammatrix using DMs
within a specific frequency band. Thewhole frequency spec-
trum in the rs-fMRI data reached 0.69Hz (Nyquist frequency).
The frequency spectrum was divided by intervals of 0.1 Hz
so that seven specific frequency bands (i.e., 0–0.1,. . . ,0.6–
0.7 Hz) were obtained.

2.5. Prediction analysis
We used GPR to predict individual differences of each of

the 59 behavioral measures from the mean grammatrix (Fig-
ure 1). The subjects in the HCP dataset included siblings. To
prevent the family structure from biasing prediction results,
we employed a leave-one-family-out cross-validation proce-
dure (Dubois et al., 2018a,b). Prediction accuracy was esti-
mated by calculating the Pearson correlation coefficient and
root mean squared error (RMSE) between the predicted and
true behavioral scores. To compute p values of both a corre-
lation coefficient and an RMSE value, a permutation test was
performed (10,000 times). In particular, we randomly per-
muted all behavioral scores but preserved the structure of the
mean gram matrix and performed the leave-one-family-out
cross-validation procedure. A p value corresponding to the
true correlation was defined as the probability of observing
a correlation equal to or greater than the true correlation. In
addition, a p value corresponding to the true RMSE value
was defined as the probability of observing an RMSE value
equal to or less than the true RMSE value. Consequently,
we obtained 59 p values for each correlation and RMSE. To
test the statistical significance of prediction accuracy, we ap-
plied a false discovery rate correction (q ≤ 0.05) to each cor-
relation and RMSE (Benjamini and Hochberg, 1995). The
prediction accuracy was regarded as significant only if both
the correlation and RMSE were significant.

2.6. Temporal ICA
For comparison, we performed prediction using tempo-

ral ICA. We chose temporal ICA rather than spatial ICA be-
cause there were fewer spatial dimensions of the data (268)
than temporal dimensions (1200). Before temporal ICA, global
scalingwas applied to data for each run (e.g., R1 in Figure 1).
Specifically, the individual node time-series was demeaned
and divided by the global standard deviation, the mean value
of all the standard deviations of the nodes. The subsequent
data were decomposed into independent components using
FastICA2.5 (Hyvärinen, 1999) (https://research.ics.aalto.
fi/ica/fastica/code/dlcode.shtml):

X = AS,

where X =
[

x1 x2 ⋯ xm
]

, A is the mixing matrix,
in which each column represents a spatial map, and S is the
separating matrix, in which each row represents a temporal
independent component. For each run, a gram matrix was
constructed from the spatial maps A in the same manner as
for DMD. Subsequently, a mean gram matrix was computed
by averaging four gram matrices.

2.7. Clustering of DMs
Weused themodifiedK-means to summarize entire DMs

(Pascual-Marqui et al., 1995). An individual DM �i was a
ℎn×1 vector because the spatial dimension of the augmented
data matrix was ℎn; �i is ℎ stacks of essentially identical
repeats (Brunton et al., 2016). Therefore, we used the first n
elements of individual DMs in the clustering analysis.

Because DMs are complex-valued, we could not apply
the modified K-means to them. To avoid this problem, we
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created a vector (∈ ℝ2n) containing the real and imaginary
parts of each DM and aggregated all vectors (i.e., all the runs
for all the subjects) into a matrix. We created an aggregate
matrix for each specific frequency band and applied themod-
ified K-means to individual aggregate matrices. Note that
cluster centroids were normalized such that they are of unit
vector (see Pascual-Marqui et al. (1995), for details).

The optimumnumber of cluster centroidswas determined
using the cross-validation criterion (Pascual-Marqui et al.,
1995). Specifically, we used the modified K-means while
varying the number of clusters (2–15) and chose a value that
minimized the cross-validation criterion. Finally, using the
real and imaginary parts of centroids, magnitude and phase
maps were computed separately.

We quantitatively assessed how strongly the cluster cen-
troids were related to common RSNs. Specifically, the co-
sine similarity was calculated between each magnitude map
and each of the 10 previously defined RSNs (Smith et al.,
2009) and between each phase map and each of the RSNs.

3. Results
3.1. DMD vs. temporal ICA

We investigated whether individual differences of behav-
ioral measures could be predicted from DMs and whether
DMD yielded better predictive power than temporal ICA.
DMD showed significant prediction accuracies in seven be-
havioralmeasures, i.e.,CardSort_Unadj, Flanker_Unadj,Emo-
tion_Task_Face_Acc,CogFluidComp_Unadj,WM_Task_Acc,
ReadEng_Unadj, and ER40ANG (Figure 2 and Supplemen-
tary Table 2). Scatter plots between predicted and true be-
havioral scores of individual behavioral measures are shown
in Supplementary Figure 1. These results indicated that in-
dividual differences in the behavioral measures could be pre-
dicted from DMs. Temporal ICA showed significant predic-
tion accuracies in three behavioralmeasures, i.e.,WM_Task_Acc,
ReadEng_Unadj, and NEOFAC_E; two of these significant
measures were also significant in DMD.Althoughwe did not
statistically compare prediction accuracies between DMD
and temporal ICA due to not being able to estimate the vari-
ability of each prediction accuracy, DMD was found to out-
perform temporal ICA. On the other hand, we did not ob-
serve significant prediction accuracies in many behavioral
measures.

3.2. Prediction results in different frequency bands
We investigated which frequency band’s DMs were im-

portant in prediction and into which categories significant
behavioral measures fell. First, we found that the use of all
the frequency bands provided better predictive power than
the use of individual-specific frequency bands (Figure 3).
Most of the significant prediction accuracies were observed
in the cognition category, i.e.,CardSort_Unadj, Flanker_Unadj,
CogFluidComp_Unadj, andReadEng_Unadj. Frequency bands
<0.2 Hz showed some significant prediction results, which
were also significant in "all". On the other hand, no signifi-
cant prediction accuracies, except for twomeasures (i.e., En-

durance_Unadj and Taste_Unadj), were observed in high-
frequency bands (≥ 0.2 Hz).

3.3. Cluster centroids of DMs
We computed cluster centroids of DMs obtained from all

the runs for all the subjects and investigated the relevance
of the centroids to the common RSNs. We chose the opti-
mum number of clusters for each frequency band based on
the cross-validation criterion (Supplementary Figure 2). The
optimum number of clusters in the 0–0.1 Hz band was ten,
and those in the other bands were two or three.

Magnitude and phase maps of 10 centroids in the 0–0.1
Hz band are displayed in Figure 4a. Cosine similarities of
these maps with the 10 common RSNs (Smith et al., 2009)
are displayed in Figure 4b. In magnitude, the medial visual
area (Med-Vis) was strongly associated with centroids 3, 5,
7, and 8. The lateral visual area (Lat-Vis) was moderately
related to centroid 3. The default mode network (DMN) was
associated with centroids 9 and 10. The executive control
(EC) showed associations with centroids 1, 2, 6, and 9. The
left frontoparietal area (L-FP) wasmoderately related to cen-
troid 6. On the other hand, in-phase, the DMN showed as-
sociations with centroids 1 and 10. The sensorimotor area
(SM) was related to centroid 6. The EC was associated with
centroid 3.

Clustering results in the other frequency bands are dis-
played in Supplementary Figures 3–8. In the magnitude of
the 0.1–0.2 Hz band, the Med-Vis was strongly associated
with centroids 2 and 3, and the EC was related to centroid
1. In the magnitude of the frequency bands (≥ 0.2 Hz), only
the ECwas related to several centroids frommulti-frequency
bands. In-phase, almost no centroids showed associations
with the RSNs.

4. Discussion
The main goal of the present study was to establish a

methodological approach to predict individual differences of
human behaviors from the spatial characteristics of DMD
(i.e., DMs). Fifty-nine behavioral measures covering seven
behavioral categories were chosen from the HCP dataset,
and individual differences of each behavioral measure were
predicted using DMs computed from the rs-fMRI data. We
observed significant prediction accuracies in seven of these
behavioral measures, indicating that the prediction was suc-
cessful. A previous study had already clarified the associa-
tions between temporal characteristics of DMD (i.e., eigen-
values) and behavioral measures using canonical correlation
analysis (Casorso et al., 2019). Therefore, our study pro-
vides an understanding of the link between the properties
of resting-state DMs and human behaviors. Another note-
worthy difference between the present study and Casorso
et al. (2019) is that while Casorso et al. (2019) employed a
correlational approach, we employed a prediction approach.
We evaluated the generalizability of DMs-behavior relation-
ships. For comparison, we used temporal ICA and found
that DMD outperformed temporal ICA. These results sug-
gest that DMs, spatial-temporal coherent patterns, yield bet-
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Figure 2: Comparison of prediction results between dynamic mode decomposition (DMD)
and temporal independent component analysis (ICA). Prediction accuracy (Pearson corre-
lation coefficient) for each of the 59 behavioral measures is presented. Asterisks indicate
prediction accuracies that were significant in both the correlation and root mean squared
error (q ≤ 0.05).
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Figure 3: Comparison of prediction results among different frequency bands. Prediction
accuracies (Pearson correlation coefficient) for each frequency band are presented. Note
that "all" indicates prediction results obtained by using all the frequency bands, so that
the results are the same as those of the dynamic mode decomposition shown in Figure 2.
Asterisks indicate prediction accuracies that were significant in both the correlation and
root mean squared error (q ≤ 0.05). All the behavioral measures were classified into seven
categories, each of which was colored.

ter predictive power than spatial activity patterns computed
by temporal ICA. Furthermore, the prediction analysis with
specific frequency bands suggests that DMs <0.2 Hz pri-
marily contribute to prediction. In addition, we found that
DMs had spatial structures similar to the RSNs, suggesting
that the well-known RSNs (e.g., the DMN) have coherent
dynamics in the resting-state brain activity. Our study high-
lighted the importance of the data decomposition approach
for extracting consistent brain activity patterns in both space
and time.

4.1. Prediction results in DMD
Across all 59 behavioralmeasures (Figure 2), DMD showed

an average prediction accuracy of correlation = 0.0233, and
ICA showed an average prediction accuracy of correlation =
0.0115. HCP MegaTrawl (https://db.humanconnectome.org/
megatrawl/) predicted HCP behavioral measures using func-
tional connectivity (i.e., partial correlation) computed from
rs-fMRI data. In the HCP MegaTrawl, prediction accura-
cies for 48 of 59 behavioral measures were reported. Across
the 48 behavioral measures, the HCPMegaTrawl showed an
average prediction accuracy of correlation = -0.0254 (de-
confounded space). Since the HCP MegaTrawl employed a
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different methodological approach from our own (e.g., re-
moving confounding factors, regression model, and cross-
validation procedure), these average prediction accuracies
could not be simply compared. Nevertheless, DMD seems
to be comparable to typical functional connectivity.

4.2. Spatial-temporal coherent patterns
We found that DMD showed better predictive power than

temporal ICA. Temporal ICA decomposes rs-fMRI data into
spatial components that are temporally independent of each
other, while DMD decomposes it into spatial components
that have coherent dynamics with a specific frequency. Our
results indicated the importance of spatial-temporal coherent
patterns in the resting-state brain activity and supported our
previous study (Shiraishi et al., 2020). That study investi-
gated whether three types of handmovement could be classi-
fied using DMs computed from ECoG signals and compared
classification accuracies betweenDMDand fast Fourier trans-
form (FFT). DMD outperformed FFT. Taken together with
the current study results, this suggests that spatial activity
patterns with coherent dynamics encode a variety of infor-
mation, ranging from motor function to higher-order cogni-
tive function.

4.3. Grassmann manifold
Weused theGrassmannmanifold to facilitate direct com-

parison of subject-specific DMs. The use of the Grassmann
manifold led to the successful prediction of behavioral mea-
sures. The Grassmann manifold has been used in a pioneer-
ing study in the field of image identification (Hamm and Lee,
2008). In the neuroscience field, a study used the Grass-
mann manifold to compare individual-specific independent
components computed from rs-fMRI data and succeeded in
distinguishing patients with schizophrenia from healthy con-
trols (Fan et al., 2011). Our recent study adopted the Grass-
mann manifold to compute the similarity between sets of
DMs and indicated its effectiveness (Shiraishi et al., 2020).
Therefore, our prediction results supported these previous
findings. On the other hand, a previous study avoided the
problem of the lack of natural correspondence between indi-
vidual DMs by computing group DMs (Casorso et al., 2019).
In particular, the previous study imposed subject-specificDMs
to be equal to the group DMs and obtained subject-specific
temporal characteristics corresponding to the group DMs.
Although the approach is valid, this requires the calculation
of group DMs. The Grassmann manifold allows direct com-
parison of individual DMs with no additional computational
cost.

4.4. Categories of significant behavioral measures
For prediction results obtained using all frequency bands

(i.e., "all" in Figure 3), most of the significant prediction ac-
curacies were observed in the cognition category. On the
other hand, only one significant prediction accuracy (i.e.,
ER40ANG) was observed in the emotion category. The re-
sults are partially consistent with those of a previous study
that performed a canonical correlation analysis between tem-
poral characteristics of DMD computed from rs-fMRI data

and 158 HCP behavioral and demographic subject measures
(Casorso et al., 2019). Specifically, the previous study found
two significant canonical modes linking temporal character-
istics and subject measures, and the modes correlated with
27 subject measures. Note that some subject measures cor-
related with both the modes. The cognition category was
the most common category into which the 27 measures fell,
followed by the emotion category. Although it is difficult
to make a direct comparison between our own and the pre-
vious results because of the use of different methodological
approaches, the comparison has an intriguing implication,
that is, both spatial and temporal characteristics of rs-fMRI
data encode information about individual differences in be-
havioral measures in the cognition category, while, unlike
temporal characteristics, spatial characteristics moderately
encode information about individual differences in emotion
category measures.

4.5. Contribution of specific frequency bands to
prediction

Using all the frequency bands (i.e., "all" in Figure 3) was
found to provide better predictive power than using a spe-
cific frequency band. This suggests that DMs from multi-
frequency bands contain complementary information about
individual differences among multiple frequency bands. In
fact, combining biomarkers from multi-frequency bands has
been found to improve the classification accuracy of schizophre-
nia (Huang et al., 2019).

We found some significant prediction accuracies in fre-
quency bands <0.2 Hz, which were also significant in "all."
These results suggest that prediction results of "all" primar-
ily arise from DMs <0.2 Hz. In comparison with the 0–0.1
Hz band (the typical band for rs-fMRI), the 0.1–0.2 Hz band
has attracted less attention in previous rs-fMRI research. How-
ever, several previous studies on rs-fMRI have reported in-
triguing findings: stronger spectral power (approximate 0.12–
0.2 Hz) in patients with chronic pain than in control sub-
jects (Malinen et al., 2010; Baliki et al., 2011), a relationship
between the slow-3 band (0.073–0.198 Hz) and personality
(Ikeda et al., 2017), differences in amplitude of the slow-
3 band between healthy subjects and those with psychosis
(Gohel et al., 2018), and the moderately high classification
accuracy of schizophrenia based on the slow-3 band (Huang
et al., 2019). These previous findings have indicated the im-
portance of the 0.1–0.2 Hz band in rs-fMRI research, which
was supported by our present results. On the other hand, we
found only two significant prediction accuracies in higher
frequency bands (≥ 0.2 Hz), which were not significant in
"all." Although the higher frequency bands seem to provide
less predictive power than the lower frequency bands (< 0.2
Hz), they may encode information about individual differ-
ences that differ from those encoded by the lower frequency
bands. Together, this study emphasizes the need for further
investigation of not only the typical band but also frequency
bands >0.1 Hz in rs-fMRI.
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4.6. Relations between DMs and RSNs
For frequency bands <0.2 Hz, most magnitude maps of

centroids were found to relate to the five common RSNs
(i.e., 0–0.1 Hz: Med-Vis, Lat-Vis, DMN, EC, and L-FP;
0.1–0.2 Hz: Med-Vis and EC). A pioneering study that ap-
plied DMD to rs-fMRI data computed representative DMs
and found that the representative DMs had spatial structures
similar to the DMN and visual area (Casorso et al., 2019).
For frequency bands of ≥0.2 Hz, intriguingly, only the EC
had associations with centroids frommulti-frequency bands.
These results suggest that many representative DMs in the
lower frequency bands (< 0.2 Hz) but not those in the higher
frequency bands (≥ 0.2 Hz) had spatial structures similar
to common RSNs. This supports our implication that DMs
<0.2 Hz contribute to prediction. The range of 0–0.1 Hz is a
well-known frequency band in rs-fMRI research. Actually,
a previous study reported that the major frequency contri-
butions to resting-state FC resulted from fluctuations <0.1
Hz (Cordes et al., 2001). Furthermore, RSNs have also been
observed in the 0.1–0.2 Hz band (Wu et al., 2008; Salvador
et al., 2008; Baria et al., 2011; Niazy et al., 2011; Gohel and
Biswal, 2015;Wang et al., 2018, 2020). These previous find-
ings are consistent with our results. However, other previ-
ous studies found RSNs in frequency bands of >0.2 Hz (Lee
et al., 2013; Boubela et al., 2013; Gohel and Biswal, 2015;
Wang et al., 2020). The inconsistency between the previous
results and our results may imply that it is difficult to extract
DMs that have a spatial structure similar to those of RSNs
in the high-frequency range. A previous rs-fMRI study in-
vestigated time-frequency dynamics of coherence between
different regions within the DMN and found that the coher-
ence tends to decrease with an increase in the fMRI signal
frequency (Chang and Glover, 2010). The previous findings
suggested that, with an increase in fMRI signal frequency, it
is difficult to compute spatial activity patterns that have co-
herent dynamics (i.e., DMs) from rs-fMRI data. This may
explain the inconsistent results.

For the 0–0.1 Hz band, phase maps of centroids showed
associations with some RSNs (i.e., the DMN, SM, and EC).
Becausemany previous rs-fMRI studies have discoveredRSNs
using Pearson correlation coefficient, it is reasonable to think
that brain regions constituting RSNs fluctuate synchronously
(i.e., phase coherence). Phase maps in the 0.1–0.2 Hz band
did not show associations with RSNs, even though magni-
tude maps in the frequency band were related to some RSNs.
Furthermore, for the higher frequency bands (≥ 0.2), almost
no phase maps were related to RSNs. It seems that these
results may be explained by previous findings (Chang and
Glover, 2010) that showed that the coherence between re-
gions of RSNs tends to decrease with an increase in fMRI
signal frequency.

4.7. Limitations
The present study had some limitations. First, we used

only spatial characteristics of DMD in order to predict indi-
vidual differences of behavioral measures. As shown by a
previous study, temporal characteristics of DMD also con-

tain information about individual differences in various hu-
man behaviors (Casorso et al., 2019). A previous study pro-
posed kernels containing information about both spatial and
temporal characteristics (e.g., Koopman trace kernel) (Fu-
jii et al., 2017). It is deemed desirable to compute a gram
matrix using the proposed kernels. Second, although DMD
can be applied to rs-fMRI data without using parcellation,
we employed it due to considerations of the computational
cost. Third, the present study used only rs-fMRI data of the
HCP dataset. Previous studies demonstrated the difficulties
of using multi-site rs-fMRI data (Turner et al., 2013; Nielsen
et al., 2013). Further investigation of the effectiveness of
DMD on rs-fMRI data from multi-sites is needed. Fourth,
we used cosine similarity to evaluate the similarity between
phase maps and RSNs. The phase is cyclic; � and −� are
different values, but are the same in terms of phase. On the
other hand, RSNs were all ICA spatial maps. This raises
doubt about whether the similarity between phase maps and
RSNs can be computed using cosine similarity. However, at
present, there is no valid alternative for computing similarity
between phase maps and RSNs.

5. Conclusions
The present study succeeded in establishing the method-

ological approach to predicting individual differences in be-
havioral measures from DMs that are inherent in rs-fMRI
activity. It indicated that DMD outperformed temporal ICA.
The prediction analysis based on specific frequency bands
suggested that DMs<0.2 Hz largely contribute to the predic-
tion. This was supported by the clustering analysis, in which
we found many spatial structures similar to RSNs frommag-
nitude maps of <0.2 Hz but not those ≥0.2 Hz. Further-
more, DMs may primarily encode information about indi-
vidual differences in cognitive-behavioral measures. Taken
together, our findings emphasize the superiority of DMD in
the data decomposition approach for extracting spatiotempo-
ral features from rs-fMRI data. Future studies should investi-
gate whether DMs can be used as a biomarker for psychiatric
diseases, which will facilitate a deeper understanding of the
effectiveness of DMD.
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Figure 4: Clustering results (0–0.1 Hz). (a) Magnitude and phase maps of 10 centroids.
An axial image (z = 38) for each map is shown superimposed on the skull-stripped version
of the Montreal Neurological Institute (MNI152) standard space template image. (b)
Cosine similarities between magnitude maps and the 10 resting-state networks (RSNs) and
between phase maps and the RSNs. The 10 RSNs are as follows: the medial, occipital
pole, and lateral visual areas (Med-Vis, OP-Vis, and Lat-Vis), the default mode network
(DMN), the cerebellum (Ce), the sensorimotor area (SM), the auditory area (Aud), the
executive control (EC), and the right and left frontoparietal areas (R-FP and L-FP).
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