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Abstract 23 
Investigating the spatial distribution of genetic and phenotypic variation can provide insights into 24 
the evolutionary processes that shape diversity in natural systems. We characterized patterns of 25 
genetic and phenotypic diversity to learn about drivers of color-pattern diversification in red-26 
eyed treefrogs (Agalychnis callidryas) in Costa Rica. Along the Pacific coast, red-eyed treefrogs 27 
have conspicuous leg color patterning that transitions from orange in the north to purple in the 28 
south. We measured phenotypic variation of frogs across Pacific sites, with increased sampling 29 
at sites where the orange-to-purple transition occurs. At the transition zone, we discovered the 30 
co-occurrence of multiple color-pattern morphs. To explore possible causes of this variation, we 31 
generated a SNP dataset with RAD sequencing to analyze population genetic structure, measure 32 
genetic diversity, and infer the processes that mediate genotype-phenotype dynamics. We 33 
investigated how patterns of genetic relatedness correspond with individual measures of color 34 
pattern along the coast, including testing for the role of hybridization in geographic regions 35 
where orange and purple phenotypic groups co-occur. We found no evidence that color-pattern 36 
polymorphism in the transition zone arose through recent hybridization or introgression. Instead, 37 
a strong pattern of genetic isolation by distance (IBD) indicates that color-pattern variation was 38 
retained through other processes such as ancestral color polymorphisms, ancient secondary 39 
contact or generated by novel mutations. We found that color phenotype changes along the 40 
Pacific coast more than would be expected from geographic distance alone. Combined, our 41 
results suggest the possibility of selective pressures acting on color pattern at a small geographic 42 
scale.  43 
 44 
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 47 
Introduction 48 

A central goal of evolutionary biology is to understand how phenotypic variation is 49 
generated, distributed, and maintained in natural systems (Mayr, 1963; Mitchell-Olds et al., 50 
2007). Color pattern is a phenotype well-suited for evolutionary study because it is easily 51 
quantifiable and often has adaptive value (Cott, 1940; Orteu & Jiggins, 2020). Many compelling 52 
examples of natural selection in the wild have come from studying color-pattern variation across 53 
diverse empirical systems (e.g. Corl et al., 2010; Hoekstra et al., 2004; Lowry et al., 2012; Maan 54 
et al., 2008; Pfeifer et al., 2018; Rosenblum et al., 2006; Streisfeld & Kohn, 2005; Supple et al., 55 
2015; Twomey et al., 2015). In animals, color and color pattern play important ecological roles, 56 
for example as a deterrent to predation (crypsis, aposematism), as a signal to conspecifics (mate 57 
choice, territoriality), or both (Cummings & Crothers, 2013; Rojas, 2016; Selz et al., 2016; 58 
Stevens & Merilaita, 2009). Accordingly, color and color pattern are often shaped by selection, 59 
and variation in color traits can provide insight into the evolutionary dynamics that shape 60 
diversity. Color variation within a species can be distributed at a regional level with little 61 
variation within sites (polytypic), found at a single locality (polymorphic), or both (e.g., Wang & 62 
Summers, 2010). The distribution of color variation within species can provide particular insight 63 
on the spatial scale over which evolutionary dynamics act (Svensson, 2017). 64 

Quantifying the distribution of phenotypic and genetic variation in color polytypic and/or 65 
polymorphic species can provide insights into the processes maintaining phenotypic variation on 66 
a microevolutionary scale. A variety of evolutionary scenarios could explain polytypic and 67 
polymorphic patterns of variation. For example, polytypic variation can persist when there is 68 
limited gene flow among populations due to environmental, geographic, or reproductive barriers 69 
or selection against maladapted migrants (Endler, 1973; Lehtonen et al., 2009; Rosenblum et al., 70 
2006, 2010). Conversely, little variation across populations is expected when there is substantial 71 
gene flow among morphs or if color is under stabilizing selection (Duftner et al., 2006; Slatkin, 72 
1985). Polymorphic variation within populations can arise through novel mutations, 73 
contemporary gene flow, the retention of ancestral polymorphism, and/or ancient secondary 74 
contact (Lim et al., 2010; Roland et al., 2017). Polymorphism often occurs at transition zones 75 
between distinct morphs (Planes & Doherty, 1997). In such contact zones, hybridization could 76 
increase phenotypic variation if hybrids have novel color phenotypes (Akopyan et al., 2020b; 77 
Anderson & Stebbins, 1954). While quantifying color-pattern variation can be straight-forward, 78 
determining the underlying evolutionary processes that generate and/or maintain variation 79 
presents a challenge and an opportunity to understand phenotypic evolution in natural systems.  80 

The striking color-pattern variation of red-eyed treefrogs, Agalychnis callidryas Cope 81 
1862, provides an excellent system in which to study the mechanisms of extreme phenotypic 82 
variability. Red-eyed treefrogs are distributed from central Mexico to northern Colombia 83 
(Campbell, 1999; Savage & Heyer, 1967) and are variable in flank and leg color-pattern across 84 
their range (Robertson & Robertson, 2008; Robertson & Zamudio, 2009). Flank and leg color are 85 
not sexually dimorphic, do not change within individuals as a response to light intensity (Schliwa 86 
& Euteneuer, 1983) and are known to be heritable based on breeding studies (J.M. Robertson, 87 
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unpublished data). Four distinct flank and leg color morphs exist in Costa Rica and Panama: 88 
blue, red/blue, orange, or purple (Robertson & Robertson, 2008). Across their range, red-eyed 89 
treefrogs are polytypic, but generally not polymorphic (Robertson & Robertson, 2008; Robertson 90 
& Vega, 2011), except in a narrow contact zone on the Caribbean slope of Costa Rica (Akopyan 91 
et al., 2020b). Flank and leg color-pattern likely evolve through both sexual selection due to 92 
preference for local morphs during mate choice (Akopyan et al., 2018; Jacobs et al., 2016; Kaiser 93 
et al., 2018) and natural selection for color pattern to potentially act as a warning signal to 94 
predators (Davis et al., 2016; Robertson & Greene, 2017, Clark unpublished). Thus, the 95 
evolutionary dynamics and impacts of selection have likely shaped the polytypic and 96 
polymorphic distributions of color pattern in red-eyed treefrogs.  97 

We focused on populations of red-eyed treefrogs from mainland and peninsular 98 
populations of the Pacific slope of Costa Rica. Red-eyed treefrogs on the Pacific and Caribbean 99 
slopes are isolated from one another by the Cordillera de Talamanca (Robertson & Zamudio, 100 
2009). On the Pacific slope, color variation is characterized by a north-south gradient: in the 101 
north, frogs generally have orange flanks and legs (orange morph), while in the south, they 102 
display purple flanks and legs (purple morph, Fig. 1). Previous work on Pacific populations 103 
revealed a complex relationship between geography, color pattern, mitochondrial and nuclear 104 
markers (Robertson et al., 2009). Within the Pacific slope, northern and southern sites do not 105 
share mitochondrial haplotypes, except at a single centrally located site (Robertson and Zamudio 106 
2009; Fig. 1, Site 4; Table 1). The Pacific slope is geographically and environmentally complex: 107 
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Figure 1. Map indicating the 12 sampling sites for red-eyed treefrogs (Agalychnis callidryas) along the 
Pacific coast of Costa Rica. Each site is assigned to one of six biogeographic regions: Nicoya, north, central 
1, central 2, Osa, and south. Insets A and B: red-eyed treefrog (Agalychnis callidryas) color morphs, drawn 
from photographs, illustrate color patterns typical of northern orange (A) and southern purple (B) regions 
(illustrations: Cynthia J. Hitchcock).  
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two peninsulas, the Nicoya and Osa, are potentially isolated from mainland sites through 108 
geographic barriers and inhospitable habitat (Robertson et al., 2009). Recent field sampling 109 
efforts identified polymorphic sites where color pattern transitions from the orange to the purple 110 
morph (Central 2, Fig. 1). We aim to understand the evolutionary processes underlying both 111 
polytypic and polymorphic color-pattern distributions on the Pacific coast.   112 

In this study, we document the distribution of polytypic and polymorphic color patterns 113 
across the orange-purple color-pattern gradient and combine those data with a genomic dataset 114 
generated using RAD-seq to understand the evolutionary mechanisms that generate and maintain 115 
patterns of diversity. We expanded sampling from previous studies to examine genomic ancestry 116 
across and within orange, purple, and polymorphic sites to determine whether recent 117 
hybridization explains polymorphism in the transition zone. We expected our data to support one 118 
of two hypotheses regarding polytypic patterns: (1) purple and orange morphs represent distinct 119 
genetic demes, consistent with selection for premating reproductive isolation among these 120 
morphs (Akopyan et al., 2018), or alternatively, (2) samples along the coast are characterized by 121 
a pattern of genetic isolation by distance (IBD) that is not correlated with phenotypic variation, 122 
which could indicate local selection acting to maintain color morphs (Fig. 2A). At polymorphic 123 
sites in the transition zone, we combine analyses of color pattern, genetic variation, and 124 
relatedness to infer if either (1) reproductive isolation prevents gene flow between orange and 125 
purple morphs, as evidenced by distinct parental groups and a lack of hybrid individuals, (2) 126 
polymorphic sites represent a contact zone between orange and purple morphs, with genetic 127 

Figure 2. Hypotheses and predictions tested by this study. (A) Genetic predictions based on the polytypic 
color-pattern distribution of two color morphs on the Pacific slope of Costa Rica. (B) Possible genetic and 
phenotypic outcomes and inferences when considering the transition zone where polymorphism is observed.  
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hybrids and novel color patterns present, or (3) orange, purple, and novel morphs are present at 128 
polymorphic sites, but with no genetic differentiation between morphs at neutral markers. This 129 
third scenario would suggest that either color-pattern polymorphism was retained from an 130 
ancestral population, there has been ancient secondary contact, or that novel morphs have been 131 
generated by new mutations (Fig. 2B). Integrating analyses of variation at both large (polytypic) 132 
and small (polymorphic) scales, we are able to illuminate how color pattern evolves at 133 
microgeographic scales.  134 
 135 
Methods 136 
Field sampling and study sites 137 

Our study focused on 12 sites along the Pacific coast of Costa Rica, west of the 138 
continental divide (Fig 1). Previous studies characterized red-eyed treefrogs at northern sites 139 
(Sites 1–8) as orange and at a southern site as purple (Site 12) (Robertson & Vega, 2011). Here, 140 
we expanded previous geographic sampling (Robertson et al., 2009) by adding six sites to assess 141 
fine-scale variation in phenotype and genotype, including: the central coast (Site 3), the Osa 142 
Peninsula (Sites 9 and 10), mainland adjacent to Osa Peninsula (Sites 5 and 6), and Gulfo Dulce 143 
(Site 11). We included 9–25 individuals from previously sampled sites, and 3–20 individuals 144 
from new sites (Table 1). We bred frogs from Site 2 with frogs from Site 12 in captivity at 145 
California State University, Northridge (IACUC 1819-005) to produce F1 hybrids to serve as 146 
controls in ancestry analyses (see genomic analyses below).   147 

We grouped sites together into six regions based on potential geographic barriers, and 148 
divisions between phenotypic and known genetic groups (Fig. 1). The Nicoya Peninsula (Site 1) 149 
is geographically isolated from all mainland populations by dry forest, which is an unsuitable 150 
habitat for red-eyed treefrogs. The Central 1 (Sites 3-4) region is separated from the North (Site 151 
2) based on distinct mtDNA haplotypes (Robertson & Zamudio, 2009). The Central 2 region 152 
(Sites 5-7) contains both orange and purple frogs whereas frogs in the South (Sites 11-12) only 153 
have purple legs. The Terraba and Sierpe Rivers separate the Osa Peninsula (Sites 8–10) from 154 
the mainland (Kohlmann et al., 2002; Robertson & Vega, 2011).  155 
 156 
Table 1. Location, geographic coordinates, sample size, mtDNA clade (Robertson & Zamudio, 2009) and 157 
genetic diversity for 12 sampling sites of red-eyed treefrogs (Agalychnis callidryas) along the Pacific coast of 158 
Costa Rica. MtDNA haplotype not identified (––) for some sites. Estimates of nucleotide diversity (π) and Wu 159 
and Watterson’s theta (θw) based on RADseq dataset. See Fig. 1 for region designations. 160 

 161 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445051doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445051


6 
 

At each site, we captured frogs by hand and took digital photographs with a black-white-162 
gray standard (QPcard 101, Adorama Camera Inc., New York, New York) of the posterior aspect 163 
of their legs (for samples collected before 2015, see Robertson & Robertson 2008, Robertson & 164 
Vega 2011; for samples collected in 2015 see Akopyan et al. 2020b) We obtained a toe clip for 165 
genomic analyses, which was stored in 100% ethanol. Frogs were released within one day at the 166 
site of capture. We also took a toe clips from eight lab-bred F1 hybrids.  167 
 168 
Quantifying color pattern 169 
Photos were color corrected in Photoshop CC v. 18.0.0 (Adobe, San Jose, CA) using the black-170 
white-gray standard. To quantify color pattern, we focused on the posterior leg because leg and 171 
flank color-pattern were found to be strongly correlated in previous work (Robertson & 172 
Robertson, 2008). The colored region of the frogs’ legs can be either uniform in color or contain 173 
a gray/blue patch on the inner leg (Suppl. Fig. 1). In all cases, we excluded the patch and selected 174 
the colored region of one leg and used the average function in Photoshop to measure hue, 175 
saturation, and brightness (Adobe, San Jose, CA). Because orange and purple have similar hue 176 
values, the saturation and brightness values were useful to distinguish color pattern within and 177 
among populations (Robertson & Robertson, 2008). We used ImageJ (Abràmoff et al., 2005) to 178 
quantify the percent of pixels on the leg that were covered by the gray patch, which was easily 179 
distinguished from the dominant portion of the leg using saturation values. 180 

We used principal component analysis (PCA) in R v. 3.5.3 (R Core Team 2016) based on 181 
hue, saturation, brightness, and percent gray of the hind legs to visualize the distribution of color 182 
variation among red-eyed treefrog populations within and among regions. We conducted a 183 
discriminant function analysis (DFA) using the MASS package in R v. 3.5.3. to test whether 184 
individuals were correctly assigned to their site of origin based on hue, saturation, brightness, 185 
and percent gray.  186 
 187 
 188 
Table 2. Discriminant function analysis of leg color pattern for 12 sampling sites of red-eyed treefrogs 189 
(Agalychnis callidryas) along the Pacific coast of Costa Rica. Each individual was classified based on its leg 190 
color pattern and assigned to a sampling site. 191 

 192 
 193 
 194 
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Molecular methods 195 
DNA was extracted from frog toe clips using a DNeasy Blood and Tissue kit (Qiagen, Valencia, 196 
CA) per the manufacturer’s protocol, except as described below. We eluted DNA in 50 uL AE to 197 
increase concentration. After extraction, 4 uL of 1 mg/mL RNAse A was added to each sample 198 
to remove RNA contamination. DNA concentration was measured using a Qubit 2.0 Fluorometer 199 
(ThermoFisher, Waltham, MA). Restriction site associated DNA sequencing (RAD-seq) libraries 200 
(Ali et al., 2016; Etter et al., 2011) containing samples from 12 sites and eight lab-bred F1 201 
hybrids were prepared with restriction enzyme sbf1. We included 4 to 20 individuals per site 202 
(Table 1). Libraries were sequenced on one lane of a HiSeq4000 (PE 150; Illumina San Diego, 203 
California).  204 
 205 
Quality filtering and SNP calling 206 
We processed RAD-seq data as in Akopyan et al. (2020). Briefly, raw reads with the cut site on 207 
the reverse read were rescued using a custom Perl script. The clone_filer program in STACKS 208 
(Catchen et al., 2013) was used to remove PCR clones. Sequence data were demultiplexed using 209 
the process_radtags function in STACKS. Reads containing base pairs with a phred score less 210 
than 10 were removed. We used ustacks in STACKS for de novo assembly, requiring a minimum 211 
of three reads to create a stack, and a maximum of four base-pair differences between stacks. A 212 
pseudo-reference genome was created using a custom Perl script. Over half of the individuals 213 
had to have a stack for it to be used in the pseudo-reference genome. Reads were aligned to the 214 
pseudo-reference genome using the program BWA v. 0.7.15-r1142 (Li & Durbin, 2009). 215 
Samtools v. 1.9 (Li et al., 2009) was used to index, sort, and merge alignments. We used 216 
Bcftools v. 1.3.1 (Li, 2011) to call variants and create a VCF file. The data were filtered using a 217 
custom Perl script to retain a single SNP per contig. Loci with mean allele frequencies <0.5% 218 
and individuals with >70% missing data were not included in subsequent analyses. Pipeline and 219 
scripts are available online (Akopyan et al., 2020a). 220 
 221 
Population genomic analyses 222 
We calculated measures of genetic variability, population pi (π) at polymorphic sites, and Wu 223 
and Watterson’s theta (θw, Watterson 1975), in R using custom scripts. Bayesian clustering 224 
methods in the program entropy (Gompert et al., 2014) were used to estimate admixture 225 
proportions and interpopulation ancestry. We excluded sites 1 and 8–10 from the entropy 226 
analysis to limit the dataset to putative parental and hybrid groups based on admixture 227 
proportions. To assess the possibility of hybridization across sites, we plotted interpopulation 228 
ancestry (Q12) against admixture proportion (q) (Gompert & Buerkle, 2016). Interpopulation 229 
ancestry, the proportion of an individual’s genome where each allele at a locus is from a different 230 
putative parental group, separates out F1 hybrids (Q12 near 1), multigenerational hybrids 231 
(intermediate Q12) and individuals with late-stage hybrid genomes (Q12 near 0). The lab-reared 232 
F1 hybrids served as a useful control for what we expect for F1 hybrids. Multigenerational 233 
hybrids were expected to show elevated interpopulation ancestry, but below that of F1 hybrids. 234 

We ran Mantel tests in R package ade4 (10,000 replicates) to test for patterns of genetic 235 
and phenotypic IBD and for a relationship between genetic and phenotypic distance (Chessel et 236 
al., 2004). We assumed frogs would avoid crossing bodies of saltwater, so we calculated 237 
distances among populations as over-land geographic distances. We calculated pairwise FST 238 
between sites in the R package BEDASSLE (Bradburd et al., 2013; Weir & Hill, 2002). To 239 
calculate the genetic distance among individuals, we conducted a PCA in R using our genomic 240 
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SNP data, and calculated the Euclidean distance among the first four axes of the principal 241 
components (Shirk et al., 2017). Increasing the number of principal components used did not 242 
change test results. We estimated phenotypic distance by calculating the pairwise Euclidean 243 
distance of hue, saturation, brightness, and percent gray. A QST–FST or PST–FST approach is not 244 
justified for this study because we did not measure phenotype in a common garden, and the 245 
genetic basis of color pattern in red-eyed treefrogs is unknown (Pujol et al., 2008).  246 

Because we observed a strong pattern of genetic IBD (see Results), we used the R 247 
package conStruct to assess genetic clustering while accounting for divergence resulting from 248 
geographic distance (Bradburd et al., 2018). The spatial model in conStruct estimates admixture 249 
proportions for each sample while simultaneously accounting for decay in genetic relatedness 250 
with distance within each genetic grouping. We ran spatial and non-spatial models using K-251 
values one through seven. We assessed the biological importance of each added K-value by (1) 252 
comparing the contribution of each layer to overall covariance, (2) cross validation analysis that 253 
compares the predictive accuracy of models using eight replicates and 1000 iterations, and (3) 254 
assessing the biological realism of the model given previous knowledge of the system.  255 

To evaluate phenotypic patterns while accounting for genetic relatedness, we fit three sets 256 
of Bayesian models implemented in rstan (Stan Development Team, 2018): (1) we modeled 257 
individual phenotype measurements (hue, saturation, brightness, and PC1) each as a function of 258 
latitude, (2) we modeled the average phenotype for each site as a function of latitude, and (3) we 259 
modeled phenotypic variation at a site as a function of latitude or θw. All models included a 260 
covariance structure that was a function of the genetic relatedness between individuals. We used 261 

Figure 3. Principle component analysis of leg phenotype for red-eyed treefrogs (Agalychnis callidryas) 
sampled from 12 sites along the Pacific coast of Costa Rica. Lines connect individuals (small dots) with 
the mean phenotype of each sampling site (large dots). Individuals and means are color coded by region. 
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latitude as a proxy for a site’s location along the Pacific coast. These models allowed us to detect 262 
variation in phenotype above and beyond that explained by covariance at putatively neutral 263 
genetic markers.  264 

 265 

Results 266 
Phenotypic variation 267 
Phenotypic patterns along the Pacific coast matched previous studies: frogs had orange legs and 268 
flanks in the northern regions and purple flanks and legs in the south. We confirmed that the 269 
three sites in the Central 2 region were polymorphic. The first two principal components in our 270 
PCA explained 75.6% of the total variance in measured leg color metrics (Fig. 3). Sites in the 271 
Nicoya, North and Central 1 regions (orange legs) formed one cluster in phenotypic space, and 272 
sites in the South (purple legs) formed another. Sites in the Central 2 region were generally 273 
intermediate, but closer to the orange cluster. Osa sites were variable: Site 10 clustered with the 274 
purple/south sites, Site 8 clustered with the orange/northern sites, and Site 9 was intermediate. 275 
The DFA revealed three phenotypic groups (Table 2). Individuals from the Nicoya had 100% 276 
correct assignment. The majority of frogs were correctly assigned to their region of origin, with 277 
the exception of orange frogs, which were frequently assigned to phenotypically similar sites 278 
(Table 2). Frogs from polymorphic sites in the Central 2 region also had high misclassification 279 
probabilities (Table 2). Most (72.7%) purple individuals from the South were assigned to the 280 
correct region. Over half of the individuals from the Osa were assigned to the correct site; 281 

Figure 4. Principle component analysis of genomic SNPs for red-eyed treefrogs (Agalychnis callidryas) 
sampled from 12 sites along the Pacific coast of Costa Rica. Dots represent individuals and are color coded 
by region. Green dots are lab generated hybrids between Site 2 and Site 12.  
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misclassified individuals were most often assigned to sites with color patterns similar to their 282 
respective Osa site (e.g., 26% of purple morph frogs from Site 10 were misassigned to Site 11, 283 
another purple morph site).  284 
 285 
Genetic variation 286 
After filtering, we retained 71,746 SNPs in 174 individuals. The mean coverage per SNP was 287 
9.3X. Descriptive statistics indicated similarity in genetic diversity among sites, with the 288 
exception of Site 1, which had lower genetic diversity (Table 1). Pairwise FST values ranged 289 
from 0.025 to 0.412 (Table 3). The PCA revealed genetic clustering corresponding to geographic 290 
regions (Fig. 4). Combined, the first two principal components explained 12.6% of variation. The 291 
Nicoya, North, Central 1, the Osa, and the lab-generated hybrids were genetically distinct, while 292 
South and Central 2 regions clustered together.  293 

The comparison of admixture proportion (q) and interpopulation ancestry (Q12) from 294 
entropy showed no evidence of hybridization when parental populations were assigned as North 295 
and South. Lab-generated hybrids had intermediate admixture proportions and high 296 
interpopulation ancestry scores, as expected. No wild frogs had elevated interpopulation ancestry 297 
scores (Fig. 5).  298 
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Figure 5. Scatterplot of admixture proportion (q) and interpopulation ancestry (Q12), the proportion of an 
individual’s genome where one allele is assigned to each parental group, for red-eyed treefrogs (Agalychnis 
callidryas) sampled from 5 sites along the Pacific coast of Costa Rica. Dots represent individuals and are color 
coded by region (see Fig. 1 legend). Only lab generated hybrids (green) show high interpopulation ancestry 
indicative of hybrid origin.  
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 299 
Genotypic and phenotypic patterns 300 
Mantel tests revealed a strong positive relationship between geographic and genetic distance (r = 301 
0.965, p <0.001) and weak positive relationships between geographic and phenotypic distance 302 
(mantel test, r = 0.368, p = 0.062) and genetic and phenotypic distance (mantel test, r = 0.310, p 303 
= 0.088).  304 

The R package conStruct quantified genetic clustering while accounting for geographic 305 
distance. Compared to both conStruct’s non-spatial model and entropy, conStruct’s spatial model 306 
inferred fewer discrete genetic clusters (Fig. 7). Cross-validation analysis showed that spatial 307 
models have better predictive accuracy than non-spatial models (Suppl. Fig. 5). Although each 308 
additional layer from K=1 to 7 increased the predictive accuracy of the model (Suppl. Fig 6.), 309 
layer contributions decreased dramatically after K = 2 (Suppl. Fig. 6). All spatial models with K 310 
≥ 2 assigned groups on the Nicoya and Osa peninsulas to the same cluster. There is no obvious 311 
biological explanation for why the populations at these sites would be assigned to the same 312 
discrete cluster. It is likely that runs at K ≥ 2 are describing the genetic dissimilarity between 313 
frogs on the Nicoya and Osa peninsulas with the IBD component of the model within a single 314 
layer. This may not reflect recent shared ancestry, and instead may be an artifact of the large 315 
geographic distance between these locations combined with gaps in our sampling. Therefore, we 316 
interpret K = 1 as the model with the most biological significance. 317 

We used Bayesian models to evaluate relationships between phenotypic measurements 318 
(PC1, hue, saturation and brightness) and latitude while accounting for genetic covariance. Using 319 
95% credible intervals, with a Dunn-Bonferroni correction for multiple tests, we found that 320 
individual leg saturation, hue, and PC1, but not brightness, vary significantly with latitude while 321 
accounting for genetic covariance among sampled individuals (Fig. 8). These correlations are not 322 
significant when using phenotypic averages for each site. We did not find significant 323 
relationships between variation in phenotypic measures and θw, or latitude. 324 
 325 
Polytypic patterns: Pattern of isolation by distance found across polytypic regions 326 
Most of the genetic variation among red-eyed treefrogs populations is explained by over-land 327 
distance among sites; orange and purple morphs do not represent separate genetic demes (Fig. 328 

●

●

● ●

●●

●

●
●
●● ●

●

●

●

●

●

●

●

● ●●●
●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●
●

● ●●

●
●

●

●

●

●

●

●
●

● ●●

●
●

●

●

●

●
●

●

●

● ●●

● ●

●

●

●

●
●
●

●

● ●●

● ●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●
●

● ●●

●

●

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

Geographic Distance (km)

Pa
irw

is
e 

Fs
t/1
−F

st

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

0 100 200 300 400

0
5

10
15

20
25

30
35

Geographic Distance (km)
Ph

en
ot

yp
ic

 D
is

ta
nc

e

●
● ●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6

0
5

10
15

20
25

30
35

Pairwise Fst/1−Fst

Ph
en

ot
yp

ic
 D

is
ta

nc
e

Figure 6. Relationship between over-land geographic distance and genetic distance for 12 sites of red-eyed 
treefrogs (Agalychnis callidryas) along the Pacific coast of Costa Rica. There is a strong positive 
relationship between geographic and genetic distance, suggesting a pattern of isolation by distance (r = 
0.965, p < 0.001); however, the relationships between phenotypic and geographic distance (r = 0.368, p < 
0.062) and genetic and phenotypic distance (r = 0.310, p = 0.088) were considerably weaker. 
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2A, Fig. 6). Red-eyed treefrogs are likely semi-continuously distributed across their range, yet 329 
we sampled at discrete sampling locations; this risks over-estimating genetic groups inferred 330 
using clustering models (Bradburd et al., 2018; Frantz et al., 2009; Meirmans, 2012). Therefore, 331 
we used conStruct to compare models of population structure with and without spatial 332 
information (Bradburd et al., 2018). Comparing spatial and nonspatial models in conStruct 333 
indicated that most of the clustering observed in the nonspatial models arose from IBD (Fig. 7). 334 
Our results highlight the importance of considering patterns of IBD as they relate to genetic 335 
relatedness among discrete sampling sites: we would have over-estimated the genetic clustering 336 
of red-eyed treefrogs and come to strikingly different conclusions had we solely relied on 337 
nonspatial clustering models. 338 
 Spatial models show a division between the mainland and the two peninsular regions 339 
(Nicoya and Osa), but we assert that K=1 best describes the data because there is no a priori 340 
reason to expect that sites on the Nicoya and Osa peninsulas exchange migrants or share a more 341 
recent common ancestor with each other than with neighboring mainland sites. In fact, pairwise 342 
FST values between the Nicoya site and Osa sites are among the highest found in the dataset 343 
(Table 3, 0.408-0.415). Further, the non-spatial model did not support shared ancestry between 344 
Nicoya and Osa.  345 

On both the Nicoya and Osa peninsulas, we expected red-eyed treefrogs to be isolated 346 
from neighboring sites on the mainland. Site 1 at the tip of the Nicoya Peninsula is one of the 347 
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Figure 7. Barplots of admixture proportions for red-eyed treefrogs (Agalychnis callidryas) sampled from 12 sites along the 
Pacific coast of Costa Rica. Admixture proportions were generated using conStruct for K = 2–4 for both non-spatial and spatial 
models. Each bar represents an individual. The color of the bar shows the proportion of the individual’s genome that is 
assigned to each of K layers.  
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only known populations of red-eyed treefrogs in the region, as dry forests unsuitable for red-eyed 348 
treefrogs cover most of far northwestern Costa Rica, including the Nicoya Peninsula (Kohlmann 349 
et al., 2002; Savage, 2002). The Osa Peninsula is genetically isolated from mainland sites for 350 
many taxa, including snakes and other frogs (Crawford, 2003; Crawford et al., 2007; Zamudio & 351 
Greene, 1997). However, we did not detect this pattern in red-eyed treefrogs on either peninsula 352 
once the geographic distance between mainland and peninsular sites was accounted for. Rather 353 
we found that red-eyed treefrogs on the Nicoya and Osa peninsulas are separated from mainland 354 
sites only due to IBD, rather than a mainland/peninsular barrier. This is particularly surprising 355 
for the Nicoya Peninsula, as dry forest is a clear barrier to red-eyed treefrog dispersal. It is 356 
possible that populations that persist along the coast (e.g., Gonzalez, 2013) provide a path for 357 
gene flow between the Nicoya and mainland sites.  358 
 359 
Polymorphic patterns: Genetic introgression does not underlie color pattern polymorphism 360 
We tested whether color-pattern polymorphism at a site arose through genetic introgression of 361 
divergent parent populations, the retention of ancestral polymorphism and/or ancient secondary 362 
contact (Fig. 2B). We did not find evidence of discrete parental groups, or recent introgression in 363 
the Central 2 region, despite patterns of color-pattern polymorphism (Table 2, Fig. 2,3). Rather 364 
our findings support that either color-pattern polymorphism was retained from an ancestral 365 
population, there has been ancient secondary contact, or that novel morphs have been generated 366 
by new mutations (Fig. 2B). Lab-bred hybrids provided examples of admixed ancestry and were 367 
the result of crossing orange and purple morph parents from geographically distant locations. It 368 
is likely that these parents were more genetically differentiated than the wild-caught orange and 369 
purple morph individuals living in the transition zone. Orange and purple frogs to the north, 370 

Figure 8. Results of Bayesian models with Dunn-Bonferroni corrected credible intervals (CI) showing the 
relationships between (A) latitude and PC1, (B) latitude and average PC1 value per site, and (C) 
Watterson’s theta and variation in PC1 at each site. Each model contains genetic covariance as a covariate. 
Bolded line indicates that the 95% CI did not overlap with zero. Insets below model fit show estimated 
parameter values for 5,000 Markov chain Monte Carlo iterations.  
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south, and within the transition zone were assigned to similar genetic groups in both our spatial 371 
and nonspatial conStruct analyses, eliminating the possibility of genetic hybrids. Genetic IBD 372 
(Fig. 6), suggests that gene flow among sites is uninhibited by geographic barriers or other forms 373 
of premating reproductive isolation.   374 

The distribution of color-pattern variation on the Pacific slope of Costa Rica seemingly 375 
mirrors patterns on the Caribbean: color-pattern polymorphism is found at a contact zone 376 
between two morphs. However, polymorphism in the Caribbean is the result of introgression 377 
between two distinct genetic groups of different color morphs (Akopyan et al., 2020b). There, 378 
red and blue morph frogs meet in a contact zone and produce frogs with a novel purple color 379 
pattern. Our contrasting findings for the Pacific slope emphasize that diverse evolutionary forces 380 
can produce similar patterns of phenotypic variation within intraspecific lineages. Whereas there 381 
is direct evidence that polymorphism on the Caribbean coast is the result of hybridization, the 382 
lack of recent genetic introgression along the Pacific slope suggests that variation in leg 383 
phenotype could have arisen due to the retention of ancestral color-pattern polymorphism in the 384 
region (as in Corl, Davis, Kuchta, & Sinervo, 2010), or ancient secondary contact (as in Lim et 385 
al., 2010). Additionally, polymorphism could be generated by novel mutations (as in Rosenblum 386 
et al., 2006, 2010).  387 
 388 
 389 
Table 3. Pairwise FST (below diagonal) and geographic distance in kilometers (above diagonal) for 12 390 
sampling sites along the Pacific coast of Costa Rica. Lines denote regional boundaries.  391 

Spatial patterns of phenotype and genotype explained by multiple processes 392 
Patterns of phenotypic and genetic variation permit us to test hypotheses about the evolutionary 393 
forces that influence lineage divergence. We found that genetic relatedness corresponds with 394 
phenotypic similarity in some regions of the Pacific coast, but not in others. These results 395 
highlight the complexity and nuance of this natural system, where multiple processes potentially 396 
shape diversity at a fine spatial scale, including genetic drift, selection, and ancient evolutionary 397 
history.   398 
 Red-eyed treefrogs on the Nicoya peninsula are isolated from the mainland by both 399 
geographic distance and tropical dry forests (see above), suggesting that genetic and phenotypic 400 
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differentiation in this region could have resulted from genetic drift. Evolution via drift is a 401 
common pattern for insular populations (e.g., Knopp et al., 2007, Lehtonen et al., 2009).  402 
Indeed, the Nicoya peninsula had the highest pairwise FST values to sampled populations at other 403 
locations (Table 3), and the lowest nucleotide diversity (Table 1). Individuals from the Nicoya 404 
Peninsula have a distinct, brighter orange phenotype then mainland frogs. In this case, the 405 
genetic and phenotypic divergence between the Nicoya and the mainland correspond, suggesting 406 
that drift could have resulted in both genetic and phenotypic differentiation.  407 
 In other instances, we found phenotypic changes are not well explained by neutral genetic 408 
relatedness at our genotyped loci, supporting the hypothesis that color pattern evolves through 409 
selection in this region (see below for discussion of selection). Along mainland coastal sites, we 410 
found a strong pattern of genetic IBD but a relatively weak pattern of phenotypic divergence 411 
with geographic distance across the entire Pacific coast, and a weak relationship between genetic 412 
distance and phenotypic distance (Fig. 6). Because geographic distance and color pattern both 413 
largely change along a latitudinal cline, it is difficult to decouple phenotypic changes from 414 
patterns of genetic IBD. We therefore used Bayesian models to test whether color-pattern 415 
phenotype changes more than expected given genetic relatedness, and, if so, whether that change 416 
is correlated with latitude. Both models found significant effects of latitude for PC1 and leg 417 
saturation and hue, but not for brightness measures (Fig. 8, Suppl. Fig.  2, 3). The relationship 418 
between phenotype and latitude disappeared at the site level, possibly due to reduced sample 419 
size. Given this result, we expect to find instances along the Pacific coast where color-pattern 420 
changes despite a high degree of genetic relatedness.  421 

There are several instances along the Pacific coast where we observed changes in 422 
phenotype without corresponding changes in genetic deme. Orange and purple morph frogs 423 
along the mainland coast were not part of separate genetic demes, and instead conformed well to 424 
the coast-wide pattern of genetic IBD. Additionally, frogs from the polymorphic Central 2 region 425 
(Sites 5–7) and South (Sites 11–12) were assigned to the same genetic groups using both spatial 426 
and nonspatial clustering models (Fig. 7) and had low pairwise FST values (Table 3), despite 427 
different phenotypes (Table 2; Fig. 3). These incongruences between genetic patterns and 428 
phenotype suggest that phenotypic differences are maintained by selection despite the presence 429 
of gene flow. 430 

We found additional incongruent patterns of variation on the Osa Peninsula. While all 431 
sites sampled within the Osa Peninsula were genetically similar and assigned to the same discrete 432 
genetic cluster (Fig. 4, 7), they were phenotypically distinct from one another (Table 2). Whether 433 
these are novel mutations, ancestral polymorphisms and/or the result of genetic drift in these 434 
relativity isolated and small populations remains unknown. Phenotypic divergence, despite 435 
genetic homogeneity, is a common pattern in nature, and usually has been attributed to sexual 436 
selection or adaptation to environmental variation. Some examples include Epipedobates poison 437 
frogs in Peru and Colombia (Tarvin et al., 2017), mimic poison frogs in Peru (Twomey et al., 438 
2013) and redpoll finches in the Arctic circle (Mason & Taylor, 2015). The phenotypic variation 439 
on the Osa peninsula is particularly surprising given their small geographic scale (distance 440 
among sites ranges from 20–33 km). 441 
 As reported above, the transition in phenotype from orange legs to purple legs is not the 442 
result of two genetic demes meeting at a contact zone. It is possible that it was facilitated by 443 
ancient secondary contact between ancestral demes, one with orange flanks and legs and the 444 
other with purple flanks and legs. Frogs from the southern sites (7-12) and the Osa peninsula are 445 
part of a different mtDNA clade (clade A, Table 1) from the north (clade B; Table 1; Robertson 446 
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and Zamudio 2009). This biogeographic discordance between mtDNA and nuclear loci suggests 447 
past secondary contact (as in Toews & Brelsford, 2012). Along the mainland Pacific slope, frogs 448 
belong to the same genetic cluster, but have different mitochondrial haplotypes and distinct color 449 
patterns. This suggests that ancestral mitochondrial groups and color-pattern divergence have 450 
been maintained over time, whereas nuclear structure has been lost as a result of gene flow. 451 
Testing this hypothesis would require additional genomic data from these regions.  452 
 453 
Role and mechanisms of selection 454 
A nuanced set of selective pressures likely underlie the genetic and phenotypic patterns observed 455 
between and within red-eyed treefrog populations. Although hidden during the day when the 456 
frogs are at rest, the flanks and legs of red-eyed treefrogs are visible during activity at night, 457 
including during mating aggregations (Pyburn, 1970). Color pattern serves as a species and 458 
population-recognition cue in mate choice (Kaiser et al., 2018; Robertson & Greene, 2017). Mate 459 
preference for local color pattern has been demonstrated in this species, suggesting a role of 460 
sexual selection. Females from Site 2 and Site 12 have a preference for males with their local 461 
color pattern in mate-choice trials (Akopyan et al., 2018; Jacobs et al., 2016). Frogs from these 462 
sites also have distinguishable male calls and exhibit differences in female courtship behaviors 463 
(Akopyan et al., 2018), suggesting that preference for male traits could maintain local color-464 
pattern differences despite the presence of gene flow.  465 

Other forms of selection could also shape geographic variation in color pattern. Red-eyed 466 
treefrogs secrete noxious host-defense polypeptides from their skin (Conlon et al., 2007; Davis et 467 
al., 2016; Mignogna et al., 1997; Sazima, 1974), presenting the possibility that flank- and leg-468 
color patterns act as aposematic signals to visual predators (Robertson & Greene, 2017). 469 
Geographic variation in host-defense polypeptides is correlated with color pattern in red-eyed 470 
treefrogs, indicating a role for ecological selection (Davis et al. 2016, Clark in prep.). 471 
Aposematic coloration is common among other brightly colored anurans (e.g., many species 472 
within Dendrobatidae, Mantellidae), and has been shown to vary among and within populations 473 
(Klonoski et al., 2019; Maan & Cummings, 2008; Rojas et al., 2014; Roland et al., 2017; 474 
Summers & Clough, 2001; Tarvin et al., 2017). Variation in the color pattern of aposematic 475 
species is often attributed to the interplay between ecological and sexual selection (Maan & 476 
Cummings, 2008; Nokelainen et al., 2012; Rojas & Endler, 2013). Future studies of red-eyed 477 
treefrogs that test the role of color pattern in predator avoidance would inform how ecological 478 
and sexual selective pressures interact to shape color-pattern distribution.  479 
 480 
Conclusions 481 
Our results highlight the complex evolutionary dynamics that shape color pattern in natural 482 
systems. We found that, despite a dramatic and discrete phenotypic change from orange to purple 483 
morphs, genetic variation in our study region follows a continuous pattern of IBD. Phenotypic 484 
polymorphism at sites located where the orange morph transitions to purple cannot be explained 485 
by recent hybridization as the orange and purple morphs are not genetically differentiated 486 
groups. Through the comparison of color pattern and genetic relatedness, we found evidence that 487 
indicates that selective forces have likely maintained color-pattern divergence in some regions, 488 
while genetic drift may play a role in others. Understanding the relative strength of sexual and 489 
ecological selection on color pattern is a logical next step for this system.  490 
 491 
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